1
|
Kaboudin B, Behroozi M, Sadighi S, Asgharzadeh F. Recent advances in the electrochemical synthesis of organophosphorus compounds. Beilstein J Org Chem 2025; 21:770-797. [PMID: 40276283 PMCID: PMC12018900 DOI: 10.3762/bjoc.21.61] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Accepted: 04/04/2025] [Indexed: 04/26/2025] Open
Abstract
In this review, we describe recent advances in electrochemical green methods for the synthesis of various organophosphorus compounds through the formation of phosphorus-carbon, phosphorus-nitrogen, phosphorus-oxygen, phosphorus-sulfur, and phosphorus-selenium bonds. The impact of different electrodes is also discussed in this matter. Graphite, platinum, RVC, and nickel electrodes have been used extensively for the electrochemical synthesis of organophosphorus compounds. The recent advances in the electrochemical synthesis of organophosphorus compounds have made this method a promising method for preparing various structures. This review is an introduction to encourage scientists to use electrosynthesis as a green, precise, and low-cost method to prepare phosphorous structures.
Collapse
Affiliation(s)
- Babak Kaboudin
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), Gava Zang, Zanjan 45137-66731, Iran
| | - Milad Behroozi
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), Gava Zang, Zanjan 45137-66731, Iran
| | - Sepideh Sadighi
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), Gava Zang, Zanjan 45137-66731, Iran
| | - Fatemeh Asgharzadeh
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), Gava Zang, Zanjan 45137-66731, Iran
| |
Collapse
|
2
|
Mayorquín-Torres MC, Simoens A, Bonneure E, Stevens CV. Synthetic Methods for Azaheterocyclic Phosphonates and Their Biological Activity: An Update 2004-2024. Chem Rev 2024; 124:7907-7975. [PMID: 38809666 DOI: 10.1021/acs.chemrev.4c00090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
The increasing importance of azaheterocyclic phosphonates in the agrochemical, synthetic, and medicinal field has provoked an intense search in the development of synthetic routes for obtaining novel members of this family of compounds. This updated review covers methodologies established since 2004, focusing on the synthesis of azaheterocyclic phosphonates, of which the phosphonate moiety is directly substituted onto to the azaheterocyclic structure. Emphasizing recent advances, this review classifies newly developed synthetic approaches according to the ring size and providing information on biological activities whenever available. Furthermore, this review summarizes information on various methods for the formation of C-P bonds, examining sustainable approaches such as the Michaelis-Arbuzov reaction, the Michaelis-Becker reaction, the Pudovik reaction, the Hirao coupling, and the Kabachnik-Fields reaction. After analyzing the biological activities and applications of azaheterocyclic phosphonates investigated in recent years, a predominant focus on the evaluation of these compounds as anticancer agents is evident. Furthermore, emerging applications underline the versatility and potential of these compounds, highlighting the need for continued research on synthetic methods to expand this interesting family.
Collapse
Affiliation(s)
- Martha C Mayorquín-Torres
- SynBioC Research Group, Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, B-9000 Ghent, Belgium
| | - Andreas Simoens
- SynBioC Research Group, Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, B-9000 Ghent, Belgium
| | - Eli Bonneure
- SynBioC Research Group, Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, B-9000 Ghent, Belgium
| | - Christian V Stevens
- SynBioC Research Group, Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, B-9000 Ghent, Belgium
| |
Collapse
|
3
|
Li S, Fang L, Dou Q, Wang T, Cheng B. Recent advances in phosphorylation of hetero-nucleophilic reagents via P–H bond cleavage. Tetrahedron 2023. [DOI: 10.1016/j.tet.2023.133344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
|
4
|
Brol A, Olszewski TK. Deamination of 1-Aminoalkylphosphonic Acids: Reaction Intermediates and Selectivity. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27248849. [PMID: 36557979 PMCID: PMC9783495 DOI: 10.3390/molecules27248849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/03/2022] [Accepted: 12/05/2022] [Indexed: 12/15/2022]
Abstract
Deamination of 1-aminoalkylphosphonic acids in the reaction with HNO2 (generated "in situ" from NaNO2) yields a mixture of substitution products (1-hydroxyalkylphosphonic acids), elimination products (vinylphosphonic acid derivatives), rearrangement and substitution products (2-hydroxylkylphosphonic acids) as well as H3PO4. The variety of formed reaction products suggests that 1-phosphonoalkylium ions may be intermediates in such deamination reactions.
Collapse
|
5
|
Microwave Assisted Esterification of Aryl/Alkyl Acids Catalyzed by N-Fluorobenzenesulfonimide. Catalysts 2022. [DOI: 10.3390/catal12111413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The susceptibility of the carbonyl group towards nucleophilic attack affords the construction of various organic compounds. Thus, investigations of carbonyl activation applying greener methodologies are highly important. In the present work, among the investigated N-halo compounds, N-fluorobenzenesulfonimide (NFSi) has been found as an efficient and selective catalyst in the reaction of direct esterification of aryl and alkyl carboxylic acids supported by microwave (MW) irradiation. The comprehensive esterification of different benzoic acids and mono-, di- and tri-carboxy alkyl derivatives was performed, whereby significant reaction time reductions were achieved. The presented method used NFSi as an easily manipulatable, non-metal, water- and air-tolerant catalyst, allowing simple synthetic and isolation procedures and energy saving, compared to conventional methodologies. Importantly, in contrast to esterification under thermal conditions, where N-halo compounds behave as pre-catalysts, in the MW-supported protocol, a distinct reaction mechanism has been proposed that assumes NFSi as a sustainable catalyst. Moreover, a scale-up of the industrially important derivative was performed.
Collapse
|
6
|
Cybulska P, Legrand YM, Babst-Kostecka A, Diliberto S, Leśniewicz A, Oliviero E, Bert V, Boulanger C, Grison C, Olszewski TK. Green and Effective Preparation of α-Hydroxyphosphonates by Ecocatalysis. Molecules 2022; 27:3075. [PMID: 35630556 PMCID: PMC9146293 DOI: 10.3390/molecules27103075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/05/2022] [Accepted: 05/07/2022] [Indexed: 11/29/2022] Open
Abstract
A green and effective approach for the synthesis of structurally diversed α-hydroxyphosphonates via hydrophosphonylation of aldehydes under solventless conditions and promoted by biosourced catalysts, called ecocatalysts "Eco-MgZnOx" is presented. Ecocatalysts were prepared from Zn-hyperaccumulating plant species Arabidopsis halleri, with simple and benign thermal treatment of leaves rich in Zn, and without any further chemical treatment. The elemental composition and structure of Eco-MgZnOx were characterized by MP-AES, XRPD, HRTEM, and STEM-EDX techniques. These analyses revealed a natural richness in two unusual and valuable mixed zinc-magnesium and iron-magnesium oxides. The ecocatalysts were employed in this study to demonstrate their potential use in hydrophosphonylation of aldehydes, leading to various α-hydroxyphosphonate derivatives, which are critical building blocks in the modern chemical industry. Computational chemistry was performed to help discriminate the role of some of the constituents of the mixed oxide ecocatalysts. High conversions, broad substrate scope, mild reaction conditions, and easy purification of the final products together with simplicity of the preparation of the ecocatalysts are the major advantages of the presented protocol. Additionally, Eco-MgZnOx-P could be recovered and reused for up to five times.
Collapse
Affiliation(s)
- Pola Cybulska
- Department of Physical and Quantum Chemistry, Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland;
| | - Yves-Marie Legrand
- Bio-Inspired Chemistry and Ecological Innovations (ChimEco), UMR 5021 CNRS, University of Montpellier, Cap Delta, 1682 rue de la Valsière, 34790 Grabels, France;
| | - Alicja Babst-Kostecka
- Department of Environmental Science, The University of Arizona, Tucson, AZ 85721, USA;
| | - Sébastien Diliberto
- Institut Jean Lamour, UMR 7198 CNRS, University of Lorraine, 57000 Metz, France; (S.D.); (C.B.)
| | - Anna Leśniewicz
- Analytical Chemistry and Chemical Metallurgy Division, Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland;
| | - Erwan Oliviero
- ICGM, University of Montpellier, CNRS, 34090 Montpellier, France;
| | - Valérie Bert
- Clean Technologies and Circular Economy Unit, SIT Department, INERIS, Parc Technologique Alata BP 2, 60550 Verneuil en Halatte, France;
| | - Clotilde Boulanger
- Institut Jean Lamour, UMR 7198 CNRS, University of Lorraine, 57000 Metz, France; (S.D.); (C.B.)
| | - Claude Grison
- Bio-Inspired Chemistry and Ecological Innovations (ChimEco), UMR 5021 CNRS, University of Montpellier, Cap Delta, 1682 rue de la Valsière, 34790 Grabels, France;
| | - Tomasz K. Olszewski
- Department of Physical and Quantum Chemistry, Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland;
| |
Collapse
|