1
|
Xu DZ, Yang JB, Zhang X, Ren ZX, Liu R, Tang Q, Lu ZL, Liu Y. Hybride nanoparticles composed of SN38-modified [12]aneN 3 and biotinylated lipids for targeted and synergistic lung Cancer therapy. Bioorg Chem 2025; 160:108411. [PMID: 40239402 DOI: 10.1016/j.bioorg.2025.108411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 03/09/2025] [Accepted: 03/23/2025] [Indexed: 04/18/2025]
Abstract
The combination of chemo- and gene-therapy for lung cancer therapy has attracted continuous attention due to its high synergistic therapeutic efficiency. Here, three novel esterase-responsive prodrug-based amphiphiles, SCN1 ∼ SCN3, composed of 7-ethyl-10-hydroxycamptothecin (SN38, S) and di-(triazole-[12]aneN3, N) moiety through different length of carbon chain (C, 5, 7, 11‑carbon alkyl chains, respectively) were designed and synthesized. The amphiphiles displayed excellent self-assembly capabilities and the ability to effectively condense and release siRNA, and SCN2 showed the most effective in inhibiting proliferation of A549 cells. Furthermore, SCN2, siRNA, DOPE (D) and DSPE-PEG2000-Biotin (B) were co-assembled into hybrid nanoparticles (SCN2-DB/siRNA) with an average size of 198 nm, outstanding serum tolerance, high targeting capability, and biocompatibility. Additionally, the release of SN38 (80 %) and siPLK1 (abundant) were observed clearly in the presence of esterase. In vitro experiments verified that SCN2-DB/siPLK1 NPs could efficiently suppress the proliferation, migration, and invasion of A549 cells. In vivo experiments demonstrated that SCN2-DB/siPLK1 NPs efficiently inhibited tumor growth (90 %) with negligible toxic side effects. The results showed that the combination of SN38 and siPLK1 through esterase-responsive amphiphile provided a strategy for lung cancer therapy that combined chemotherapy, gene therapy, and targeted delivery.
Collapse
Affiliation(s)
- De-Zhong Xu
- Key Laboratory of Radiopharmaceutics, Ministry of Education; College of Chemistry, Beijing Normal University, Xinjiekouwai Street 19, Beijing 100875, China
| | - Jing-Bo Yang
- Key Laboratory of Radiopharmaceutics, Ministry of Education; College of Chemistry, Beijing Normal University, Xinjiekouwai Street 19, Beijing 100875, China; Institute of Chemical Drug Control, National Institute for Food and Drug Control, HuaTuo Road 29, Beijing 100050, China
| | - Xi Zhang
- Key Laboratory of Radiopharmaceutics, Ministry of Education; College of Chemistry, Beijing Normal University, Xinjiekouwai Street 19, Beijing 100875, China
| | - Zhi-Xuan Ren
- Key Laboratory of Radiopharmaceutics, Ministry of Education; College of Chemistry, Beijing Normal University, Xinjiekouwai Street 19, Beijing 100875, China
| | - Rui Liu
- Key Laboratory of Radiopharmaceutics, Ministry of Education; College of Chemistry, Beijing Normal University, Xinjiekouwai Street 19, Beijing 100875, China
| | - Quan Tang
- Key Laboratory of Radiopharmaceutics, Ministry of Education; College of Chemistry, Beijing Normal University, Xinjiekouwai Street 19, Beijing 100875, China.
| | - Zhong-Lin Lu
- Key Laboratory of Radiopharmaceutics, Ministry of Education; College of Chemistry, Beijing Normal University, Xinjiekouwai Street 19, Beijing 100875, China.
| | - Yang Liu
- Institute of Chemical Drug Control, National Institute for Food and Drug Control, HuaTuo Road 29, Beijing 100050, China.
| |
Collapse
|
2
|
de Oliveira R, Sant'Ana AC. Surface control in the adsorption of tebuthiuron on modified silver surfaces tracked by surface-enhanced Raman scattering spectroscopy. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 322:124832. [PMID: 39029201 DOI: 10.1016/j.saa.2024.124832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 07/11/2024] [Accepted: 07/13/2024] [Indexed: 07/21/2024]
Abstract
The vibrational assignment of the Raman and surface-enhanced Raman scattering (SERS) spectra of the herbicide tebuthiuron (TBH) was accomplished, which allowed unprecedented propositions for adsorption geometries on the surface of silver nanoparticles (AgNP). Ascribed SERS features allowed suggesting that the adsorption occurred through nitrogen atoms of thiadiazole group, since intense band shift assigned to ring mode was marking of the coordination with the metallic surface. AgNP were treated with different surface modifiers that leaded to substantial changes in TBH adsorption geometries. Spectral changes, as the enhancement of out-of-plane ring modes, were indicative of the presence of tilted thiadiazole geometries in relation to the silver surface. Density Functional Theory (DFT) calculations from TBH molecules, in isolation and in interaction with ten-atom cluster of silver leaded to obtain theoretical spectra that gave support to interpret experimental Raman and SERS spectra.
Collapse
Affiliation(s)
- Rafael de Oliveira
- Laboratório de Nanoestruturas Plasmônicas, Departamento de Química, Instituto de Ciências Exatas, Universidade Federal de Juiz de Fora, 36036-900 Juiz de Fora, Minas Gerais, Brazil
| | - Antonio Carlos Sant'Ana
- Laboratório de Nanoestruturas Plasmônicas, Departamento de Química, Instituto de Ciências Exatas, Universidade Federal de Juiz de Fora, 36036-900 Juiz de Fora, Minas Gerais, Brazil.
| |
Collapse
|
3
|
Lukashe NS, Stone W, Pereira R, Trojahn S, Hardie AG, Johnson KL, Clarke CE. Stabilization of carbon through co-addition of water treatment residuals with anaerobic digested sludge in a coarse textured soil. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 366:121904. [PMID: 39029165 DOI: 10.1016/j.jenvman.2024.121904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 07/10/2024] [Accepted: 07/14/2024] [Indexed: 07/21/2024]
Abstract
Coarse textured soils have low potential to store carbon (C) due to lack of mineral oxides and have low clay content to protect C from biodegradation and leaching. This study evaluated the potential of stabilizing C by adding metal oxyhydroxide-rich water treatment residuals (WTRs) to an aeolian pure sand (<5% clay) topsoil amended with anaerobic digestate (AD) sludge. The AD sludge was applied at 5% (w/w) with aluminum based WTR (Al-WTR) and iron based WTR (Fe-WTR) co-applied at 1:1 and 2:1 WTR:AD (w/w) ratios and incubated at room temperature for 132 days. The cumulative mineralized C was normalized to the total organic C of the treatments. Co-addition with Al-WTR showed to be more effective in stabilizing C through decreased cumulative mineralized C by 48% and 57% in 1Al-WTR:1AD and 2Al-WTR:1AD, respectively, compared to AD sludge sole amendment. Co-application with Al-WTR also decreased permanganate oxidizable C by 37% and dissolved organic C by 51%. Co-application with Fe-WTR did not decrease the concentration of these labile C pools to the same extent, possibly due to the selective use of Fe-WTRs to treat organic-rich raw water. This makes it less effective in stabilizing C in a pure sand relative to Al-WTR due to chemical instability of the Fe-organic complexes. The Al-WTR provides a promising co-amendment to increase C sequestration in pure sands when co-applied with biosolids. The co-amendment approach will not only facilitate C sequestration but also contributes to waste management, aligning to the objectives of a circular economy.
Collapse
Affiliation(s)
- Noxolo S Lukashe
- Department of Soil Science, Stellenbosch University, Stellenbosch, 7602, South Africa
| | - Wendy Stone
- Environmental Microbiology Laboratory, Water Institute, Department of Microbiology, Stellenbosch University, Stellenbosch, 7602, South Africa
| | - Ryan Pereira
- The Lyell Centre, Heriot-Watt University, EH14 4AS Edinburgh, United Kingdom
| | - Sara Trojahn
- The James Hutton Institute, Craigiebuckler, AB15 8QH Aberdeen, United Kingdom
| | - Ailsa G Hardie
- Department of Soil Science, Stellenbosch University, Stellenbosch, 7602, South Africa
| | - Karen L Johnson
- Department of Engineering, Durham University, DH1 3LE, Durham, United Kingdom
| | - Catherine E Clarke
- Department of Soil Science, Stellenbosch University, Stellenbosch, 7602, South Africa.
| |
Collapse
|
4
|
Grzegorzek M, Wartalska K, Kowalik R. Occurrence and sources of hormones in water resources-environmental and health impact. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:37907-37922. [PMID: 38772997 PMCID: PMC11189324 DOI: 10.1007/s11356-024-33713-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 05/14/2024] [Indexed: 05/23/2024]
Abstract
Within recent years, hormones have become emergent contaminants in the water environment. They easily accumulate in living organisms which in effect leads to numerous health problems (endocrine-disrupting mechanism is one of the most known toxic effects). Microbial resistance to antibiotics also became one of the emergent issues related to hormone presence. It was shown that the most common in the environment occur estrogens (E1, E2, E3, and EE2). It has been proven that large amounts of hormones are released from aquaculture as well as from wastewater treatment plants (due to the relatively low separation efficiency of conventional wastewater treatment processes). Within the article's scope, the literature review was performed. The analysis was regarding the characterization of the hormone substances present in the environment, their influence on living organisms and the environment, as well as its potential sources classification.
Collapse
Affiliation(s)
- Martyna Grzegorzek
- Faculty of Environmental Engineering, Wroclaw University of Science and Technology, Wybrzeze Stanisława Wyspianskiego 27, 50-370, Wroclaw, Poland
| | - Katarzyna Wartalska
- Faculty of Environmental Engineering, Wroclaw University of Science and Technology, Wybrzeze Stanisława Wyspianskiego 27, 50-370, Wroclaw, Poland.
| | - Robert Kowalik
- Faculty of Environmental Engineering, Geodesy and Renewable Energy, Kielce University of Technology, Al. Tysiąclecia Państwa Polskiego 7, 25-314, Kielce, Poland
| |
Collapse
|
5
|
Mattoso AP, Cunha S, Aguiar J, Duarte A, Lemos H. Valorization of Water Treatment Sludge for Applications in the Construction Industry: A Review. MATERIALS (BASEL, SWITZERLAND) 2024; 17:1824. [PMID: 38673180 PMCID: PMC11051011 DOI: 10.3390/ma17081824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/08/2024] [Accepted: 04/12/2024] [Indexed: 04/28/2024]
Abstract
To address the growing global water demand, it is imperative to implement advanced treatment systems and sustainable alternatives for managing the large amount of waste generated during the water purification process, known as water treatment sludge (WTS). Worldwide, researchers and companies are exploring alternatives and methods for the valorization of WTS as a raw material in other processes. It is urgent that all productive sectors, which contribute significantly to greenhouse gas emissions, adopt this management principle to ensure more sustainable production, contributing to the global goal of climate neutrality. Notably, in civil construction, incorporating WTS as a supplementary cementitious material (SCM) shows great promise, considering that the industrial waste currently used for this purpose is increasingly restricted. The use of WTS as a raw material in the cement industry not only contributes to the reduction of the carbon footprint, but also reduces the high waste load still disposed of in landfills. The emerging applications for WTP sludge are reviewed, with emphasis on its valorization in the civil construction as an SCM. The main characteristics of this waste and their impacts on the environment are also addressed.
Collapse
Affiliation(s)
- Ana Paula Mattoso
- CTAC—Centre for Territory, Environment and Construction, University of Minho, Campus of Azurém, 4800-058 Guimarães, Portugal; (A.P.M.); (S.C.); (A.D.)
| | - Sandra Cunha
- CTAC—Centre for Territory, Environment and Construction, University of Minho, Campus of Azurém, 4800-058 Guimarães, Portugal; (A.P.M.); (S.C.); (A.D.)
| | - José Aguiar
- CTAC—Centre for Territory, Environment and Construction, University of Minho, Campus of Azurém, 4800-058 Guimarães, Portugal; (A.P.M.); (S.C.); (A.D.)
| | - António Duarte
- CTAC—Centre for Territory, Environment and Construction, University of Minho, Campus of Azurém, 4800-058 Guimarães, Portugal; (A.P.M.); (S.C.); (A.D.)
| | - Helena Lemos
- Águas do Norte, S.A., Dom Pedro de Castro, 5000-669 Vila Real, Portugal;
| |
Collapse
|
6
|
Narwal N, Katyal D, Kataria N, Rose PK, Warkar SG, Pugazhendhi A, Ghotekar S, Khoo KS. Emerging micropollutants in aquatic ecosystems and nanotechnology-based removal alternatives: A review. CHEMOSPHERE 2023; 341:139945. [PMID: 37648158 DOI: 10.1016/j.chemosphere.2023.139945] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 08/16/2023] [Accepted: 08/22/2023] [Indexed: 09/01/2023]
Abstract
There is a significant concern about the accessibility of uncontaminated and safe drinking water, a fundamental necessity for human beings. This concern is attributed to the toxic micropollutants from several emission sources, including industrial toxins, agricultural runoff, wastewater discharges, sewer overflows, landfills, algal blooms and microbiota. Emerging micropollutants (EMs) encompass a broad spectrum of compounds, including pharmaceutically active chemicals, personal care products, pesticides, industrial chemicals, steroid hormones, toxic nanomaterials, microplastics, heavy metals, and microorganisms. The pervasive and enduring nature of EMs has resulted in a detrimental impact on global urban water systems. Of late, these contaminants are receiving more attention due to their inherent potential to generate environmental toxicity and adverse health effects on humans and aquatic life. Although little progress has been made in discovering removal methodologies for EMs, a basic categorization procedure is required to identify and restrict the EMs to tackle the problem of these emerging contaminants. The present review paper provides a crude classification of EMs and their associated negative impact on aquatic life. Furthermore, it delves into various nanotechnology-based approaches as effective solutions to address the challenge of removing EMs from water, thereby ensuring potable drinking water. To conclude, this review paper addresses the challenges associated with the commercialization of nanomaterial, such as toxicity, high cost, inadequate government policies, and incompatibility with the present water purification system and recommends crucial directions for further research that should be pursued.
Collapse
Affiliation(s)
- Nishita Narwal
- University School of Environment Management, Guru Gobind Singh Indraprastha University, Sector 16-C, Dwarka, 110078, New Delhi, India
| | - Deeksha Katyal
- University School of Environment Management, Guru Gobind Singh Indraprastha University, Sector 16-C, Dwarka, 110078, New Delhi, India.
| | - Navish Kataria
- Department of Environmental Sciences, J.C. Bose University of Science and Technology, YMCA, Faridabad, 121006, Haryana, India.
| | - Pawan Kumar Rose
- Department of Energy and Environmental Sciences, Chaudhary Devi Lal University, Sirsa, 125055, Haryana, India
| | - Sudhir Gopalrao Warkar
- Department of Applied Chemistry, Delhi Technological University, Shahbad Daulatpur Village, Rohini, 110042, New Delhi, India
| | - Arivalagan Pugazhendhi
- Emerging Materials for Energy and Environmental Applications Research Group, School of Engineering and Technology, Van Lang University, Ho Chi Minh City, Viet Nam
| | - Suresh Ghotekar
- Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, 603103, Tamil Nadu, India
| | - Kuan Shiong Khoo
- Department of Chemical Engineering and Materials Science, Yuan Ze University, Taoyuan, Taiwan.
| |
Collapse
|
7
|
Briso A, Vega AS, Molinos-Senante M, Pastén P. Challenges and opportunities for drinking water treatment residuals (DWTRs) in metal-rich areas: an integrated approach. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:65599-65612. [PMID: 35488992 DOI: 10.1007/s11356-022-20262-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 04/10/2022] [Indexed: 06/14/2023]
Abstract
The physicochemistry and production rate of drinking water treatment residuals (DWTRs) depends on the raw water composition and the plant operational parameters. DWTRs usually contain Fe and/or Al oxyhydroxides, sand, clay, organic matter, and other compounds such as metal(oids), which are relevant in mining countries. This work proposes a simple approach to identify DWTRs reuse opportunities and threats, relevant for public policies in countries with diverse geochemical conditions. Raw water pollution indexes and compositions of DWTRs were estimated for Chile as a model case. About 23% of the raw drinking water sources had moderate or seriously contamination from high turbidity and metal(loid) pollution If the untapped reactivity of clean DWRTs was used to treat resources water in the same water company, the 73 and 64% of these companies would be able to treat water sources with As and Cu above the drinking water regulations, respectively. Integrating plant operational data and the hydrochemical characteristics of raw waters allows the prediction of DWTRs production, chemical composition, and reactivity, which is necessary to identify challenges and opportunities for DWTRs management.
Collapse
Affiliation(s)
- Alejandro Briso
- Departamento de Ingeniería Hidráulica y Ambiental, Pontificia Universidad Católica de Chile, Av. Vicuña Mackenna 4860, Macul, Santiago, Chile
- Centro de Desarrollo Urbano Sustentable (CEDEUS), El Comendador 1916, Providencia, Santiago, Chile
| | - Alejandra S Vega
- Departamento de Ingeniería Hidráulica y Ambiental, Pontificia Universidad Católica de Chile, Av. Vicuña Mackenna 4860, Macul, Santiago, Chile
- Centro de Desarrollo Urbano Sustentable (CEDEUS), El Comendador 1916, Providencia, Santiago, Chile
| | - María Molinos-Senante
- Departamento de Ingeniería Hidráulica y Ambiental, Pontificia Universidad Católica de Chile, Av. Vicuña Mackenna 4860, Macul, Santiago, Chile
- Centro de Desarrollo Urbano Sustentable (CEDEUS), El Comendador 1916, Providencia, Santiago, Chile
| | - Pablo Pastén
- Departamento de Ingeniería Hidráulica y Ambiental, Pontificia Universidad Católica de Chile, Av. Vicuña Mackenna 4860, Macul, Santiago, Chile.
- Centro de Desarrollo Urbano Sustentable (CEDEUS), El Comendador 1916, Providencia, Santiago, Chile.
| |
Collapse
|
8
|
Mohammadi M, Gheibi M, Fathollahi-Fard AM, Eftekhari M, Kian Z, Tian G. A hybrid computational intelligence approach for bioremediation of amoxicillin based on fungus activities from soil resources and aflatoxin B1 controls. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 299:113594. [PMID: 34467868 DOI: 10.1016/j.jenvman.2021.113594] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 08/16/2021] [Accepted: 08/21/2021] [Indexed: 06/13/2023]
Abstract
Nowadays, releasing the Emerging Pollutants (EPs) in the nature is one of the main reasons for many health and environmental disasters. Amoxicillin as an antibiotic is one of the EPs and categorized as the Endocrine Disrupting Compounds (EDCs) in hazardous materials. Accumulation of amoxicillin in the soil bulk increases the cancer risk, drug resistances and other epidemiological diseases. Hence, the soil bioremediation of antibiotics can be a solution for this problem which is more environmental-friendly system. This study technically creates a bio-engine setup in soil bulk for remediation of amoxicillin based on Aspergillus Flavus (AF) activities and Removal Percentage (RP) of amoxicillin with Aflatoxin B1 Generation (AG) controls. The main novelty is to propose a hybrid computational intelligence approach to do optimization for mechanical and biological aspects and to predict the behavior of bio-engine's effective mechanical and biological features in an intelligent way. The optimization model is formulated by the Central Composite Design (CCD) which is set by the Response Surface Methodology (RSM). The prediction model is formulated by the Random Forest (RF), Adaptive Neuro Fuzzy Inference System (ANFIS) and Random Tree (RT) algorithms. According to the experimental practices from real soil samples in different times and places, concentration of amoxicillin and Aflatoxin B1 are set equal to 25 mg/L (ppm) and 15 μg/L (ppb). Likewise, the outcomes of experiments in CCD-RSM computations are evaluated by curve fitting comparisons between linear, 2FI, quadratic and cubic polynomial equations with considering to regression coefficient and predicted regression coefficient values, ANOVA and optimization by sequential differentiation. Based on the results of CCD-RSM, the RP performance in the optimum conditions is measured around 86% and in 25 days after runtime, the RP and AG are balanced in the safe mode. The proposed hybrid model achieves the 0.99 accuracy. The applicability of the research is done using real field evaluations from drug industrial park in Mashhad city in Iran. Finally, a broad analysis is done and managerial insights are concluded. The main findings of the present research are: (I) with application of bioremediation from fungus activities, amoxicillin amounts can be control in soil resources with minimum AG, (II) ANFIS model has the best accuracy for smart monitoring of amoxicillin bioremediation in soil environments and (III) based on the statistical assessments Aeration Intensity and AF/Biological Waste ratio are most effective on the amoxicillin removal percentage.
Collapse
Affiliation(s)
- Maryam Mohammadi
- Department of Chemical and Polymer Engineering, Yazd University, Yazd, Iran
| | - Mohammad Gheibi
- Department of Civil Engineering, Ferdowsi University of Mashhad, Iran.
| | - Amir M Fathollahi-Fard
- Department of Electrical Engineering, École de Technologie Supérieure, University of Québec, Montréal, Canada.
| | - Mohammad Eftekhari
- Department of Chemistry, Faculty of Sciences, University of Neyshabur, Neyshabur, Iran.
| | - Zahra Kian
- Department of Chemical Engineering, Amirkabir University of Technology, Tehran, Iran
| | - Guangdong Tian
- School of Mechanical Engineering, Shandong University, Jinan, 250061, China; Key Laboratory of High Efficiency and Clean Mechanical Manufacture (Ministry of Education), Shandong University, Jinan, 250061, China; National Demonstration Center for Experimental Mechanical Engineering Education, Shandong University, Jinan, 250061, China.
| |
Collapse
|
9
|
A comparative study on dark adsorption of dyes using mesoporous MCM-41 catalyst. RESEARCH ON CHEMICAL INTERMEDIATES 2021. [DOI: 10.1007/s11164-021-04631-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
10
|
Application of Alum Sludge in Wastewater Treatment Processes: “Science” of Reuse and Reclamation Pathways. Processes (Basel) 2021. [DOI: 10.3390/pr9040612] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Alum sludge (AlS) refers to the inevitable by-product generated during the drinking water purification process, where Al-salt is used as a coagulant in the water industry. It has long been treated as “waste”, while landfill is its major final disposal destination. In fact, AlS is an underutilized material with huge potential for beneficial reuse as a raw material in various wastewater treatment processes. In the last two decades, intensive studies have been conducted worldwide to explore the “science” and practical application of AlS. This paper focuses on the recent developments in the use of AlS that show its strong potential for reuse in wastewater treatment processes. In particular, the review covers the key “science” of the nature and mechanisms of AlS, revealing why AlS has the potential to be a value-added material. In addition, the future focus of research towards the widespread application of AlS as a raw material/product in commercial markets is suggested, which expands the scope for AlS research and development.
Collapse
|