1
|
Franco PIR, do Carmo Neto JR, Braga YLL, de Lima Pedroso B, Martins JA, Rocha VL, Amaral AC, Martins DB, Ruiz KC, Pereira JX, Machado E Silva JR, Miguel MP. Melatonin-loaded lecithin and chitosan nanoparticles are cytotoxic to 4 T1 breast cancer cells and safe in a BALB/c mouse model. Int J Biol Macromol 2025:143401. [PMID: 40268017 DOI: 10.1016/j.ijbiomac.2025.143401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 04/14/2025] [Accepted: 04/19/2025] [Indexed: 04/25/2025]
Abstract
Melatonin is used as an adjuvant therapy in cancer treatment. However, its effectiveness is limited because of its low bioavailability. Polymeric nanoparticles (NPs) made of chitosan and lecithin have been developed to overcome this limitation and optimize localized drug delivery. These lecithin and chitosan-based NPs loaded with melatonin (NP-MEL) were evaluated for their cytotoxic potential in metastatic breast cancer cells and their safety profile in a murine model. Physicochemical characterization revealed efficient melatonin encapsulation (31 %), a positive zeta potential (48.6 mV), and controlled release at physiological pH. NP-MEL exhibited selective cytotoxicity in vitro, with a toxic concentration capable of killing 50 % of the cells (CC50) of 109.53 μg/mL for 4 T1 cancer cells and a significantly higher CC50 of 1460.59 μg/mL for normal VERO cells, resulting in a selectivity index of 13.33. In vivo experiments with BALB/c mice with tumor implantation treated with NP-MEL (2 mg/kg/day for 21 days) showed no significant changes in weight, clinical signs, or biochemical markers of liver and kidney function, except for changes in gamma-glutamyl transferase levels. Histopathological analyses confirmed the preservation of the liver and kidney architecture in the NP-MEL-treated group, in contrast to the moderate-to-severe kidney damage observed in animals treated with empty NPs. These findings highlight the low toxicity and therapeutic potential of NP-MEL as a controlled and targeted-release system for breast cancer treatment, indicating the need for further preclinical investigation.
Collapse
Affiliation(s)
- Pablo Igor Ribeiro Franco
- Instituto de Patologia Tropical e Saúde Pública, Laboratório de Histotécnica e Inovação, Centro Multiusuário de Pesquisa de Bioinsumos, Universidade Federal de Goiás, Goiânia, GO, Brazil.
| | - José Rodrigues do Carmo Neto
- Instituto de Patologia Tropical e Saúde Pública, Laboratório de Histotécnica e Inovação, Centro Multiusuário de Pesquisa de Bioinsumos, Universidade Federal de Goiás, Goiânia, GO, Brazil
| | - Yarlla Loyane Lira Braga
- Instituto de Patologia Tropical e Saúde Pública, Laboratório de Histotécnica e Inovação, Centro Multiusuário de Pesquisa de Bioinsumos, Universidade Federal de Goiás, Goiânia, GO, Brazil
| | - Bárbara de Lima Pedroso
- Instituto de Patologia Tropical e Saúde Pública, Laboratório de Histotécnica e Inovação, Centro Multiusuário de Pesquisa de Bioinsumos, Universidade Federal de Goiás, Goiânia, GO, Brazil
| | - Juliana Assis Martins
- Laboratório de Nano & Biotecnologia, Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia, GO, Brazil
| | - Viviane Lopes Rocha
- Laboratório de Nano & Biotecnologia, Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia, GO, Brazil
| | - Andre Correa Amaral
- Laboratório de Nano & Biotecnologia, Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia, GO, Brazil
| | - Danieli Brolo Martins
- Programa de Pós-Graduação em Ciência Animal, Escola de Veterinária e Zootecnia, Universidade Federal de Goiás, Goiânia, GO, Brazil
| | - Katalina Cifuentes Ruiz
- Programa de Pós-Graduação em Ciência Animal, Escola de Veterinária e Zootecnia, Universidade Federal de Goiás, Goiânia, GO, Brazil
| | - Jonathas Xavier Pereira
- Instituto de Patologia Tropical e Saúde Pública, Laboratório de Histotécnica e Inovação, Centro Multiusuário de Pesquisa de Bioinsumos, Universidade Federal de Goiás, Goiânia, GO, Brazil
| | - Juliana Reis Machado E Silva
- Departamento de Patologia, Genética e Evolução, Instituto de Ciências Biológicas e Naturais, Universidade Federal do Triângulo Mineiro, Uberaba, MG, Brazil
| | - Marina Pacheco Miguel
- Instituto de Patologia Tropical e Saúde Pública, Laboratório de Histotécnica e Inovação, Centro Multiusuário de Pesquisa de Bioinsumos, Universidade Federal de Goiás, Goiânia, GO, Brazil; Programa de Pós-Graduação em Ciência Animal, Escola de Veterinária e Zootecnia, Universidade Federal de Goiás, Goiânia, GO, Brazil.
| |
Collapse
|
2
|
Luo F, Deng Y, Angelov B, Angelova A. Melatonin and the nervous system: nanomedicine perspectives. Biomater Sci 2025. [PMID: 40231558 DOI: 10.1039/d4bm01609b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2025]
Abstract
The mechanism of action of melatonin on the nervous system, sleep, cognitive deficits, and aging is not fully understood. Neurodegenerative diseases (ND) are one of the leading causes of disability and mortality worldwide. Sleeping and cognitive impairments also represent common and serious public health problems, particularly deteriorating with the aging process. Melatonin, as a neuromodulatory hormone, regulates circadian rhythms and the sleep-wake cycle, with functions extending to antioxidant, anti-inflammatory, neuroprotective, and anti-aging properties. However, melatonin is a hydrophobic compound with relatively low water solubility and a short half-life. While melatonin can cross the blood-brain barrier, exogenous melatonin administered orally or intravenously has poor bioavailability, undergoes rapid metabolism in the circulation, and shows limited brain accumulation, ultimately compromising its therapeutic efficacy. In recent years, the convergence of melatonin research with nanomedicine ensures safe therapeutic uses, limited drug degradation, and perspectives for targeted drug delivery to the central nervous system. Here we outline the promising neurotherapeutic properties of nanomaterials as carriers loaded with melatonin drug alone or in combinations with other active molecules.
Collapse
Affiliation(s)
- Fucen Luo
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, F-91400 Orsay, France.
| | - Yuru Deng
- Wenzhou Institute, University of Chinese Academy of Sciences, No.1, Jinlian Road, Longwan District, Wenzhou, Zhejiang 325001, China
| | - Borislav Angelov
- Extreme Light Infrastructure ERIC, Department of Structural Dynamics, CZ-25241 Dolni Brezany, Czech Republic
| | - Angelina Angelova
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, F-91400 Orsay, France.
| |
Collapse
|
3
|
Kaczmarek-Szczepańska B, Grabska-Zielińska S. Biopolymeric Scaffolds with Melatonin for Tissue Engineering-A Review. Int J Mol Sci 2025; 26:2520. [PMID: 40141163 PMCID: PMC11942045 DOI: 10.3390/ijms26062520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 03/05/2025] [Accepted: 03/10/2025] [Indexed: 03/28/2025] Open
Abstract
Melatonin, a natural hormone with antioxidant, anti-inflammatory, and regenerative properties, has gained increasing attention in tissue engineering for its ability to enhance the therapeutic potential of biopolymeric scaffolds. These scaffolds, designed to mimic the extracellular matrix, provide structural support and a bioactive environment for tissue regeneration. By integrating melatonin, researchers aim to create multifunctional scaffolds that promote cell proliferation, modulate inflammatory responses, and improve wound healing outcomes. Challenges in utilizing melatonin include maintaining its stability under light, heat, and oxygen exposure, and optimizing its release profile for sustained therapeutic effects. Innovative fabrication methods, such as electrospinning, 3D printing, and lyophilization, have enabled precise control over scaffold architecture and melatonin delivery. These techniques ensure enhanced interactions with target tissues and tailored regeneration processes. Combining melatonin with growth factors, cytokines, and antimicrobial agents offers the potential for multifunctional applications, from chronic wound management to bone and nerve regeneration. Continued research in this field promises transformative solutions in regenerative medicine, expanding the clinical applicability of melatonin-enriched scaffolds. This review highlights the current progress, challenges, and opportunities associated with harnessing melatonin's therapeutic potential within tissue engineering frameworks.
Collapse
Affiliation(s)
- Beata Kaczmarek-Szczepańska
- Laboratory for Functional Polymeric Materials, Faculty of Chemistry, Nicolaus Copernicus University in Torun, Gagarin 7, 87-100 Toruń, Poland
| | - Sylwia Grabska-Zielińska
- Faculty of Chemical Technology and Engineering, Bydgoszcz University of Science and Technology, Seminaryjna 3, 85-326 Bydgoszcz, Poland;
| |
Collapse
|
4
|
Silva CG, Luz VF, Nunes VL, Verzoto ABM, Cotrim ACDM, dos Santos WB, França EL, Honorio-França AC. Colostrum-Derived Melatonin Plus PEG Microspheres Modulate the Oxidative Metabolism of Human Colostrum Phagocytes. Metabolites 2025; 15:57. [PMID: 39852399 PMCID: PMC11767932 DOI: 10.3390/metabo15010057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 01/02/2025] [Accepted: 01/14/2025] [Indexed: 01/26/2025] Open
Abstract
BACKGROUND/OBJECTIVES Exogenous melatonin adsorbed onto PEG microspheres can modulate the functional activity of phagocytes in colostrum, but no data are available on the activity of melatonin found in colostrum. Therefore, the objective of this study was to extract melatonin from human colostrum, develop and characterize PEG microspheres with the extracted melatonin adsorbed onto them, and evaluate the effects of this system on the oxidative metabolism of colostrum phagocytes. METHODS Thirty colostrum samples were collected; ten were used for melatonin extraction, while twenty were used to obtain phagocytes. Melatonin was extracted from the colostrum supernatant through affinity chromatography and quantified by ELISA. The polyethylene glycol microspheres produced were analyzed using fluorescence microscopy and flow cytometry. Oxidative metabolism was assessed by measuring the release of the superoxide anion and superoxide enzymes. A control was conducted using commercial melatonin. RESULTS The fluorescence microscopy and flow cytometry analyses demonstrated that PEG microspheres can adsorb melatonin. There was an increase in superoxide release in phagocytes incubated with colostrum-derived or synthetic melatonin. When exposed to bacteria, colostrum phagocytes treated with colostrum melatonin adsorbed to PEG microspheres exhibited increased superoxide, accompanied by a decrease in the release of superoxide dismutase (SOD) and a lower SOD-to-superoxide ratio. In contrast, synthetic melatonin reduced the release of superoxide and increased the release of the enzyme and the SOD-to-superoxide ratio. CONCLUSIONS These data highlight the importance of melatonin on cellular metabolism and suggest that colostrum-derived melatonin may be a more effective option for controlling oxidative metabolism, particularly during infectious processes.
Collapse
Affiliation(s)
- Caroline G. Silva
- Programa de Pós-Graduação em Ciência de Materiais, Campus Universitário do Araguaia, Universidade Federal de Mato Grosso, Barra do Garças 78605-091, Brazil; (C.G.S.); (V.F.L.); (A.C.d.M.C.); (W.B.d.S.)
| | - Viviane F. Luz
- Programa de Pós-Graduação em Ciência de Materiais, Campus Universitário do Araguaia, Universidade Federal de Mato Grosso, Barra do Garças 78605-091, Brazil; (C.G.S.); (V.F.L.); (A.C.d.M.C.); (W.B.d.S.)
| | - Victor L. Nunes
- Instituto de Ciências Biológicas e da Saúde, Campus Universitário do Araguaia, Universidade Federal de Mato Grosso, Barra do Garças 78605-091, Brazil; (V.L.N.); (A.B.M.V.)
| | - Ana B. M. Verzoto
- Instituto de Ciências Biológicas e da Saúde, Campus Universitário do Araguaia, Universidade Federal de Mato Grosso, Barra do Garças 78605-091, Brazil; (V.L.N.); (A.B.M.V.)
| | - Aron C. de M. Cotrim
- Programa de Pós-Graduação em Ciência de Materiais, Campus Universitário do Araguaia, Universidade Federal de Mato Grosso, Barra do Garças 78605-091, Brazil; (C.G.S.); (V.F.L.); (A.C.d.M.C.); (W.B.d.S.)
| | - Wagner B. dos Santos
- Programa de Pós-Graduação em Ciência de Materiais, Campus Universitário do Araguaia, Universidade Federal de Mato Grosso, Barra do Garças 78605-091, Brazil; (C.G.S.); (V.F.L.); (A.C.d.M.C.); (W.B.d.S.)
| | - Eduardo L. França
- Programa de Pós-Graduação em Ciência de Materiais, Campus Universitário do Araguaia, Universidade Federal de Mato Grosso, Barra do Garças 78605-091, Brazil; (C.G.S.); (V.F.L.); (A.C.d.M.C.); (W.B.d.S.)
- Instituto de Ciências Biológicas e da Saúde, Campus Universitário do Araguaia, Universidade Federal de Mato Grosso, Barra do Garças 78605-091, Brazil; (V.L.N.); (A.B.M.V.)
| | - Adenilda C. Honorio-França
- Programa de Pós-Graduação em Ciência de Materiais, Campus Universitário do Araguaia, Universidade Federal de Mato Grosso, Barra do Garças 78605-091, Brazil; (C.G.S.); (V.F.L.); (A.C.d.M.C.); (W.B.d.S.)
- Instituto de Ciências Biológicas e da Saúde, Campus Universitário do Araguaia, Universidade Federal de Mato Grosso, Barra do Garças 78605-091, Brazil; (V.L.N.); (A.B.M.V.)
| |
Collapse
|
5
|
Martinez SM, Inda A, Ríos MN, Bessone CDV, Bruera Bossio A, Guido ME, Luna Pinto JD, Allemandi DA, Quinteros DA. Neuroprotective Effect of Melatonin Loaded in Human Serum Albumin Nanoparticles Applied Subconjunctivally in a Retinal Degeneration Animal Model. Pharmaceutics 2025; 17:85. [PMID: 39861733 PMCID: PMC11769568 DOI: 10.3390/pharmaceutics17010085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 12/28/2024] [Accepted: 01/08/2025] [Indexed: 01/27/2025] Open
Abstract
BACKGROUND/OBJECTIVES Neurodegenerative ocular diseases, such as age-related macular degeneration (AMD) and glaucoma, represent growing public health concerns. Oxidative stress plays a key role in their development, damaging retinal cells and accelerating disease progression. Melatonin (Mel) is a potent antioxidant with neuroprotective properties; however, it faces limitations such as low solubility. This study proposes the use of human serum albumin nanoparticles (Np-HSA) to enhance the delivery of Mel to the posterior segment of the eye and evaluates its neuroprotective and anti-apoptotic effects on the retina. METHODS A model of retinal degeneration was induced in New Zealand albino rabbits using cytotoxic and oxidative agents. Np-HSA-Mel nanoparticles were administered subconjunctivally, and cellular viability and retinal functionality were assessed using flow cytometry and pupillary light reflex (PLR). Histological and immunohistochemical studies, including the TUNEL assay, were performed to analyse cell survival and apoptotic index. RESULTS Np-HSA-Mel significantly preserved pupillary function and cell viability, demonstrating lower apoptosis compared to Mel solution and Np-HSA alone. Histologically, eyes treated with Np-HSA-Mel exhibited fewer structural alterations and greater cellular organisation. The TUNEL assay confirmed a significant reduction in the apoptotic index of retinal ganglion cells (RGCs) treated with Np-HSA-Mel. CONCLUSIONS Np-HSA-Mel effectively overcame ocular barriers, achieving greater neuroprotective efficacy at the retinal level. These findings highlight the synergistic potential of albumin and Mel in treating neurodegenerative ocular diseases, opening new perspectives for future therapies.
Collapse
Affiliation(s)
- Sofia Mickaela Martinez
- Unidad de Investigación y Desarrollo en Tecnología Farmacéutica (UNITEFA), CONICET and Departamento de Ciencias Farmacéuticas, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba 5000, Argentina; (S.M.M.); (A.I.); (C.d.V.B.); (A.B.B.); (D.A.A.)
| | - Ayelen Inda
- Unidad de Investigación y Desarrollo en Tecnología Farmacéutica (UNITEFA), CONICET and Departamento de Ciencias Farmacéuticas, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba 5000, Argentina; (S.M.M.); (A.I.); (C.d.V.B.); (A.B.B.); (D.A.A.)
| | - Maximiliano Nicolás Ríos
- Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC), Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba 5000, Argentina; (M.N.R.); (M.E.G.)
| | - Carolina del Valle Bessone
- Unidad de Investigación y Desarrollo en Tecnología Farmacéutica (UNITEFA), CONICET and Departamento de Ciencias Farmacéuticas, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba 5000, Argentina; (S.M.M.); (A.I.); (C.d.V.B.); (A.B.B.); (D.A.A.)
- Escuela de Ciencias de la Salud, Universidad Nacional de Villa Mercedes, Villa Mercedes 5730, Argentina
| | - Abril Bruera Bossio
- Unidad de Investigación y Desarrollo en Tecnología Farmacéutica (UNITEFA), CONICET and Departamento de Ciencias Farmacéuticas, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba 5000, Argentina; (S.M.M.); (A.I.); (C.d.V.B.); (A.B.B.); (D.A.A.)
| | - Mario Eduardo Guido
- Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC), Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba 5000, Argentina; (M.N.R.); (M.E.G.)
| | - José Domingo Luna Pinto
- Área de Cirugía Vítreo y Retina, Centro Privado de Ojos Romagosa S.A. y Fundación VER, Córdoba 5000, Argentina;
| | - Daniel Alberto Allemandi
- Unidad de Investigación y Desarrollo en Tecnología Farmacéutica (UNITEFA), CONICET and Departamento de Ciencias Farmacéuticas, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba 5000, Argentina; (S.M.M.); (A.I.); (C.d.V.B.); (A.B.B.); (D.A.A.)
| | - Daniela Alejandra Quinteros
- Unidad de Investigación y Desarrollo en Tecnología Farmacéutica (UNITEFA), CONICET and Departamento de Ciencias Farmacéuticas, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba 5000, Argentina; (S.M.M.); (A.I.); (C.d.V.B.); (A.B.B.); (D.A.A.)
| |
Collapse
|
6
|
Xi H, Huang L, Qiu L, Li S, Yan Y, Ding Y, Zhu Y, Wu F, Shi X, Zhao J, Chen R, Yao Q, Kou L. Enhancing oocyte in vitro maturation and quality by melatonin/bilirubin cationic nanoparticles: A promising strategy for assisted reproduction techniques. Int J Pharm X 2024; 8:100268. [PMID: 39070171 PMCID: PMC11278021 DOI: 10.1016/j.ijpx.2024.100268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 05/31/2024] [Accepted: 07/01/2024] [Indexed: 07/30/2024] Open
Abstract
In assisted reproduction techniques, oocytes encounter elevated levels of reactive oxygen species (ROS) during in vitro maturation (IVM). Oxidative stress adversely affects oocyte quality, hampering their maturation, growth, and subsequent development. Thus, mitigating excessive ROS to safeguard less viable oocytes during IVM stands as a viable strategy. Numerous antioxidants have been explored for oocyte IVM, yielding considerable effects; however, several aspects, including solubility, stability, and safety, demand attention and resolution. In this study, we developed nanoparticles by self-assembling endogenous bilirubin and melatonin hormone coated with bilirubin-conjugated glycol chitosan (MB@GBn) to alleviate oxidative stress and enhance oocyte maturation. The optimized MB@GBn exhibited a uniform spherical shape, measuring 128 nm in particle size, with a PDI value of 0.1807 and a surface potential of +11.35 mV. The positively charged potential facilitated nanoparticle adherence to the oocyte surface through electrostatic interaction, allowing for functional action. In vitro studies demonstrated that MB@GB significantly enhanced the maturation of compromised oocytes. Further investigation revealed MB@GB's effectiveness in scavenging ROS, reducing intracellular calcium levels, and suppressing mitochondrial polarization. This study not only offers a novel perspective on nano drug delivery systems for biomedical applications but also presents an innovative strategy for enhancing oocyte IVM.
Collapse
Affiliation(s)
- Haitao Xi
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China
- Key Laboratory of Structural Malformations in Children of Zhejiang Province, Wenzhou 325027, China
| | - Lihui Huang
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China
- Key Laboratory of Structural Malformations in Children of Zhejiang Province, Wenzhou 325027, China
| | - Lin Qiu
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Shize Li
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China
- Key Laboratory of Structural Malformations in Children of Zhejiang Province, Wenzhou 325027, China
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Yuqi Yan
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China
- Key Laboratory of Structural Malformations in Children of Zhejiang Province, Wenzhou 325027, China
| | - Yang Ding
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Yuhao Zhu
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Fugen Wu
- Department of Pediatric, The First People's Hospital of Wenling, Taizhou, China
| | - Xianbao Shi
- Department of Pharmacy, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Junzhao Zhao
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China
- Key Laboratory of Structural Malformations in Children of Zhejiang Province, Wenzhou 325027, China
| | - Ruijie Chen
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China
- Key Laboratory of Structural Malformations in Children of Zhejiang Province, Wenzhou 325027, China
| | - Qing Yao
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Longfa Kou
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China
- Key Laboratory of Structural Malformations in Children of Zhejiang Province, Wenzhou 325027, China
| |
Collapse
|
7
|
Angelova VT, Stoyanov BP, Simeonova R. New Insights into the Development of Donepezil-Based Hybrid and Natural Molecules as Multi-Target Drug Agents for Alzheimer's Disease Treatment. Molecules 2024; 29:5314. [PMID: 39598703 PMCID: PMC11596391 DOI: 10.3390/molecules29225314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 11/07/2024] [Accepted: 11/08/2024] [Indexed: 11/29/2024] Open
Abstract
Alzheimer's disease (AD) involves a complex pathophysiology with multiple interconnected subpathologies, including protein aggregation, impaired neurotransmission, oxidative stress, and microglia-mediated neuroinflammation. Current treatments, which generally target a single subpathology, have failed to modify the disease's progression, providing only temporary symptom relief. Multi-target drugs (MTDs) address several subpathologies, including impaired aggregation of pathological proteins. In this review, we cover hybrid molecules published between 2014 and 2024. We offer an overview of the strategies employed in drug design and approaches that have led to notable improvements and reduced hepatotoxicity. Our aim is to offer insights into the potential development of new Alzheimer's disease drugs. This overview highlights the potential of multi-target drugs featuring heterocycles with N-benzylpiperidine fragments and natural compounds in improving Alzheimer's disease treatment.
Collapse
Affiliation(s)
- Violina T. Angelova
- Department of Chemistry, Faculty of Pharmacy, Medical University of Sofia, 1000 Sofia, Bulgaria
| | - Boris P. Stoyanov
- Department of Pharmacology, Pharmacotherapy and Toxicology, Faculty of Pharmacy, Medical University of Sofia, 1000 Sofia, Bulgaria;
| | - Rumyana Simeonova
- Department of Pharmacology, Pharmacotherapy and Toxicology, Faculty of Pharmacy, Medical University of Sofia, 1000 Sofia, Bulgaria;
| |
Collapse
|
8
|
Dobrovinskaya O, Alamilla J, Olivas-Aguirre M. Impact of Modern Lifestyle on Circadian Health and Its Contribution to Adipogenesis and Cancer Risk. Cancers (Basel) 2024; 16:3706. [PMID: 39518143 PMCID: PMC11545514 DOI: 10.3390/cancers16213706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 10/29/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND Recent research underscores a crucial connection between circadian rhythm disruption and cancer promotion, highlighting an urgent need for attention. OBJECTIVES Explore the molecular mechanisms by which modern lifestyle factors-such as artificial light exposure, shift work, and dietary patterns-affect cortisol/melatonin regulation and cancer risk. METHODS Employing a narrative review approach, we synthesized findings from Scopus, Google Scholar, and PubMed to analyze lifestyle impacts on circadian health, focusing on cortisol and melatonin chronobiology as molecular markers. We included studies that documented quantitative changes in these markers due to modern lifestyle habits, excluding those lacking quantitative data or presenting inconclusive results. Subsequent sections focused solely on articles that quantified the effects of circadian disruption on adipogenesis and tumor microenvironment modifications. RESULTS This review shows how modern habits lead to molecular changes in cortisol and melatonin, creating adipose microenvironments that support cancer development. These disruptions facilitate immune evasion, chemotherapy resistance, and tumor growth, highlighting the critical roles of cortisol dysregulation and melatonin imbalance. CONCLUSIONS Through the presented findings, we establish a causal link between circadian rhythm dysregulation and the promotion of certain cancer types. By elucidating this relationship, the study emphasizes the importance of addressing lifestyle factors that contribute to circadian misalignment, suggesting that targeted interventions could play a crucial role in mitigating cancer risk and improving overall health outcomes.
Collapse
Affiliation(s)
- Oxana Dobrovinskaya
- Laboratory of Immunobiology and Ionic Transport Regulation, University Center for Biomedical Research, University of Colima, Colima 28040, Mexico;
| | - Javier Alamilla
- Consejo Nacional de Humanidades, Ciencia y Tecnología (CONAHCYT), Programa de Investigadores e Investigadoras por México, México City 03940, Mexico;
- Centro Universitario de Investigaciones Biomédicas (CUIB), Universidad de Colima, Colima 28040, Mexico
| | - Miguel Olivas-Aguirre
- Consejo Nacional de Humanidades, Ciencia y Tecnología (CONAHCYT), Programa de Investigadores e Investigadoras por México, México City 03940, Mexico;
- Laboratory of Cancer Pathophysiology, University Center for Biomedical Research, University of Colima, Colima 28040, Mexico
| |
Collapse
|
9
|
Bonilla-Vidal L, Świtalska M, Espina M, Wietrzyk J, García ML, Souto EB, Gliszczyńska A, Sánchez-López E. Antitumoral melatonin-loaded nanostructured lipid carriers. Nanomedicine (Lond) 2024; 19:1879-1894. [PMID: 39092498 PMCID: PMC11457606 DOI: 10.1080/17435889.2024.2379757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Accepted: 07/10/2024] [Indexed: 08/04/2024] Open
Abstract
Aim: Cancer constitutes the second leading cause of death worldwide, with conventional therapies limited by significant side effects. Melatonin (MEL), a natural compound with antitumoral properties, suffers from instability and low solubility. To overcome these issues, MEL was encapsulated into nanostructured lipid carriers (MEL-NLC) containing rosehip oil to enhance stability and boost its antitumoral activity.Methods: MEL-NLC were optimized by a design of experiments approach and characterized for their physicochemical properties. Stability and biopharmaceutical behavior were assessed, along with interaction studies and in vitro antitumoral efficacy against various cancer cell lines.Results: Optimized MEL-NLC exhibited desirable physicochemical characteristics, including small particle size and sustained MEL release, along with long-term stability. In vitro studies demonstrated that MEL-NLC selectively induced cytotoxicity in several cancer cell lines while sparing healthy cells.Conclusion: MEL-NLC represent a promising alternative for cancer, combining enhanced stability and targeted antitumoral activity, potentially overcoming the limitations of conventional treatments.
Collapse
Affiliation(s)
- Lorena Bonilla-Vidal
- Department of Pharmacy, Pharmaceutical Technology & Physical Chemistry, University of Barcelona, Barcelona, 08028, Spain
- Institute of Nanoscience & Nanotechnology (INUB), University of Barcelona, Barcelona, 08028, Spain
| | - Marta Świtalska
- Department of Experimental Oncology, Ludwik Hirszfeld Institute of Immunology & Experimental Therapy, Polish Academy of Sciences, Weigla 12, 53-114, Wrocław, Poland
| | - Marta Espina
- Department of Pharmacy, Pharmaceutical Technology & Physical Chemistry, University of Barcelona, Barcelona, 08028, Spain
- Institute of Nanoscience & Nanotechnology (INUB), University of Barcelona, Barcelona, 08028, Spain
| | - Joanna Wietrzyk
- Department of Experimental Oncology, Ludwik Hirszfeld Institute of Immunology & Experimental Therapy, Polish Academy of Sciences, Weigla 12, 53-114, Wrocław, Poland
| | - Maria Luisa García
- Department of Pharmacy, Pharmaceutical Technology & Physical Chemistry, University of Barcelona, Barcelona, 08028, Spain
- Institute of Nanoscience & Nanotechnology (INUB), University of Barcelona, Barcelona, 08028, Spain
| | - Eliana B Souto
- Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, Porto, 4050-313, Portugal
| | - Anna Gliszczyńska
- Department of Food Chemistry & Biocatalysis, Wrocław University of Environmental & Life Sciences, Norwida 25, 50-375, Wrocław, Poland
| | - Elena Sánchez-López
- Department of Pharmacy, Pharmaceutical Technology & Physical Chemistry, University of Barcelona, Barcelona, 08028, Spain
- Institute of Nanoscience & Nanotechnology (INUB), University of Barcelona, Barcelona, 08028, Spain
| |
Collapse
|
10
|
Sundram S, Dhiman N, Malviya R, Awasthi R. Synthesis of Novel Acrylamide Graft Copolymer of Acacia nilotica Gum for the Stabilization of Melatonin Nanoparticles for Improved Therapeutic Effect: Optimization Using (3) 2 Factorial Design. Assay Drug Dev Technol 2024; 22:278-307. [PMID: 38962889 DOI: 10.1089/adt.2024.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/05/2024] Open
Abstract
The objective of the present study was to optimize the microwave-assisted synthesis of the acrylamide graft copolymer of Acacia nilotica gum (AM-co-ANG). Furthermore, graft copolymer was used for the formulation of a nanoparticulate system using a novel top to bottom solvent antisolvent technique for the delivery of melatonin. Grafting of ANG was optimized by using 32 factorial design, where concentrations of polymer and monomer (acrylamide) were used as independent variables and swelling index in acidic (0.1 N HCl) and basic (1 N NaOH) pH. Grafted polymers were further used to develop and optimize nanoparticulate system using concentration of the graft copolymer and concentration of drug as independent variables. The size of the nanoformulation and entrapment efficiency were selected as dependent variables. Difference in infrared spectrum and absorbance maxima in the ultraviolet region confirm that grafting has taken place. Porous structure and a higher contact angle confirmed hydrophobic nature of AM-co-ANG as compared with the native polymer. Acrylamide graft copolymers show more swelling in 1 N NaOH as compared with 0.1 N HCl. In vitro toxicity studies in hepatic (HepG2 cell line), brain (SHSY5Y cell line), and skin (HaCaT cell line) cells easily predict that synthesized polymer have no cytotoxicity. The entrapment efficiency ranged from 55.24 ± 1.35% to 73.21 ± 1.83%. A nonlinear correlation was observed between independent and dependent variables, as confirmed by multivariate analysis of variance, surface regression, and the correlation report. The prepared formulations were able to release drug up to 12 h. The regression coefficient easily predicted that most of the formulations followed Baker-Lonsdale drug release kinetics.
Collapse
Affiliation(s)
- Sonali Sundram
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, India
- Department of Pharmaceutical Chemistry, Amity Institute of Pharmacy, Amity University, Noida, India
| | - Neerupma Dhiman
- Department of Pharmaceutical Chemistry, Amity Institute of Pharmacy, Amity University, Noida, India
| | - Rishabha Malviya
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, India
| | - Rajendra Awasthi
- Department of Pharmaceutical Sciences, School of Health Sciences and Technology, UPES, Dehradun, India
| |
Collapse
|
11
|
Chen T, Wu Z, Hou Q, Mei Y, Yang K, Xu J, Wang L. The Dual Angiogenesis Effects via Nrf2/HO-1 Signaling Pathway of Melatonin Nanocomposite Scaffold on Promoting Diabetic Bone Defect Repair. Int J Nanomedicine 2024; 19:2709-2732. [PMID: 38510794 PMCID: PMC10954026 DOI: 10.2147/ijn.s449290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 03/04/2024] [Indexed: 03/22/2024] Open
Abstract
Purpose Given the escalating prevalence of diabetes, the demand for specific bone graft materials is increasing, owing to the greater tendency towards bone defects and more difficult defect repair resulting from diabetic bone disease (DBD). Melatonin (MT), which is known for its potent antioxidant properties, has been shown to stimulate both osteogenesis and angiogenesis. Methods MT was formulated into MT@PLGA nanoparticles (NPs), mixed with sodium alginate (SA) hydrogel, and contained within a 3D printing polycaprolactone/β-Tricalcium phosphate (PCL/β-TCP) scaffold. The osteogenic capacity of the MT nanocomposite scaffold under diabetic conditions was demonstrated via in vitro and in vivo studies and the underlying mechanisms were investigated. Results Physicochemical characterization experiments confirmed the successful fabrication of the MT nanocomposite scaffold, which can achieve long-lasting sustained release of MT. The in vitro and in vivo studies demonstrated that the MT nanocomposite scaffold exhibited enhanced osteogenic capacity, which was elucidated by the dual angiogenesis effects activated through the NF-E2-related factor 2/Heme oxygenase 1 (Nrf2/HO-1) signaling pathway, including the enhancement of antioxidant enzyme activity to reduce the oxidative stress damage of vascular endothelial cells (VECs) and directly stimulating vascular endothelial growth factor (VEGF) production, which reversed the angiogenesis-osteogenesis uncoupling and promoted osteogenesis under diabetic conditions. Conclusion This study demonstrated the research prospective and clinical implications of the MT nanocomposite scaffold as a novel bone graft for treating bone defect and enhancing bone fusion in diabetic individuals.
Collapse
Affiliation(s)
- Tingting Chen
- School of Medicine, Southern University of Science and Technology, Shenzhen, People’s Republic of China
| | - Zimei Wu
- School of Medicine, Southern University of Science and Technology, Shenzhen, People’s Republic of China
- Department of Orthopedic Surgery, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, People’s Republic of China
| | - Qiaodan Hou
- School of Medicine, Southern University of Science and Technology, Shenzhen, People’s Republic of China
| | - Yixin Mei
- School of Medicine, Southern University of Science and Technology, Shenzhen, People’s Republic of China
| | - Kunkun Yang
- School of Medicine, Southern University of Science and Technology, Shenzhen, People’s Republic of China
| | - Jing Xu
- Southern University of Science and Technology Hospital, Shenzhen, People’s Republic of China
| | - Lin Wang
- School of Medicine, Southern University of Science and Technology, Shenzhen, People’s Republic of China
- Southern University of Science and Technology Hospital, Shenzhen, People’s Republic of China
| |
Collapse
|
12
|
Biswal L, Sardoiwala MN, Kushwaha AC, Mukherjee S, Karmakar S. Melatonin-Loaded Nanoparticles Augment Mitophagy to Retard Parkinson's Disease. ACS APPLIED MATERIALS & INTERFACES 2024; 16:8417-8429. [PMID: 38344952 DOI: 10.1021/acsami.3c17092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
The molecular pathways that melatonin follows as a Parkinson's disease (PD) antagonist remain poorly elucidated, despite it being a safe and a potential neurotherapeutic drug with a few limitations such as less bioavailability, premature oxidation, brain delivery, etc. Here, we used a biocompatible protein (HSA) nanocarrier for the delivery of melatonin to the brain. This nanomelatonin showed better antioxidative and neuroprotective properties, and it not only improves mitophagy to remove unhealthy mitochondria but also improves mitochondrial biogenesis to counteract rotenone-induced toxicity in an in vitro PD model. We also showed BMI1, a member of the PRC1 complex that regulates mitophagy, whose protein expression was enhanced after nanomelatonin dosage. These effects were translated to a rodent model, where nanomelatonin improves the TH+ve neuron population in SNPC and protects against rotenone-mediated toxicity. Our findings highlight the significantly better in vitro and in vivo neuroprotective effect of nanomelatonin as well as the molecular/cellular dynamics it influences to regulate mitophagy as a measure of the potential therapeutic candidate for PD.
Collapse
Affiliation(s)
- Liku Biswal
- Institute of Nano Science and Technology, Knowledge City, Sector 81, Mohali 140306, India
| | | | | | - Syamantak Mukherjee
- Institute of Nano Science and Technology, Knowledge City, Sector 81, Mohali 140306, India
| | - Surajit Karmakar
- Institute of Nano Science and Technology, Knowledge City, Sector 81, Mohali 140306, India
| |
Collapse
|
13
|
Estirado S, Díaz-García D, Fernández-Delgado E, Viñuelas-Zahínos E, Gómez-Ruiz S, Prashar S, Rodríguez AB, Luna-Giles F, Pariente JA, Espino J. Melatonin Derivative-Conjugated Formulations of Pd(II) and Pt(II) Thiazoline Complexes on Mesoporous Silica to Enhance Cytotoxicity and Apoptosis against HeLa Cells. Pharmaceutics 2024; 16:92. [PMID: 38258103 PMCID: PMC10821514 DOI: 10.3390/pharmaceutics16010092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/21/2023] [Accepted: 01/03/2024] [Indexed: 01/24/2024] Open
Abstract
The search for alternatives to cisplatin has led to the development of new metal complexes where thiazoline derivatives based on platinum(II) and palladium(II) stand out. In this sense, the Pt(II) and Pd(II) complexes coordinated with the thiazoline derivative ligand 2-(3,4-dichlorophenyl)imino-N-(2-thiazolin-2-yl)thiazolidine (TdTn), with formula [PtCl2(TdTn)] and [PdCl2(TdTn)], have previously shown good results against several cancer lines; however, in this work, we have managed to improve their activity by supporting them on mesoporous silica nanoparticles (MSN). The incorporation of metal compounds with a melatonin derivative (5-methoxytryptamine, 5MT), which is a well-known antioxidant and apoptosis inducer in different types of cancer, has been able to increase the cytotoxic activity of both MSN-supported and isolated complexes with only a very low amount (0.35% w/w) of this antioxidant. The covalently functionalized systems that have been synthesized are able to increase selectivity as well as accumulation in HeLa cells. The final materials containing the metal complexes and 5MT (MSN-5MT-PtTdTn and MSN-5MT-PdTdTn) required up to nine times less metal to achieve the same cytotoxic activity than their corresponding non-formulated counterparts did, thus reducing the potential side effects caused by the use of the free metal complexes.
Collapse
Affiliation(s)
- Samuel Estirado
- Grupo de Investigación Neuroinmunofisiología y Crononutrición, Departamento de Fisiología, Facultad de Ciencias, Universidad de Extremadura, Avenida de Elvas s/n, 06006 Badajoz, Spain; (S.E.); (E.F.-D.); (A.B.R.); (J.A.P.)
| | - Diana Díaz-García
- COMET-NANO Group, Departamento de Biología y Geología, Física y Química Inorgánica, E.S.C.E.T., Universidad Rey Juan Carlos, Calle Tulipán s/n, Móstoles, 28933 Madrid, Spain; (D.D.-G.); (S.P.)
| | - Elena Fernández-Delgado
- Grupo de Investigación Neuroinmunofisiología y Crononutrición, Departamento de Fisiología, Facultad de Ciencias, Universidad de Extremadura, Avenida de Elvas s/n, 06006 Badajoz, Spain; (S.E.); (E.F.-D.); (A.B.R.); (J.A.P.)
| | - Emilio Viñuelas-Zahínos
- Grupo de Investigación Química de Coordinación, Departamento de Química Orgánica e Inorgánica, Facultad de Ciencias, Universidad de Extremadura, Avenida de Elvas s/n, 06006 Badajoz, Spain; (E.V.-Z.); (F.L.-G.)
| | - Santiago Gómez-Ruiz
- COMET-NANO Group, Departamento de Biología y Geología, Física y Química Inorgánica, E.S.C.E.T., Universidad Rey Juan Carlos, Calle Tulipán s/n, Móstoles, 28933 Madrid, Spain; (D.D.-G.); (S.P.)
| | - Sanjiv Prashar
- COMET-NANO Group, Departamento de Biología y Geología, Física y Química Inorgánica, E.S.C.E.T., Universidad Rey Juan Carlos, Calle Tulipán s/n, Móstoles, 28933 Madrid, Spain; (D.D.-G.); (S.P.)
| | - Ana B. Rodríguez
- Grupo de Investigación Neuroinmunofisiología y Crononutrición, Departamento de Fisiología, Facultad de Ciencias, Universidad de Extremadura, Avenida de Elvas s/n, 06006 Badajoz, Spain; (S.E.); (E.F.-D.); (A.B.R.); (J.A.P.)
| | - Francisco Luna-Giles
- Grupo de Investigación Química de Coordinación, Departamento de Química Orgánica e Inorgánica, Facultad de Ciencias, Universidad de Extremadura, Avenida de Elvas s/n, 06006 Badajoz, Spain; (E.V.-Z.); (F.L.-G.)
| | - José A. Pariente
- Grupo de Investigación Neuroinmunofisiología y Crononutrición, Departamento de Fisiología, Facultad de Ciencias, Universidad de Extremadura, Avenida de Elvas s/n, 06006 Badajoz, Spain; (S.E.); (E.F.-D.); (A.B.R.); (J.A.P.)
| | - Javier Espino
- Grupo de Investigación Neuroinmunofisiología y Crononutrición, Departamento de Fisiología, Facultad de Ciencias, Universidad de Extremadura, Avenida de Elvas s/n, 06006 Badajoz, Spain; (S.E.); (E.F.-D.); (A.B.R.); (J.A.P.)
| |
Collapse
|
14
|
de Morais JMB, Cruz EMS, Concato VM, de Souza MC, Santos YM, Quadreli DH, Inoue FSR, Ferreira FB, Fernandes GSA, Bidóia DL, Machado RRB, Chuffa LGA, Pavanelli WR, Seiva FRF. Unraveling the impact of melatonin treatment: Oxidative stress, metabolic responses, and morphological changes in HuH7.5 hepatocellular carcinoma cells. Pathol Res Pract 2024; 253:155056. [PMID: 38183817 DOI: 10.1016/j.prp.2023.155056] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/18/2023] [Accepted: 12/19/2023] [Indexed: 01/08/2024]
Abstract
In addition to its highly aggressive nature and late diagnosis, hepatocellular carcinoma (HCC) does not respond effectively to available chemotherapeutic agents. The search is on for an ideal and effective compound with low cost and minimal side effects that can be used as an adjunct to chemotherapeutic regimens. One of the mechanisms involved in the pathology of HCC is the oxidative stress, which plays a critical role in tumor survival and dissemination. Our group has already demonstrated the antitumor potential of melatonin against HuH 7.5 cells. In the present study, we focused on the effects of melatonin on oxidative stress parameters and their consequences on cell metabolism. HuH 7.5 cells were treated with 2 and 4 mM of melatonin for 24 and 48 h. Oxidative stress biomarkers, antioxidant enzyme, mitochondrial membrane potential, formation of lipid bodies and autophagic vacuoles, cell cycle progression, cell death rate and ultrastructural cell alterations were evaluated. The treatment with melatonin increased oxidative stress biomarkers and reduced antioxidant enzyme activities of HuH 7.5 cells. Additionally, melatonin treatment damaged the mitochondrial membrane and increased lipid bodies and autophagic vacuole formation. Melatonin triggered cell cycle arrest and induced cell death by apoptosis. Our results indicate that the treatment of HuH 7.5 cells with melatonin impaired antioxidant defense systems, inhibited cell cycle progression, and caused metabolic stress, culminating in tumor cell death.
Collapse
Affiliation(s)
- Juliana M B de Morais
- Laboratory of Immunoparasitology of Neglected Diseases and Cancer, State University of Londrina (UEL), PR, Brazil
| | - Ellen M S Cruz
- Laboratory of Immunoparasitology of Neglected Diseases and Cancer, State University of Londrina (UEL), PR, Brazil
| | - Virgínia M Concato
- Laboratory of Immunoparasitology of Neglected Diseases and Cancer, State University of Londrina (UEL), PR, Brazil
| | - Milena C de Souza
- North of Paraná State University (UENP), Biological Science Center, Bandeirantes, PR, Brazil
| | - Yasmin M Santos
- Laboratory of Immunoparasitology of Neglected Diseases and Cancer, State University of Londrina (UEL), PR, Brazil
| | - Débora H Quadreli
- General Biology Department, Biological Sciences Center, State University of Londrina, Londrina (UEL), PR, Brazil
| | - Fabrício S R Inoue
- Laboratory of Immunoparasitology of Neglected Diseases and Cancer, State University of Londrina (UEL), PR, Brazil
| | - Francielle B Ferreira
- North of Paraná State University (UENP), Biological Science Center, Bandeirantes, PR, Brazil
| | - Glaura S A Fernandes
- General Biology Department, Biological Sciences Center, State University of Londrina, Londrina (UEL), PR, Brazil
| | | | | | - Luiz Gustavo A Chuffa
- Department of Structural and Functional Biology, São Paulo State University (UNESP), Institute of Bioscience, Botucatu, SP, Brazil
| | - Wander R Pavanelli
- Laboratory of Immunoparasitology of Neglected Diseases and Cancer, State University of Londrina (UEL), PR, Brazil
| | - Fábio R F Seiva
- Department of Chemical and Biological Sciences, São Paulo State University (UNESP), Institute of Bioscience, Botucatu, SP, Brazil.
| |
Collapse
|
15
|
Mousavi SM, Etemad L, Yari D, Hashemi M, Salmasi Z. Evaluation of Melatonin and its Nanostructures Effects on Skin Disorders Focused on Wound Healing. Mini Rev Med Chem 2024; 24:1856-1881. [PMID: 38685805 DOI: 10.2174/0113895575299255240422055203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 03/18/2024] [Accepted: 03/25/2024] [Indexed: 05/02/2024]
Abstract
Skin is the largest organ of the human body functioning as a great primitive defensive barrier against different harmful environmental factors. However, it is damaged through varying injuries such as different wounds, burns, and skin cancers that cause disruption in internal organs and essential mechanisms of the body through inflammation, oxidation, coagulation problems, infection, etc. Melatonin is the major hormone of the pineal gland that is also effective in skin disorders due to strong antioxidant and anti-inflammatory features with additional desirable antiapoptotic, anti-cancer, and antibiotic properties. However, melatonin characteristics require improvements due to its limited water solubility, halflife and stability. The application of nanocarrier systems can improve its solubility, permeability, and efficiency, as well as inhibit its degradation and promote photostability. Our main purpose in the current review is to explore the possible role of melatonin and melatonin-containing nanocarriers in skin disorders focused on wounds. Additionally, melatonin's effect in regenerative medicine and its structures as a wound dressing in skin damage has been considered.
Collapse
Affiliation(s)
| | - Leila Etemad
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Davood Yari
- Department of Clinical Biochemistry, Babol University of Medical Sciences, Babol, Iran
| | - Maryam Hashemi
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zahra Salmasi
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
16
|
Barmoudeh Z, Fouani MH, Moslemi Z, Azizi M, Doustimotlagh AH, Bardania H. Melatonin and metformin co-loaded nanoliposomes efficiently attenuate liver damage induced by bile duct ligation in rats. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:395-410. [PMID: 37452836 DOI: 10.1007/s00210-023-02613-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 07/05/2023] [Indexed: 07/18/2023]
Abstract
In the current study, the therapeutic effectiveness of the metformin (Met) and melatonin (Mel) co-loaded liposomes was investigated on cholestasis induced by bile duct ligation (BDL) in male rats. Histopathological analysis, biochemical analysis, and oxidative stress markers were assayed to determine the therapeutic effect of Met and Mel co-loaded liposomes on cholestasis. Histopathological analysis revealed that the simultaneous administration of Met and Mel, whether in the free (C-Mel-Met) or liposomal (C-Lipo-Mel-Met) forms, reduced inflammation as well as proliferation of bile ducts; however, results were more prominent in the liposomal form of Mel and Met. Additionaly, serum levels of aspartate aminotransferase (AST) were significantly (p < 0.001) higher in (C-Mel-Met) treated rats compared with (BDL) rats; however, (C-Lipo-Mel-Met) treated rats exhibited significant (p < 0.05) lower AST rates in comparison to (BDL) rats. Moreover, a significant (p < 0.0001) drop in bilirubin levels was detected in (C-Lipo-Mel-Met) treated rats in comparison to (BDL) rats; it is noteworthy mentioning that bilirubin levels in (C-Lipo-Mel-Met) treated rats were insignificant in comparison to sham-control (SC) rats. Furthermore, rats concomitantly administered Met and Mel, exhibited significant downregulation in the expression levels of inflammatory cytokine genes such as TNF-α and IL-1 gene expression, where the downregulation was more prominent in the liposomal from. Our findings demonestrate that the concomitant administration of metformin and melatonin in the liposomal form had more therapeutic effect on liver injury than their free forms through improving histological changes, reducing biochemical markers and favoring oxidant- antioxidant balance.
Collapse
Affiliation(s)
- Zahra Barmoudeh
- Student Research Committee, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Mohamad Hassan Fouani
- Department of Nanobiotechnology, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Zahra Moslemi
- Student Research Committee, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Mahdokht Azizi
- Clinical Research Development Unit, Imamsajad Hospital, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Amir Hossein Doustimotlagh
- Medicinal Plants Research Center, Yasuj University of Medical Sciences, Yasuj, Iran.
- Department of Clinical Biochemistry, Faculty of Medicine, Yasuj University of Medical Sciences, Yasuj, Iran.
| | - Hassan Bardania
- Cellular and Molecular Research Center, Yasuj University of Medical Sciences, Yasuj, Iran.
| |
Collapse
|
17
|
Soto-Mercado V, Mendivil-Perez M, Velez-Pardo C, Jimenez-Del-Rio M. Neuroprotective Effect of Combined Treatment with Epigallocatechin 3-Gallate and Melatonin on Familial Alzheimer's Disease PSEN1 E280A Cerebral Spheroids Derived from Menstrual Mesenchymal Stromal Cells. J Alzheimers Dis 2024; 99:S51-S66. [PMID: 36846998 DOI: 10.3233/jad-220903] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
Abstract
Background Familial Alzheimer's disease (FAD) is caused by mutations in one or more of 3 genes known as AβPP, PSEN1, and PSEN2. There are currently no effective therapies for FAD. Hence, novel therapeutics are needed. Objective To analyze the effect of treatment with a combination of epigallocatechin-3-gallate (EGCG) and Melatonin (N-acetyl-5-methoxytryptamine, aMT) in a cerebral spheroid (CS) 3D in vitro model of PSEN 1 E280A FAD. Methods We developed a CS in vitro model based on menstrual stromal cells derived from wild-type (WT) and mutant PSEN1 E280A menstrual blood cultured in Fast-N-Spheres V2 medium. Results Beta-tubulin III, choline acetyltransferase, and GFAP in both WT and mutant CSs spontaneously expressed neuronal and astroglia markers when grown in Fast-N-Spheres V2 medium for 4 or 11 days. Mutant PSEN1 CSs had significantly increased levels of intracellular AβPP fragment peptides and concomitant appearance of oxidized DJ-1 as early as 4 days, and phosphorylated tau, decreased ΔΨm, and increased caspase-3 activity were observed on Day 11. Moreover, mutant CSs were unresponsive to acetylcholine. Treatment with a combination of EGCG and aMT decreased the levels of all typical pathological markers of FAD more efficiently than did EGCG or aMT alone, but aMT failed to restore Ca2+ influx in mutant CSs and decreased the beneficial effect of EGCG on Ca2+ influx in mutant CSs. Conclusion Treatment with a combination of EGCG and aMT can be of high therapeutic value due to the high antioxidant capacity and anti-amyloidogenic effect of both compounds.
Collapse
Affiliation(s)
- Viviana Soto-Mercado
- Neuroscience Research Group, Medical Research Institute, Faculty of Medicine, University of Antioquia, SIU Medellin, Colombia
| | - Miguel Mendivil-Perez
- Neuroscience Research Group, Medical Research Institute, Faculty of Medicine, University of Antioquia, SIU Medellin, Colombia
| | - Carlos Velez-Pardo
- Neuroscience Research Group, Medical Research Institute, Faculty of Medicine, University of Antioquia, SIU Medellin, Colombia
| | - Marlene Jimenez-Del-Rio
- Neuroscience Research Group, Medical Research Institute, Faculty of Medicine, University of Antioquia, SIU Medellin, Colombia
| |
Collapse
|
18
|
Farid A, Michael V, Safwat G. Melatonin loaded poly(lactic-co-glycolic acid) (PLGA) nanoparticles reduce inflammation, inhibit apoptosis and protect rat's liver from the hazardous effects of CCL4. Sci Rep 2023; 13:16424. [PMID: 37777583 PMCID: PMC10543381 DOI: 10.1038/s41598-023-43546-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 09/25/2023] [Indexed: 10/02/2023] Open
Abstract
Liver is an important organ that carries out major important functions including the detoxification of harmful chemicals. Numerous studies have lately focused on the impact of various substances, such as chemical pollutants and pharmaceutical drugs, on the liver. Melatonin (Mel) has been reported for the protection against liver injury. In order to enhance Mel therapeutic benefits and prevent any potential negative effects, Mel has to be delivered to the injured liver. Therefore, the goal of the current investigation was to create Mel-loaded poly(lactic-co-glycolic acid) (PLGA) nanoparticles (Mel-PLGA NPs) to alleviate carbon tetrachloride (CCL4)-induced liver damage in male Sprague Dawley rats. The prepared Mel-PLGA NPs were physically characterized to determine its size and charge. Moreover, Mel-PLGA NPs were examined, in vitro, to determine its antioxidant, anticoagulant, anti-inflammatory and cytotoxicity effects before being used in vivo. The effect of NPs on liver injury was evaluated through biochemical, immunological, histopathological examination and flow cytometry technique. Mel-PLGA NPs were smooth and spherical with no signs of aggregation and have in vitro antioxidant, anti-inflammatory and anticoagulant effects. NPs varied in size from 87 to 96 nm in transmission electron microscope images, while their hydrodynamic diameter was 41 nm and their zeta potential was -6 mV. Mel-PLGA NPs had encapsulation efficiency (EE%) and drug loading (DL%) of 59.9 and 12.5%, respectively. Treatment with Mel-PLGA NPs ameliorated all histopathological changes, in liver sections, that resulted from CCL4 administration; where, liver sections of treated groups were similar to those of healthy control GI. NPs administration were superior to free Mel and reversed the elevated levels of liver function enzymes, inflammatory cytokines and matrix metalloproteinases to their normal levels. Moreover, liver sections of groups treated with NPs showed negative immunostaining for nuclear factor-κB (NF-κB) and C-reactive protein indicating their anti-inflammatory behavior. Mel-PLGA NPs significantly protected liver from the toxicity of CCL4. The effective dose of NPs was 5 mg/kg indicating a reduction in the required Mel dose and its associated adverse effects.
Collapse
Affiliation(s)
- Alyaa Farid
- Biotechnology Department, Faculty of Science, Cairo University, Giza, Egypt.
| | - Valina Michael
- Faculty of Biotechnology, October University for Modern Sciences and Arts (MSA), Giza, Egypt
| | - Gehan Safwat
- Faculty of Biotechnology, October University for Modern Sciences and Arts (MSA), Giza, Egypt
| |
Collapse
|
19
|
Piekarska K, Bonowicz K, Grzanka A, Jaworski ŁM, Reiter RJ, Slominski AT, Steinbrink K, Kleszczyński K, Gagat M. Melatonin and TGF-β-Mediated Release of Extracellular Vesicles. Metabolites 2023; 13:metabo13040575. [PMID: 37110233 PMCID: PMC10142249 DOI: 10.3390/metabo13040575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/12/2023] [Accepted: 04/17/2023] [Indexed: 04/29/2023] Open
Abstract
The immune system, unlike other systems, must be flexible and able to "adapt" to fully cope with lurking dangers. The transition from intracorporeal balance to homeostasis disruption is associated with activation of inflammatory signaling pathways, which causes modulation of the immunology response. Chemotactic cytokines, signaling molecules, and extracellular vesicles act as critical mediators of inflammation and participate in intercellular communication, conditioning the immune system's proper response. Among the well-known cytokines allowing for the development and proper functioning of the immune system by mediating cell survival and cell-death-inducing signaling, the tumor necrosis factor α (TNF-α) and transforming growth factor β (TGF-β) are noteworthy. The high bloodstream concentration of those pleiotropic cytokines can be characterized by anti- and pro-inflammatory activity, considering the powerful anti-inflammatory and anti-oxidative stress capabilities of TGF-β known from the literature. Together with the chemokines, the immune system response is also influenced by biologically active chemicals, such as melatonin. The enhanced cellular communication shows the relationship between the TGF-β signaling pathway and the extracellular vesicles (EVs) secreted under the influence of melatonin. This review outlines the findings on melatonin activity on TGF-β-dependent inflammatory response regulation in cell-to-cell communication leading to secretion of the different EV populations.
Collapse
Affiliation(s)
- Klaudia Piekarska
- Department of Histology and Embryology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, 85-092 Bydgoszcz, Poland
| | - Klaudia Bonowicz
- Department of Histology and Embryology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, 85-092 Bydgoszcz, Poland
| | - Alina Grzanka
- Department of Histology and Embryology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, 85-092 Bydgoszcz, Poland
| | - Łukasz M Jaworski
- Department of Histology and Embryology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, 85-092 Bydgoszcz, Poland
| | - Russel J Reiter
- Department of Cell Systems and Anatomy, UT Health, Long School of Medicine, San Antonio, TX 78229, USA
| | - Andrzej T Slominski
- Department of Dermatology, Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Pathology and Laboratory Medicine Service, VA Medical Center, Birmingham, AL 35294, USA
| | - Kerstin Steinbrink
- Department of Dermatology, University of Münster, Von-Esmarch-Str. 58, 48149 Münster, Germany
| | - Konrad Kleszczyński
- Department of Dermatology, University of Münster, Von-Esmarch-Str. 58, 48149 Münster, Germany
| | - Maciej Gagat
- Department of Histology and Embryology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, 85-092 Bydgoszcz, Poland
| |
Collapse
|
20
|
Hoti G, Ferrero R, Caldera F, Trotta F, Corno M, Pantaleone S, Desoky MMH, Brunella V. A Comparison between the Molecularly Imprinted and Non-Molecularly Imprinted Cyclodextrin-Based Nanosponges for the Transdermal Delivery of Melatonin. Polymers (Basel) 2023; 15:polym15061543. [PMID: 36987322 PMCID: PMC10057034 DOI: 10.3390/polym15061543] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 03/12/2023] [Accepted: 03/15/2023] [Indexed: 03/30/2023] Open
Abstract
Melatonin is a neurohormone that ameliorates many health conditions when it is administered as a drug, but its drawbacks are its oral and intravenous fast release. To overcome the limitations associated with melatonin release, cyclodextrin-based nanosponges (CD-based NSs) can be used. Under their attractive properties, CD-based NSs are well-known to provide the sustained release of the drug. Green cyclodextrin (CD)-based molecularly imprinted nanosponges (MIP-NSs) are successfully synthesized by reacting β-Cyclodextrin (β-CD) or Methyl-β Cyclodextrin (M-βCD) with citric acid as a cross-linking agent at a 1:8 molar ratio, and melatonin is introduced as a template molecule. In addition, CD-based non-molecularly imprinted nanosponges (NIP-NSs) are synthesized following the same procedure as MIP-NSs without the presence of melatonin. The resulting polymers are characterized by CHNS-O Elemental, Fourier Transform Infrared Spectroscopy (FTIR), Thermogravimetric (TGA), Differential Scanning Calorimetry (DSC), Zeta Potential, and High-Performance Liquid Chromatography (HPLC-UV) analyses, etc. The encapsulation efficiencies are 60-90% for MIP-NSs and 20-40% for NIP-NSs, whereas melatonin loading capacities are 1-1.5% for MIP-NSs and 4-7% for NIP-NSs. A better-controlled drug release performance (pH = 7.4) for 24 h is displayed by the in vitro release study of MIP-NSs (30-50% released melatonin) than NIP-NSs (50-70% released melatonin) due to the different associations within the polymeric structure. Furthermore, a computational study, through the static simulations in the gas phase at a Geometry Frequency Non-covalent interactions (GFN2 level), is performed to support the inclusion complex between βCD and melatonin with the automatic energy exploration performed by Conformer-Rotamer Ensemble Sampling Tool (CREST). A total of 58% of the CD/melatonin interactions are dominated by weak forces. CD-based MIP-NSs and CD-based NIP-NSs are mixed with cream formulations for enhancing and sustaining the melatonin delivery into the skin. The efficiency of cream formulations is determined by stability, spreadability, viscosity, and pH. This development of a new skin formulation, based on an imprinting approach, will be of the utmost importance in future research at improving skin permeation through transdermal delivery, associated with narrow therapeutic windows or low bioavailability of drugs with various health benefits.
Collapse
Affiliation(s)
- Gjylije Hoti
- Department of Chemistry, University of Torino, Via P. Giuria 7, 10125 Torino, Italy
| | - Riccardo Ferrero
- Department of Chemistry, University of Torino, Via P. Giuria 7, 10125 Torino, Italy
| | - Fabrizio Caldera
- Department of Chemistry, University of Torino, Via P. Giuria 7, 10125 Torino, Italy
| | - Francesco Trotta
- Department of Chemistry, University of Torino, Via P. Giuria 7, 10125 Torino, Italy
| | - Marta Corno
- Department of Chemistry, University of Torino, Via P. Giuria 7, 10125 Torino, Italy
| | - Stefano Pantaleone
- Department of Chemistry, University of Torino, Via P. Giuria 7, 10125 Torino, Italy
| | - Mohamed M H Desoky
- Department of Chemistry, University of Torino, Via P. Giuria 7, 10125 Torino, Italy
| | - Valentina Brunella
- Department of Chemistry, University of Torino, Via P. Giuria 7, 10125 Torino, Italy
| |
Collapse
|
21
|
Păncescu FM, Rikabi AAKK, Oprea OC, Grosu AR, Nechifor AC, Grosu VA, Tanczos SK, Dumitru F, Nechifor G, Bungău SG. Chitosan-sEPDM and Melatonin-Chitosan-sEPDM Composite Membranes for Melatonin Transport and Release. MEMBRANES 2023; 13:282. [PMID: 36984671 PMCID: PMC10057635 DOI: 10.3390/membranes13030282] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 02/25/2023] [Indexed: 06/18/2023]
Abstract
Melatonin is the hormone that focuses the attention of the researchers in the medical, pharmaceutical, materials, and membranes fields due to its multiple biomedical implications. The variety of techniques and methods for the controlled release of melatonin is linked to the multitude of applications, among which sports medicine occupies a special place. This paper presents the preparation and characterization of composite membranes based on chitosan (Chi) and sulfonated ethylene-propylene-diene terpolymer (sEPDM). The membranes were obtained by controlled vacuum evaporation from an 8% sEPDM solution in toluene (w/w), in which chitosan was dispersed in an ultrasonic field (sEPDM:Chi = 1:1, w/w). For the comparative evaluation of the membranes' performances, a melatonin-chitosan-sulfonated ethylene-propylene-diene terpolymer (Mel:Chi:sEPDM = 0.5:0.5:1.0, w/w/w) test membrane was made. The prepared membranes were morphologically and structurally characterized by scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), energy-dispersive spectroscopy analysis (EDAX), thermal analysis (TG, DSC), thermal analysis coupled with chromatography and infrared analysis, and contact angle measurements, but also from the point of view of performance in the process of transport and release of melatonin in dedicated environments (aqueous solutions with controlled pH and salinity). The prepared membranes can release melatonin in amounts between 0.4 mg/cm2·per day (sEPDM), 1.6 mg/ cm2·per day (Chi/sEPDM), and 1.25 mg/cm2·per day (Mel/Chi/SEPDM).
Collapse
Affiliation(s)
- Florentina Mihaela Păncescu
- Analytical Chemistry and Environmental Engineering Department, University Politehnica of Bucharest, 011061 Bucharest, Romania
| | - Abbas Abdul Kadhim Klaif Rikabi
- Analytical Chemistry and Environmental Engineering Department, University Politehnica of Bucharest, 011061 Bucharest, Romania
- Al–Mussaib Technical College, Al–Furat Al–Awsat Technical University (ATU), Babylon–Najaf Street, Kufa 54003, Iraq
| | - Ovidiu Cristian Oprea
- Department of Inorganic Chemistry, Physical Chemistry and Electrochemistry, University Politehnica of Bucharest, 011061 Bucharest, Romania
| | - Alexandra Raluca Grosu
- Analytical Chemistry and Environmental Engineering Department, University Politehnica of Bucharest, 011061 Bucharest, Romania
| | - Aurelia Cristina Nechifor
- Analytical Chemistry and Environmental Engineering Department, University Politehnica of Bucharest, 011061 Bucharest, Romania
| | - Vlad-Alexandru Grosu
- Department of Electronic Technology and Reliability, Faculty of Electronics, Telecommunications and Information Technology, University Politehnica of Bucharest, 061071 Bucharest, Romania
| | - Szidonia-Katalin Tanczos
- Department of Bioengineering, University Sapientia of Miercurea-Ciuc, 500104 Miercurea-Ciuc, Romania
| | - Florina Dumitru
- Department of Inorganic Chemistry, Physical Chemistry and Electrochemistry, University Politehnica of Bucharest, 011061 Bucharest, Romania
| | - Gheorghe Nechifor
- Analytical Chemistry and Environmental Engineering Department, University Politehnica of Bucharest, 011061 Bucharest, Romania
| | - Simona Gabriela Bungău
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 410028 Oradea, Romania
| |
Collapse
|
22
|
Dholariya S, Singh RD, Patel KA. Melatonin: Emerging Player in the Management of Oral Cancer. Crit Rev Oncog 2023; 28:77-92. [PMID: 37830217 DOI: 10.1615/critrevoncog.2023048934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2023]
Abstract
Oral cancer (OC) has emerged as a major medical and social issue in many industrialized nations due to the high death rate. It is becoming increasingly common in people under the age of 45, although the underlying causes and mechanisms of this increase remain unclear. Melatonin, as a pleiotropic hormone, plays a pivotal role in a wide variety of cellular and physiological functions. Mounting evidence supports melatonin's ability to modify/influence oral carcinogenesis, help in the reduction of the incidence of OC, and increase chemo- and radiosensitivity. Despite its potential anti-carcinogenic effects, the precise function of melatonin in the management of OC is not well understood. This review summarizes the current knowledge regarding melatonin function in anti-carcinogenesis mechanisms for OC. In addition, clinical assessment and the potential therapeutic utility of melatonin in OC are discussed. This review will provide a basis for researchers to create new melatonin-based personalized medicines for treating and preventing OC.
Collapse
Affiliation(s)
- Sagar Dholariya
- Department of Biochemistry, All India Institute of Medical Sciences (AIIMS), Rajkot, Gujarat, India
| | - Ragini D Singh
- Department of Biochemistry, All India Institute of Medical Sciences (AIIMS), Rajkot, Gujarat, India
| | | |
Collapse
|
23
|
Somjid S, Shinsuphan N, Temprom L, Krongsuk S. Effects of cholesterol and temperature on structural properties and dynamic behavior of niosome bilayers with melatonin Inclusion: A Coarse-Grained simulation study. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
24
|
Martín Giménez VM, de las Heras N, Lahera V, Tresguerres JAF, Reiter RJ, Manucha W. Melatonin as an Anti-Aging Therapy for Age-Related Cardiovascular and Neurodegenerative Diseases. Front Aging Neurosci 2022; 14:888292. [PMID: 35721030 PMCID: PMC9204094 DOI: 10.3389/fnagi.2022.888292] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 04/25/2022] [Indexed: 12/15/2022] Open
Abstract
The concept of “aging” is defined as the set of gradual and progressive changes in an organism that leads to an increased risk of weakness, disease, and death. This process may occur at the cellular and organ level, as well as in the entire organism of any living being. During aging, there is a decrease in biological functions and in the ability to adapt to metabolic stress. General effects of aging include mitochondrial, cellular, and organic dysfunction, immune impairment or inflammaging, oxidative stress, cognitive and cardiovascular alterations, among others. Therefore, one of the main harmful consequences of aging is the development and progression of multiple diseases related to these processes, especially at the cardiovascular and central nervous system levels. Both cardiovascular and neurodegenerative pathologies are highly disabling and, in many cases, lethal. In this context, melatonin, an endogenous compound naturally synthesized not only by the pineal gland but also by many cell types, may have a key role in the modulation of multiple mechanisms associated with aging. Additionally, this indoleamine is also a therapeutic agent, which may be administered exogenously with a high degree of safety. For this reason, melatonin could become an attractive and low-cost alternative for slowing the processes of aging and its associated diseases, including cardiovascular and neurodegenerative disorders.
Collapse
Affiliation(s)
- Virna Margarita Martín Giménez
- Instituto de Investigaciones en Ciencias Químicas, Facultad de Ciencias Químicas y Tecnológicas, Universidad Católica de Cuyo, San Juan, Argentina
| | - Natalia de las Heras
- Departamento de Fisiología, Facultad de Medicina, Universidad Complutense, Madrid, Spain
| | - Vicente Lahera
- Departamento de Fisiología, Facultad de Medicina, Universidad Complutense, Madrid, Spain
| | | | - Russel J. Reiter
- Department of Cell Systems and Anatomy, UT Health San Antonio Long School of Medicine, San Antonio, TX, United States
| | - Walter Manucha
- Área de Farmacología, Departamento de Patología, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza, Argentina
- Instituto de Medicina y Biología Experimental de Cuyo (IMBECU), Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Mendoza, Argentina
- *Correspondence: Walter Manucha ;
| |
Collapse
|
25
|
Effects of Modified Melatonin Release on Human Colostrum Neutrophils to Induce Death in the MCF-7 Cell Line. Int J Cell Biol 2022; 2022:8069188. [PMID: 35646122 PMCID: PMC9132700 DOI: 10.1155/2022/8069188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 04/06/2022] [Accepted: 04/22/2022] [Indexed: 12/03/2022] Open
Abstract
Cancer is one of the diseases with the highest mortality rate today, with breast cancer being the second most common type among the Brazilian population. Due to its etiological complexity and inefficiency of treatments, studies have focused on new forms of treatment. Among these forms of treatment, hormonal therapy seems to be an excellent auxiliary mechanism in tumoricidal activity, and melatonin has great potential as a modulator of the immune system. Thus, the present study is aimed at evaluating the effect of the hormone melatonin on the coculture of colostrum polymorphonuclear cells and MCF-7 cancer cells and evaluates the effect of this hormone using a modified transport system. A feasibility analysis was performed by fluorescence microscopy at three cell incubation times, 2 hours, 24 hours, and 72 hours. The measurement of cytokines in the cell supernatant occurred in 24 hours, and the apoptosis assay was performed in 72 hours using flow cytometry. The results showed higher levels of cell viability in groups treated with melatonin and less viability in groups containing a coculture of polymorphonuclear cells and MCF-7 after 72 hours of incubation. Furthermore, the apoptosis and necrosis rates were higher in coculture polymorphonuclear and MCF-7 cells, especially in groups containing microemulsion as a modified release agent. These data suggest that melatonin, especially if associated with a modified release system, has immunomodulatory effects on human colostrum polymorphonuclear cells. These cells can play a crucial role in the resolution of the tumor through their mediation and inflammatory action.
Collapse
|
26
|
Sevilla A, Chéret J, Slominski RM, Slominski AT, Paus R. Revisiting the role of melatonin in human melanocyte physiology: A skin context perspective. J Pineal Res 2022; 72:e12790. [PMID: 35133682 PMCID: PMC8930624 DOI: 10.1111/jpi.12790] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 01/24/2022] [Accepted: 02/02/2022] [Indexed: 11/30/2022]
Abstract
The evolutionarily ancient methoxyindoleamine, melatonin, has long perplexed investigators by its versatility of functions and mechanisms of action, which include the regulation of vertebrate pigmentation. Although first discovered through its potent skin-lightening effects in amphibians, melatonin's role in human skin and hair follicle pigmentation and its impact on melanocyte physiology remain unclear. Synthesizing our limited current understanding of this role, we specifically examine its impact on melanogenesis, oxidative biology, mitochondrial function, melanocyte senescence, and pigmentation-related clock gene activity, with emphasis on human skin, yet without ignoring instructive pointers from nonhuman species. Given the strict dependence of melanocyte functions on the epithelial microenvironment, we underscore that melanocyte responses to melatonin are best interrogated in a physiological tissue context. Current evidence suggests that melatonin and some of its metabolites inhibit both, melanogenesis (via reducing tyrosinase activity) and melanocyte proliferation by stimulating melatonin membrane receptors (MT1, MT2). We discuss whether putative melanogenesis-inhibitory effects of melatonin may occur via activation of Nrf2-mediated PI3K/AKT signaling, estrogen receptor-mediated and/or melanocortin-1 receptor- and cAMP-dependent signaling, and/or via melatonin-regulated changes in peripheral clock genes that regulate human melanogenesis, namely Bmal1 and Per1. Melatonin and its metabolites also accumulate in melanocytes where they exert net cyto- and senescence-protective as well as antioxidative effects by operating as free radical scavengers, stimulating the synthesis and activity of ROS scavenging enzymes and other antioxidants, promoting DNA repair, and enhancing mitochondrial function. We argue that it is clinically and biologically important to definitively clarify whether melanocyte cell culture-based observations translate into melatonin-induced pigmentary changes in a physiological tissue context, that is, in human epidermis and hair follicles ex vivo, and are confirmed by clinical trial results. After defining major open questions in this field, we close by suggesting how to begin answering them in clinically relevant, currently available preclinical in situ research models.
Collapse
Affiliation(s)
- Alec Sevilla
- Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Jérémy Chéret
- Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Radomir M. Slominski
- Graduate Biomedical Sciences Program, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Andrzej T. Slominski
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Pathology Laboratory Service, Veteran Administration Medical Center at Birmingham, Birmingham, AL35294, USA
- Corresponding authors: Ralf Paus, MD, DSc: ; Andrzej T. Slominski, MD, PhD:
| | - Ralf Paus
- Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
- Monasterium Laboratory, Münster, Germany
- CUTANEON – Skin & Hair Innovations, Hamburg, Germany
- Corresponding authors: Ralf Paus, MD, DSc: ; Andrzej T. Slominski, MD, PhD:
| |
Collapse
|
27
|
Ajoolabady A, Bi Y, McClements DJ, Lip GYH, Richardson DR, Reiter RJ, Klionsky DJ, Ren J. Melatonin-based therapeutics for atherosclerotic lesions and beyond: Focusing on macrophage mitophagy. Pharmacol Res 2022; 176:106072. [PMID: 35007709 DOI: 10.1016/j.phrs.2022.106072] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/05/2022] [Accepted: 01/05/2022] [Indexed: 12/11/2022]
Abstract
Atherosclerosis refers to a unique form of chronic proinflammatory anomaly of the vasculature, presented as rupture-prone or occlusive lesions in arteries. In advanced stages, atherosclerosis leads to the onset and development of multiple cardiovascular diseases with lethal consequences. Inflammatory cytokines in atherosclerotic lesions contribute to the exacerbation of atherosclerosis. Pharmacotherapies targeting dyslipidemia, hypercholesterolemia, and neutralizing inflammatory cytokines (TNF-α, IL-1β, IL-6, IL-17, and IL-12/23) have displayed proven promises although contradictory results. Moreover, adjuvants such as melatonin, a pluripotent agent with proven anti-inflammatory, anti-oxidative and neuroprotective properties, also display potentials in alleviating cytokine secretion in macrophages through mitophagy activation. Here, we share our perspectives on this concept and present melatonin-based therapeutics as a means to modulate mitophagy in macrophages and, thereby, ameliorate atherosclerosis.
Collapse
Affiliation(s)
- Amir Ajoolabady
- University of Wyoming College of Health Sciences, Laramie, WY 82071, USA; Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital Fudan University, Shanghai 200032, China
| | - Yaguang Bi
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital Fudan University, Shanghai 200032, China
| | - David J McClements
- Department of Food Science, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Gregory Y H Lip
- University of Liverpool and Liverpool Heart & Chest Hospital, Liverpool, UK; Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| | - Des R Richardson
- Molecular Pharmacology and Pathology Program, Department of Pathology and Bosch Institute, University of Sydney, Sydney, New South Wales 2006, Australia; Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan; Centre for Cancer Cell Biology and Drug Discovery, Griffith Institute for Drug Discovery, Griffith University, Nathan, Brisbane, Queensland 4111, Australia
| | - Russel J Reiter
- Department of Cellular and Structural Biology, University of Texas Health Science Center, San Antonio, TX, USA.
| | - Daniel J Klionsky
- Life Sciences Institute and Departments of Molecular, Cellular and Developmental Biology and Biological Chemistry, University of Michigan, Ann Arbor, MI 48109, USA.
| | - Jun Ren
- University of Wyoming College of Health Sciences, Laramie, WY 82071, USA; Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital Fudan University, Shanghai 200032, China; Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195 USA.
| |
Collapse
|
28
|
Melatonin and Pathological Cell Interactions: Mitochondrial Glucose Processing in Cancer Cells. Int J Mol Sci 2021; 22:ijms222212494. [PMID: 34830375 PMCID: PMC8621753 DOI: 10.3390/ijms222212494] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 10/06/2021] [Accepted: 11/17/2021] [Indexed: 12/18/2022] Open
Abstract
Melatonin is synthesized in the pineal gland at night. Since melatonin is produced in the mitochondria of all other cells in a non-circadian manner, the amount synthesized by the pineal gland is less than 5% of the total. Melatonin produced in mitochondria influences glucose metabolism in all cells. Many pathological cells adopt aerobic glycolysis (Warburg effect) in which pyruvate is excluded from the mitochondria and remains in the cytosol where it is metabolized to lactate. The entrance of pyruvate into the mitochondria of healthy cells allows it to be irreversibly decarboxylated by pyruvate dehydrogenase (PDH) to acetyl coenzyme A (acetyl-CoA). The exclusion of pyruvate from the mitochondria in pathological cells prevents the generation of acetyl-CoA from pyruvate. This is relevant to mitochondrial melatonin production, as acetyl-CoA is a required co-substrate/co-factor for melatonin synthesis. When PDH is inhibited during aerobic glycolysis or during intracellular hypoxia, the deficiency of acetyl-CoA likely prevents mitochondrial melatonin synthesis. When cells experiencing aerobic glycolysis or hypoxia with a diminished level of acetyl-CoA are supplemented with melatonin or receive it from another endogenous source (pineal-derived), pathological cells convert to a more normal phenotype and support the transport of pyruvate into the mitochondria, thereby re-establishing a healthier mitochondrial metabolic physiology.
Collapse
|
29
|
Abstract
Graphene-based materials are found as excellent resources and employed as efficient anti-microbial agents, and they have been receiving significant attention from scientists and researchers in this regard. By giving special attention to recent applications of graphene-based materials, the current review is dedicated to unveiling the antimicrobial properties of graphene and its hybrid composites and their preparation methods. Different factors like the number of layers, concentration, size, and shape of the antibacterial activity are thoroughly discussed. Graphene-based materials could damage the bacteria physically by directly contacting the cell membrane or wrapping the bacterial cell. It can also chemically react to bacteria through oxidative stress and charge transfer mechanisms. This review explains such mechanisms thoroughly and summarizes the antibacterial applications (wound bandages, coatings, food packaging, etc.) of graphene and its hybrid materials.
Collapse
|
30
|
He Q, Yan R, Hou W, Wang H, Tian Y. A pH-Responsive Zwitterionic Polyurethane Prodrug as Drug Delivery System for Enhanced Cancer Therapy. Molecules 2021; 26:5274. [PMID: 34500707 PMCID: PMC8434572 DOI: 10.3390/molecules26175274] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/14/2021] [Accepted: 08/19/2021] [Indexed: 02/05/2023] Open
Abstract
Numerous nanocarriers with excellent biocompatibilities have been used to improve cancer therapy. However, nonspecific protein adsorption of nanocarriers may block the modified nanoparticles in tumor cells, which would lead to inefficient cellular internalization. To address this issue, pH-responsive polyurethane prodrug micelles with a zwitterionic segment were designed and prepared. The micelle consisted of a zwitterionic segment as the hydrophilic shell and the drug Adriamycin (DOX) as the hydrophobic inner core. As a pH-responsive antitumor drug delivery system, the prodrug micelles showed high stability in a physiological environment and continuously released the drug under acidic conditions. In addition, the pure polyurethane carrier was demonstrated to be virtually non-cytotoxic by cytotoxicity studies, while the prodrug micelles were more efficient in killing tumor cells compared to PEG-PLGA@DOX. Furthermore, the DOX cellular uptake efficiency of prodrug micelles was proved to be obviously higher than the control group by both flow cytometry and fluorescence microscopy. This is mainly due to the modification of a zwitterionic segment with PU. The simple design of zwitterionic prodrug micelles provides a new strategy for designing novel antitumor drug delivery systems with enhanced cellular uptake rates.
Collapse
Affiliation(s)
- Qian He
- Department of Emergency, West China Hospital, Sichuan University, Guoxue Alley No. 37, Chengdu 610041, China; (Q.H.); (W.H.)
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610041, China; (R.Y.); (H.W.)
| | - Rui Yan
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610041, China; (R.Y.); (H.W.)
| | - Wanting Hou
- Department of Emergency, West China Hospital, Sichuan University, Guoxue Alley No. 37, Chengdu 610041, China; (Q.H.); (W.H.)
| | - Haibo Wang
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610041, China; (R.Y.); (H.W.)
| | - Yali Tian
- West China School of Nursing, West China Hospital, Sichuan University, Guoxue Alley No. 37, Chengdu 610041, China
| |
Collapse
|