1
|
Moustafa SMN, Elkanzi NAA, Bakr RB. Synthesis and Evaluating the Anticandidal Activities of Triazino[4,3-a]Quinolinecarboxylate Derivatives: A Promising Approach to Combat Candida Infections. Chem Biodivers 2025:e202500045. [PMID: 40100043 DOI: 10.1002/cbdv.202500045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2025] [Revised: 03/16/2025] [Accepted: 03/17/2025] [Indexed: 03/20/2025]
Abstract
This study aimed to synthesize novel triazino[4,3-a]quinolinecarboxylate compounds (4, 6, 8, and 10) and evaluate these compounds for their antifungal activity against Candida species. Compound 8 was a standout candidate which demonstrated superior efficacy against C. albicans (minimum inhibitory concentration [MIC] = 45 µg/mL), C. glabrata (MIC = 32 µg/mL), C. parapsilosis (MIC = 36 µg/mL) and C. guilliermondii (MIC = 32 µg/mL) compared to Miconazole (MIC = 50-60 µg/mL). Furthermore, the induced morphological and ultra-structural changes by compound 8 on Candida cells are analyzed by light and transmission electron microscopy. Significant alterations in the viability and the architecture of Candida cells highlight the potential of compound 8 as a lead for further use as an antifungal drug. SARs displayed that substitution with the cyano group (as in compounds 8 and 10) was critical for anticandida potency. A molecular docking study of the most active compounds 8 and 10 was conducted inside 14α-demethylase (CYP51) to predict the binding mode of these compounds as antifungal. The most active compound 8 (MIC = 32-45 µg/mL) demonstrated the highest binding energy score which is equal to -8.93 kcal/mol. The findings of the in vitro anticandidal potential have been supported by molecular docking studies.
Collapse
Affiliation(s)
- Shaima M N Moustafa
- Biology Department, College of Science, Jouf University, Sakaka, Saudi Arabia
| | - Nadia A A Elkanzi
- Chemistry Department, College of Science, Jouf University, Sakaka, Saudi Arabia
| | - Rania B Bakr
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| |
Collapse
|
2
|
Pradeep S, Sai Chakith MR, Sindhushree SR, Reddy P, Sushmitha E, Purohit MN, Suresh D, Swamy Shivananju N, Silina E, Manturova N, Stupin V, Kollur SP, Shivamallu C, Achar RR. Exploring shared therapeutic targets for Alzheimer's disease and glioblastoma using network pharmacology and protein-protein interaction approach. Front Chem 2025; 13:1549186. [PMID: 40144222 PMCID: PMC11938128 DOI: 10.3389/fchem.2025.1549186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Accepted: 02/17/2025] [Indexed: 03/28/2025] Open
Abstract
Background Alzheimer's disease (AD) and glioblastoma (GBM) are complex neurological disorders with distinct pathologies but overlapping molecular mechanisms, including neuroinflammation, oxidative stress, and dysregulated signaling pathways. Despite significant advancements in research, effective therapies targeting both conditions remain elusive. Identifying shared molecular targets and potential therapeutic agents could offer novel treatment strategies for these disorders. Methodology The study employs an integrative network pharmacology approach to explore the therapeutic potential of bioactive compounds from Eclipta alba, a medicinal herb known for its neuroprotective and anti-inflammatory properties. A systematic methodology was adopted, starting with network pharmacology analysis using STRING and DisGeNET databases, which identified 617 common genes associated with AD and GBM. Among these, key hub genes-TP53, STAT3, AKT1, and IL6-were prioritized using Cytoscape for network visualization and analysis. Results Molecular docking studies were conducted using PyRx software to assess the binding interactions of 26 phytochemicals from Eclipta alba against the identified target genes. Luteolin exhibited the highest binding affinity to IL6 (-7.8 kcal/mol), forming stable hydrogen bonds and hydrophobic interactions. To further validate this interaction, molecular dynamics simulations (MDS) were performed using GROMACS, confirming the stability of the Luteolin-IL6 complex. Additionally, MM-PBSA binding energy calculations using AmberTools (-145.44 kJ/mol) provided further evidence of a strong and stable interaction. Pharmacokinetic and toxicity evaluations, conducted using SwissADME and pkCSM, highlighted luteolin's favorable drug-like properties, including good bioavailability and low toxicity. These findings suggest that luteolin may serve as a promising multi-target therapeutic agent for AD and GBM by modulating key pathological pathways. Conclusion The present study provides a strong computational foundation for further in vitro and in vivo validation. The results highlight the potential of luteolin in developing dual-target treatment strategies for neurodegenerative and oncological disorders, offering new avenues for therapeutic advancements.
Collapse
Affiliation(s)
- Sushma Pradeep
- Department of Biotechnology and Bioinformatics, School of Life Sciences, JSS Academy of Higher Education and Research, Mysuru, Karnataka, India
- Centre for Digital Health and AI, JSS Medical College, JSS Academy of Higher Education and Research, Mysuru, Karnataka, India
| | - M. R. Sai Chakith
- Department of Pharmacology, JSS Medical College, JSS Academy of Higher Education and Research, Mysuru, Karnataka, India
| | - S. R. Sindhushree
- Department of Biotechnology and Bioinformatics, School of Life Sciences, JSS Academy of Higher Education and Research, Mysuru, Karnataka, India
| | - Pruthvish Reddy
- Department of Biotechnology, Acharya Institute of Technology, Bengaluru, Karnataka, India
| | - Esther Sushmitha
- Department of Pharmacology, JSS Medical College, JSS Academy of Higher Education and Research, Mysuru, Karnataka, India
| | - Madhusudan N. Purohit
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Mysuru, Karnataka, India
| | - Divya Suresh
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Mysuru, Karnataka, India
| | - Nanjunda Swamy Shivananju
- Department of Biotechnology, JSS Science and Technology University, Sri Jayachamarajendra College of Engineering, Mysuru, Karnataka, India
| | - Ekaterina Silina
- Institute of Digital Biodesign and Modeling of Living Systems, I. M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Natalia Manturova
- Department of Surgery, Pirogov Russian National Research Medical University, Moscow, Russia
| | - Victor Stupin
- Department of Surgery, Pirogov Russian National Research Medical University, Moscow, Russia
| | - Shiva Prasad Kollur
- School of Physical Sciences, Amrita Vishwa Vidyapeetham, Mysuru Campus, Mysuru, Karnataka, India
| | - Chandan Shivamallu
- Department of Biotechnology and Bioinformatics, School of Life Sciences, JSS Academy of Higher Education and Research, Mysuru, Karnataka, India
| | - Raghu Ram Achar
- Division of Biochemistry, School of Life Sciences, JSS Academy of Higher Education and Research, Mysuru, Karnataka, India
| |
Collapse
|
3
|
Osipov DV, Demidov MR, Artemenko AA, Rashchepkina DA, Krasnikov PE, Osyanin VA. Cascade Synthesis of Pyrrolo[1,2- a]quinolines and Pyrrolo[2,1- a]isoquinolines via Formal [3 + 2]-Cycloaddition of Push-Pull Nitro Heterocycles with Carbonyl-Stabilized Quinolinium/Isoquinolinium Ylides. J Org Chem 2024; 89:9816-9829. [PMID: 38917339 DOI: 10.1021/acs.joc.4c00455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/27/2024]
Abstract
Various substituted pyrrolo[1,2-a]quinolines and pyrrolo[2,1-a]isoquinolines were synthesized in good to high yields by the Et3N-mediated reaction of push-pull 3-nitrobenzofurans or 1-Ts-/1-Ms-3-nitroindoles and precursors of carbonyl-stabilized quinolinium and isoquinolinium ylides as 1,3-dipole equivalents. These transformations proceed in a one-pot manner starting with the formal [3 + 2]-cycloaddition stage, which is accompanied by double dearomatization of both quinoline/isoquinoline and benzofuran/indole moieties, followed by ring-opening of cyclic intermediate formed and nitrous acid elimination sequence. [3 + 2]-Cycloadducts were isolated as the final products in cases of impossibility or difficulty of their enolization. The present protocol was successfully extended to 3-nitro-4H-chromene derivatives as push-pull dipolarophile component. Finally, using the method of competing reactions, the reactivity of the starting compounds was compared with each other.
Collapse
Affiliation(s)
- Dmitry V Osipov
- Samara State Technical University, 244 Molodogvardeyskaya St., Samara 443100, Russian Federation
| | - Maxim R Demidov
- Samara State Technical University, 244 Molodogvardeyskaya St., Samara 443100, Russian Federation
| | - Alina A Artemenko
- Samara State Technical University, 244 Molodogvardeyskaya St., Samara 443100, Russian Federation
| | - Daria A Rashchepkina
- Samara State Technical University, 244 Molodogvardeyskaya St., Samara 443100, Russian Federation
| | - Pavel E Krasnikov
- Samara State Technical University, 244 Molodogvardeyskaya St., Samara 443100, Russian Federation
| | - Vitaly A Osyanin
- Samara State Technical University, 244 Molodogvardeyskaya St., Samara 443100, Russian Federation
| |
Collapse
|
4
|
Tiwari P, Mangubhai GS, Kidwai S, Singh R, Chandrashekharappa S. Design, synthesis and characterization of ethyl 3-benzoyl-7-morpholinoindolizine-1-carboxylate as anti-tubercular agents: In silico screening for possible target identification. Chem Biol Drug Des 2024; 103:e14512. [PMID: 38570316 DOI: 10.1111/cbdd.14512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 02/24/2024] [Accepted: 03/12/2024] [Indexed: 04/05/2024]
Abstract
A thorough search for the development of innovative drugs to treat tuberculosis, especially considering the urgent need to address developing drug resistance, we report here a synthetic series of ethyl 3-benzoyl-7-morpholinoindolizine-1-carboxylate analogues (5a-o) as potent anti-tubercular agents. These morpholino-indolizines were synthesized by reacting 4-morpholino pyridinium salts, with various electron-deficient acetylenes to afford the ethyl 3-benzoyl-7-morpholinoindolizine-1-carboxylate analogues (5a-o). All synthesized intermediate and final compounds are characterized by spectroscopic methods such as 1H NMR, 13C NMR and HRMS and further examined for their anti-tubercular activity against the M. tuberculosis H37Rv strain (ATCC 27294-American type cell culture). All the compounds screened for anti-tubercular activity in the range of 6.25-50 μM against the H37Rv strain of Mycobacterium tuberculosis. Compound 5g showed prominent activity with MIC99 2.55 μg/mL whereas compounds 5d and 5j showed activity with MIC99 18.91 μg/mL and 25.07 μg/mL, respectively. In silico analysis of these compounds revealed drug-likeness. Additionally, the molecular target identification for Malate synthase (PDB 5CBB) is attained by computational approach. The compound 5g with a MIC99 value of 2.55 μg/mL against M. tuberculosis H37Rv emerged as the most promising anti-TB drug and in silico investigations suggest Malate synthase (5CBB) might be the compound's possible target.
Collapse
Affiliation(s)
- Priya Tiwari
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research Raebareli, Lucknow, India
| | - Gayakvad Sunitaben Mangubhai
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research Raebareli, Lucknow, India
| | - Saqib Kidwai
- Tuberculosis Research Laboratory, Translational Health Science and Technology Institute, Faridabad, India
| | - Ramandeep Singh
- Tuberculosis Research Laboratory, Translational Health Science and Technology Institute, Faridabad, India
| | - Sandeep Chandrashekharappa
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research Raebareli, Lucknow, India
| |
Collapse
|
5
|
Pradeep S, Patil SM, Dharmashekara C, Jain A, Ramu R, Shirahatti PS, Mandal SP, Reddy P, Srinivasa C, Patil SS, Ortega-Castro J, Frau J, Flores-Holgúın N, Shivamallu C, Kollur SP, Glossman-Mitnik D. Molecular insights into the in silico discovery of corilagin from Terminalia chebula as a potential dual inhibitor of SARS-CoV-2 structural proteins. J Biomol Struct Dyn 2023; 41:10869-10884. [PMID: 36576118 DOI: 10.1080/07391102.2022.2158943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 12/10/2022] [Indexed: 12/29/2022]
Abstract
The spike (S) glycoprotein and nucleocapsid (N) proteins are the crucial pathogenic proteins of the Severe Acute Respiratory Syndrome Coronavirus-2 (SARS CoV-2) virus during its interaction with the host. Even FDA-approved drugs like dexamethasone and grazoprevir are not able to curb the viral progression inside the host and are reported with adverse effects on body metabolism. In this context, we aim to report corilagin a novel, potential dual inhibitor of S and N proteins from Terminalia chebula. The bioactive compounds of T. chebula were subjected to a series of computational investigations including molecular docking simulations, molecular dynamics (MD) simulations, binding free energy calculations, and PASS pharmacological analysis. The results obtained from these studies revealed that corilagin was highly interactive with the S (-8.9 kcal/mol) and N (-9.2 kcal/mol) proteins, thereby showing dual inhibition activity. It was also found to be stable enough to induce biological activity inside the inhibitor binding pocket of the target enzymes throughout the dynamics simulation run for 100 ns. This is also confirmed by the changes in the protein conformations, evaluated using free energy landscapes. Outcomes from this investigation identify corilagin as the lead potential dual inhibitor of S and N proteins of SARS-CoV-2, which could be taken for biological studies in near future.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Sushma Pradeep
- Department of Biotechnology and Bioinformatics, JSS Academy of Higher Education & Research, Mysuru, Karnataka, India
| | - Shashank M Patil
- Department of Biotechnology and Bioinformatics, JSS Academy of Higher Education & Research, Mysuru, Karnataka, India
| | - Chandan Dharmashekara
- Department of Biotechnology and Bioinformatics, JSS Academy of Higher Education & Research, Mysuru, Karnataka, India
| | - Anisha Jain
- Department of Biotechnology and Bioinformatics, JSS Academy of Higher Education & Research, Mysuru, Karnataka, India
| | - Ramith Ramu
- Department of Biotechnology and Bioinformatics, JSS Academy of Higher Education & Research, Mysuru, Karnataka, India
| | | | - Subhankar P Mandal
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru, Karnataka, India
| | - Pruthvish Reddy
- Department of Biotechnology, Acharya Institute of Technology, Bengaluru, Karnataka, India
| | - Chandrashekar Srinivasa
- Department of Studies in Biotechnology, Davangere University, Shivagangotri, Karnataka, India
| | - Sharanagouda S Patil
- ICAR-National Institute of Veterinary Epidemiology and Disease Informatics (NIVEDI), Bengaluru, Karnataka, India
| | | | - Juan Frau
- Departament de Qúımica, Universitat de les Illes Balears, Palma de Malllorca, Spain
| | - Norma Flores-Holgúın
- Laboratorio Virtual NANOCOSMOS, Departamento de Medio Ambiente y Energ'ıa, Centro de Investigación en Materiales Avanzados, Chihuahua, Chih, México
| | - Chandan Shivamallu
- Department of Biotechnology and Bioinformatics, JSS Academy of Higher Education & Research, Mysuru, Karnataka, India
| | - Shiva Prasad Kollur
- School of Physical Sciences, Amrita Vishwa Vidyapeetham, Mysuru Campus, Mysuru, Karnataka, India
| | - Daniel Glossman-Mitnik
- Laboratorio Virtual NANOCOSMOS, Departamento de Medio Ambiente y Energ'ıa, Centro de Investigación en Materiales Avanzados, Chihuahua, Chih, México
| |
Collapse
|
6
|
Benjamin I, Benson CU, Adalikwu SA, Nduoma FA, Akor FO, Odey MO, Ezeani EC, Anyambula IA, Odume MA, Louis H. Investigating the potential of thiazolyl carbohydrazides derivatives as anti-Candida albicans agents: An intuition from molecular modelling, pharmacokinetic evaluation, and molecular docking analysis. CHEMICAL PHYSICS IMPACT 2023; 7:100275. [DOI: 10.1016/j.chphi.2023.100275] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/21/2024]
|
7
|
Reddy P, Pradeep S, S. M. G, Dharmashekar C, G. D, M. R. SC, Srinivasa C, Shati AA, Alfaifi MY, Elbehairi SEI, Achar RR, Silina E, Stupin V, Manturova N, Shivamallu C, Kollur SP. Cell cycle arrest and apoptotic studies of Terminalia chebula against MCF-7 breast cancer cell line: an in vitro and in silico approach. Front Oncol 2023; 13:1221275. [PMID: 37706181 PMCID: PMC10497218 DOI: 10.3389/fonc.2023.1221275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 07/06/2023] [Indexed: 09/15/2023] Open
Abstract
Breast cancer is a leading cause of mortality in women, and alternative therapies with fewer side effects are actively being explored. Breast cancer is a significant global health concern, and conventional treatments like radiotherapy and chemotherapy often have side effects. Medicinal plant extracts offer a promising avenue for the development of effective and safe anticancer therapies. Terminalia chebula, a plant known for its medicinal properties, was selected for investigation in this study. We aimed to assess the antiproliferative effects of TCF extract on breast cancer cells and explore the potential role of saccharopine, a phytochemical found in TCF, as an anticancer agent. MCF7 breast cancer cell lines were exposed to TCF extract, and cell viability and apoptosis assays were performed to evaluate the antiproliferative and apoptogenic effects. Molecular docking studies were conducted to assess the binding affinity of saccharopine with EGFRs. Molecular dynamics simulations and binding energy calculations were employed to analyze the stability of the EGFR-saccharopine complex. The TCF extract exhibited significant antiproliferative effects on MCF7 breast cancer cells and induced apoptosis in a dose-dependent manner. Molecular docking analysis revealed that saccharopine demonstrated a higher binding affinity with EGFR compared to the reference compound (17b-estradiol). The subsequent MDS simulations indicated stable binding patterns and conformation of the EGFR-saccharopine complex, suggesting a potential role in inhibiting EGFR-mediated signaling pathways. The investigation of Terminalia chebula fruit extract and its phytochemical saccharopine has revealed promising antiproliferative effects and a strong binding affinity with EGFR. These findings provide a foundation for future research aimed at isolating saccharopine and conducting in vivo studies to evaluate its potential as a targeted therapy for breast cancer. The development of novel anticancer agents from plant sources holds great promise in advancing the field of oncology and improving treatment outcomes for breast cancer patients.
Collapse
Affiliation(s)
- Pruthvish Reddy
- Department of Biotechnology, Acharya Institute of Technology, Bengaluru, Karnataka, India
| | - Sushma Pradeep
- Department of Biotechnology and Bioinformatics, School of Life Sciences, JSS Academy of Higher Education and Research, Mysuru, Karnataka, India
| | - Gopinath S. M.
- Department of Biotechnology, Acharya Institute of Technology, Bengaluru, Karnataka, India
| | - Chandan Dharmashekar
- Department of Biotechnology and Bioinformatics, School of Life Sciences, JSS Academy of Higher Education and Research, Mysuru, Karnataka, India
| | - Disha G.
- Department of Neurochemistry, National Institute of Mental Health and Neiurosciences, Bangalore, Karnataka, India
| | - Sai Chakith M. R.
- Department of Pharmacology, JSS Medical College, JSS Academy of Higher Education and Research, Mysuru, Karnataka, India
| | | | - Ali A. Shati
- Biology Department, Faculty of Science, King Khalid University, Abha, Saudi Arabia
| | - Mohammad Y. Alfaifi
- Biology Department, Faculty of Science, King Khalid University, Abha, Saudi Arabia
| | | | - Raghu Ram Achar
- Division of Biochemistry, School of Life Sciences, JSS Academy of Higher Education and Research, Mysuru, Karnataka, India
| | - Ekaterina Silina
- Department of Hospital Surgery, N.I. Pirogov Russian National Research Medical University (RNRMU), Moscow, Russia
| | - Victor Stupin
- Department of Hospital Surgery, N.I. Pirogov Russian National Research Medical University (RNRMU), Moscow, Russia
| | - Natalia Manturova
- Department of Hospital Surgery, N.I. Pirogov Russian National Research Medical University (RNRMU), Moscow, Russia
| | - Chandan Shivamallu
- Department of Biotechnology and Bioinformatics, School of Life Sciences, JSS Academy of Higher Education and Research, Mysuru, Karnataka, India
| | - Shiva Prasad Kollur
- School of Physical Sciences, Amrita Vishwa Vidyapeetham, Mysuru, Karnataka, India
| |
Collapse
|
8
|
Shivaprasad K, Kidwai S, Gopavaram S, Saini SM, Reddy K, Chugh S, Singh R, Chandrashekharappa S. Design, Synthesis and In-vitro Antitubercular Evaluation of Novel 7-methoxy Pyrrolo[1,2-a]quinoline Analogues as CYP 121 Inhibitors. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2023.135439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2023]
|
9
|
Gowtham HG, Ahmed F, Anandan S, Shivakumara CS, Bilagi A, Pradeep S, Shivamallu C, Shati AA, Alfaifi MY, Elbehairi SEI, Achar RR, Silina E, Stupin V, Murali M, Kollur SP. In Silico Computational Studies of Bioactive Secondary Metabolites from Wedelia trilobata against Anti-Apoptotic B-Cell Lymphoma-2 (Bcl-2) Protein Associated with Cancer Cell Survival and Resistance. Molecules 2023; 28:1588. [PMID: 36838574 PMCID: PMC9959492 DOI: 10.3390/molecules28041588] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/25/2023] [Accepted: 01/27/2023] [Indexed: 02/11/2023] Open
Abstract
In the present study, the binding affinity of 52 bioactive secondary metabolites from Wedelia trilobata towards the anti-apoptotic B-cell lymphoma-2 (Bcl-2) protein (PDB: 2W3L) structure was identified by using in silico molecular docking and molecular dynamics simulation. The molecular docking results demonstrated that the binding energies of docked compounds with Bcl-2 protein ranged from -5.3 kcal/mol to -10.1 kcal/mol. However, the lowest binding energy (-10.1 kcal/mol) was offered by Friedelin against Bcl-2 protein when compared to other metabolites and the standard drug Obatoclax (-8.4 kcal/mol). The molecular dynamics simulations revealed that the Friedelin-Bcl-2 protein complex was found to be stable throughout the simulation period of 100 ns. Overall, the predicted Absorption, Distribution, Metabolism, Excretion, and Toxicity (ADMET) properties of Friedelin are relatively better than Obatoclax, with the most noticeable differences in many parameters where Friedelin has no AMES toxicity, hepatotoxicity, and skin sensitization. The ADMET profiling of selected compounds supported their in silico drug-likeness properties. Based on the computational analyses, the present study concluded that Friedelin of W. trilobata was found to be the potential inhibitor of the Bcl-2 protein, which merits attention for further in vitro and in vivo studies before clinical trials.
Collapse
Affiliation(s)
| | - Faiyaz Ahmed
- Department of Clinical Nutrition, College of Applied Health Sciences in Ar Rass, Qassim University, Al Qassim Region, Ar Rass 51921, Saudi Arabia
| | - Satish Anandan
- Department of Clinical Nutrition and Dietetics, Sri Devaraj Urs Academy of Higher Education and Research, Kolar 563103, Karnataka, India
| | - C. S. Shivakumara
- Department of Clinical Nutrition and Dietetics, Sri Devaraj Urs Academy of Higher Education and Research, Kolar 563103, Karnataka, India
| | - Ashween Bilagi
- Department of Integrative Medicine, Sri Devaraj Urs Academy of Higher Education and Research, Kolar 563103, Karnataka, India
| | - Sushma Pradeep
- Department of Biotechnology and Bioinformatics, JSS Academy of Higher Education and Research, Mysuru 570015, India
| | - Chandan Shivamallu
- Department of Biotechnology and Bioinformatics, JSS Academy of Higher Education and Research, Mysuru 570015, India
| | - Ali A. Shati
- Biology Department, Faculty of Science, King Khalid University, Abha 9004, Saudi Arabia
| | - Mohammad Y. Alfaifi
- Biology Department, Faculty of Science, King Khalid University, Abha 9004, Saudi Arabia
| | - Serag Eldin I. Elbehairi
- Biology Department, Faculty of Science, King Khalid University, Abha 9004, Saudi Arabia
- Cell Culture Lab, Egyptian Organization for Biological Products and Vaccines (VACSERA Holding Company), 51 Wezaret El-Zeraa St., Giza 12511, Egypt
| | - Raghu Ram Achar
- Division of Biochemistry, School of Life Sciences, JSS Academy of Higher Education and Research, Mysuru 570015, India
| | - Ekaterina Silina
- Institute of Biodesign and Modeling of Complex Systems, I.M. Sechenov First Moscow State Medical University (Sechenov University), 119435 Moscow, Russia
| | - Victor Stupin
- Department of Hospital Surgery, N.I. Pirogov Russian National Research Medical University, 117997 Moscow, Russia
| | - Mahadevamurthy Murali
- Department of Studies in Botany, University of Mysore, Manasagangotri, Mysuru 570006, Karnataka, India
| | - Shiva Prasad Kollur
- School of Physical Sciences, Amrita Vishwa Vidyapeetham, Mysuru Campus, Mysuru 570026, Karnataka, India
| |
Collapse
|
10
|
Sumanth G, Lakshmikanth K, Saini SM, Mundhe P, Shivaprasad K, Chandrashekharappa S. Phenyl pyrrolo [1,2-a] quinolines- finding of a key by-product during quinolinium salt preparation. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2022.134350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
11
|
Pradeep S, Prabhuswaminath SC, Reddy P, Srinivasa SM, Shati AA, Alfaifi MY, Eldin I. Elbehairi S, Achar RR, Silina E, Stupin V, Manturova N, Glossman-Mitnik D, Shivamallu C, Kollur SP. Anticholinesterase activity of Areca Catechu: In Vitro and in silico green synthesis approach in search for therapeutic agents against Alzheimer's disease. Front Pharmacol 2022; 13:1044248. [PMID: 36408228 PMCID: PMC9672481 DOI: 10.3389/fphar.2022.1044248] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 10/17/2022] [Indexed: 08/29/2023] Open
Abstract
For many years, the primary focus has been on finding effective treatments for Alzheimer's disease (AD), which has led to the identification of promising therapeutic targets. The necessity for AD stage-dependent optimal settings necessitated a herbal therapy strategy. The plant species Areca Catechu L. (AC) was selected based on the traditional uses against CNS-related diseases. AC leaf extract were prepared using a Soxhlet extraction method and hydroxyapatite nanoparticles (HAp-NPs) were synthesized from the same (AC-HAp-NPs). Powder X-ray diffractometer (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), selected area electron diffraction (SAED) and fourier transform infrared spectroscopy (FTIR) were used to confirm the structure and morphology of the as-prepared AC-HAp-NPs. The crystalline character of the AC-HAp-NPs was visible in the XRD pattern. The synthesized material was found to be nanoflake, with an average diameter of 15-20 nm, according to SEM analysis. The TEM and SAED pictures also revealed the form and size of AC-HAp-NPs. In vitro anti-acetylcholinesterase and butyrylcholinesterase (AChE and BChE) activities of hydroxyapatite nanoparticles produced from an AC leaf extract was tested in this study. When compared to control, AC-HAp-NPs had higher anti-AChE and BChE activity. The anti-acetylcholinesterase action of phytoconstituents generated from AC leaf extract was mediated by 4AQD and 4EY7, according to a mechanistic study conducted utilizing in silico research. The global and local descriptors, which are the underpinnings of Conceptual Density Functional Theory (CDFT), have been predicted through the MN12SX/Def2TZVP/H2O model chemistry to help in the comprehension of the chemical reactivity properties of the five ligands considered in this study. The CDFT experiments are supplemented by the calculation of several useful calculated pharmacokinetics indices, their expected biological targets connected to the bioavailability of the five ligands in order to further the goal of studying their bioactivity.
Collapse
Affiliation(s)
- Sushma Pradeep
- Department of Biotechnology and Bioinformatics, School of Life Sciences, JSS Academy of Higher Education and Research, Mysuru, Karnataka, India
| | - Samudyata C. Prabhuswaminath
- Department of Biotechnology and Bioinformatics, School of Life Sciences, JSS Academy of Higher Education and Research, Mysuru, Karnataka, India
| | - Pruthvish Reddy
- Department of Biotechnology, Acharya Institute of Technology, Bengaluru, Karnataka, India
| | - Sudhanva M. Srinivasa
- Adichunchanagiri Institute for Molecular Medicine, Adichunchanagiri University, Mandya, Karnataka, India
| | - Ali A. Shati
- Biology Department, Faculty of Sciences, King Khalid University, Abha, Saudi Arabia
| | - Mohammad Y. Alfaifi
- Biology Department, Faculty of Sciences, King Khalid University, Abha, Saudi Arabia
| | - Serag Eldin I. Elbehairi
- Biology Department, Faculty of Sciences, King Khalid University, Abha, Saudi Arabia
- Cell Culture Lab, Egyptian Organization for Biological Products and Vaccines (VACSERA Holding Company), Agouza, Giza, Egypt
| | - Raghu Ram Achar
- Division of Biochemistry, School of Life Sciences, JSS Academy of Higher Education and Research, Mysuru, Karnataka, India
| | - Ekaterina Silina
- Department of Surgery, Pirogov Russian National Research Medical University, Mascow, Russia
- Institute of Biodesign and Modeling of Complex Systems, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Victor Stupin
- Department of Surgery, Pirogov Russian National Research Medical University, Mascow, Russia
| | - Natalia Manturova
- Department of Surgery, Pirogov Russian National Research Medical University, Mascow, Russia
| | - Daniel Glossman-Mitnik
- Laboratorio Virtual NANOCOSMOS, Departamento de Medio Ambiente y Energía, Centro de Investigación en Materiales Avanzados, Chihuahua, Chih, Mexico
| | - Chandan Shivamallu
- Department of Biotechnology and Bioinformatics, School of Life Sciences, JSS Academy of Higher Education and Research, Mysuru, Karnataka, India
| | - Shiva Prasad Kollur
- School of Physical Sciences, Amrita Vishwa Vidyapeetham, Mysuru, Karnataka, India
| |
Collapse
|
12
|
Antitubercular, Cytotoxicity, and Computational Target Validation of Dihydroquinazolinone Derivatives. Antibiotics (Basel) 2022; 11:antibiotics11070831. [PMID: 35884084 PMCID: PMC9311641 DOI: 10.3390/antibiotics11070831] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/16/2022] [Accepted: 06/17/2022] [Indexed: 02/04/2023] Open
Abstract
A series of 2,3-dihydroquinazolin-4(1H)-one derivatives (3a–3m) was screened for in vitro whole-cell antitubercular activity against the tubercular strain H37Rv and multidrug-resistant (MDR) Mycobacterium tuberculosis (MTB) strains. Compounds 3l and 3m with di-substituted aryl moiety (halogens) attached to the 2-position of the scaffold showed a minimum inhibitory concentration (MIC) of 2 µg/mL against the MTB strain H37Rv. Compound 3k with an imidazole ring at the 2-position of the dihydroquinazolin-4(1H)-one also showed significant inhibitory action against both the susceptible strain H37Rv and MDR strains with MIC values of 4 and 16 µg/mL, respectively. The computational results revealed the mycobacterial pyridoxal-5′-phosphate (PLP)-dependent aminotransferase (BioA) enzyme as the potential target for the tested compounds. In vitro, ADMET calculations and cytotoxicity studies against the normal human dermal fibroblast cells indicated the safety and tolerability of the test compounds 3k–3m. Thus, compounds 3k–3m warrant further optimization to develop novel BioA inhibitors for the treatment of drug-sensitive H37Rv and drug-resistant MTB.
Collapse
|
13
|
Granchi C. Biological Activity of Natural and Synthetic Compounds. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27123652. [PMID: 35744778 PMCID: PMC9228419 DOI: 10.3390/molecules27123652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 06/02/2022] [Indexed: 11/30/2022]
|
14
|
Sharma V, Das R, Kumar Mehta D, Gupta S, Venugopala KN, Mailavaram R, Nair AB, Shakya AK, Kishore Deb P. Recent insight into the biological activities and SAR of quinolone derivatives as multifunctional scaffold. Bioorg Med Chem 2022; 59:116674. [DOI: 10.1016/j.bmc.2022.116674] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 02/07/2022] [Accepted: 02/13/2022] [Indexed: 01/09/2023]
|
15
|
Pradeep S, Jain AS, Dharmashekara C, Prasad SK, Akshatha N, Pruthvish R, Amachawadi RG, Srinivasa C, Syed A, Elgorban AM, Al Kheraif AA, Ortega-Castro J, Frau J, Flores-Holguín N, Shivamallu C, Kollur SP, Glossman-Mitnik D. Synthesis, Computational Pharmacokinetics Report, Conceptual DFT-Based Calculations and Anti-Acetylcholinesterase Activity of Hydroxyapatite Nanoparticles Derived From Acorus Calamus Plant Extract. Front Chem 2021; 9:741037. [PMID: 34692640 PMCID: PMC8529163 DOI: 10.3389/fchem.2021.741037] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 09/17/2021] [Indexed: 01/02/2023] Open
Abstract
Over the years, Alzheimer's disease (AD) treatments have been a major focus, culminating in the identification of promising therapeutic targets. A herbal therapy approach has been required by the demand of AD stage-dependent optimal settings. Present study describes the evaluation of anti-acetylcholinesterase (AChE) activity of hydroxyapatite nanoparticles derived from an Acorus calamus rhizome extract (AC-HAp NPs). The structure and morphology of as-prepared (AC-HAp NPs) was confirmed using powder X-ray diffractometer (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and high-resolution transmission electron microscopy (HR-TEM). The crystalline nature of as-prepared AC-HAp NPs was evident from XRD pattern. The SEM analysis suggested the spherical nature of the synthesized material with an average diameter between 30 and 50 nm. Further, the TEM and HR-TEM images revealed the shape and size of as-prepared (AC-HAp NPs). The interplanar distance between two lattice fringes was found to be 0.342 nm, which further supported the crystalline nature of the material synthesized. The anti-acetylcholinesterase activity of AC-HAp NPs was greater as compared to that of pure HAp NPs. The mechanistic evaluation of such an activity carried out using in silico studies suggested that the anti-acetylcholinesterase activity of phytoconstituents derived from Acorus calamus rhizome extract was mediated by BNDF, APOE4, PKC-γ, BACE1 and γ-secretase proteins. The global and local descriptors, which are the underpinnings of Conceptual Density Functional Theory (CDFT), have been predicted through the MN12SX/Def2TZVP/H2O model chemistry to help in the comprehension of the chemical reactivity properties of the five ligands considered in this study. With the further objective of analyzing their bioactivity, the CDFT studies are complemented with the estimation of some useful computed pharmacokinetics indices, their predicted biological targets, and the ADMET parameters related to the bioavailability of the five ligands are also reported.
Collapse
Affiliation(s)
- Sushma Pradeep
- Department of Biotechnology and Bioinformatics, School of Life Sciences, JSS Academy of Higher Education and Research, Mysuru, India
| | - Anisha S. Jain
- Department of Biotechnology and Bioinformatics, School of Life Sciences, JSS Academy of Higher Education and Research, Mysuru, India
| | - Chandan Dharmashekara
- Department of Biotechnology and Bioinformatics, School of Life Sciences, JSS Academy of Higher Education and Research, Mysuru, India
| | - Shashanka K. Prasad
- Department of Biotechnology and Bioinformatics, School of Life Sciences, JSS Academy of Higher Education and Research, Mysuru, India
| | | | - R. Pruthvish
- Department of Biotechnology, Acharya Institute of Technology, Bengaluru, India
| | - Raghavendra G Amachawadi
- Department of Clinical Sciences, College of Veterinary Medicine, Kansas State University, Manhattan, KS, United States
| | - Chandrashekar Srinivasa
- Department of Studies in Biotechnology, Davangere University, Shivagangothri, Davangere, India
| | - Asad Syed
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Abdallah M. Elgorban
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Abdulaziz A. Al Kheraif
- Dental Health Department, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | | | - Juan Frau
- Departament de Química, Universitat de les Illes Balears, Palma de Mallorca, Spain
| | - Norma Flores-Holguín
- Laboratorio Virtual NANOCOSMOS, Departamento de Medio Ambiente y Energía, Centro de Investigación en Materiales Avanzados, Chihuahua, México
| | - Chandan Shivamallu
- Department of Biotechnology and Bioinformatics, School of Life Sciences, JSS Academy of Higher Education and Research, Mysuru, India
| | - Shiva Prasad Kollur
- Department of Sciences, Amrita School of Arts and Sciences, Amrita Vishwa Vidyapeetham, Mysuru Campus, Mysuru, India
| | - Daniel Glossman-Mitnik
- Laboratorio Virtual NANOCOSMOS, Departamento de Medio Ambiente y Energía, Centro de Investigación en Materiales Avanzados, Chihuahua, México
| |
Collapse
|
16
|
Krishna V, Santosh Kumar SR, Srinivasa C, Shivamallu C, Prasad K, Pradeep S, Syed A, Bhakali A, Shankar A, Patil S, Ashwini P, Chandan D, Triveni R, Melappa G. Callus induction and shoot regeneration from the immature flower bud of Caesalpinia bonducella and its antileptospiral potential by in vitro and in silico analysis. Pharmacogn Mag 2021. [DOI: 10.4103/pm.pm_331_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|