1
|
Mishra Y, Chattaraj A, Aljabali AAA, El-Tanani M, Tambuwala MM, Mishra V. Graphene oxide–lithium-ion batteries: inauguration of an era in energy storage technology. CLEAN ENERGY 2024; 8:194-205. [DOI: 10.1093/ce/zkad095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
Abstract
A significant driving force behind the brisk research on rechargeable batteries, particularly lithium-ion batteries (LiBs) in high-performance applications, is the development of portable devices and electric vehicles. Carbon-based materials, which have finite specific capacity, make up the anodes of LiBs. Many attempts are being made to produce novel nanostructured composite anode materials for LiBs that display cycle stability that is superior to that of graphite using graphene oxide. Therefore, using significant amounts of waste graphene oxide from used LiBs represents a fantastic opportunity to engage in waste management and circular economy. This review outlines recent studies, developments and the current advancement of graphene oxide-based LiBs, including preparation of graphene oxide and utilization in LiBs, particularly from the perspective of energy storage technology, which has drawn more and more attention to creating high-performance electrode systems.
Collapse
Affiliation(s)
- Yachana Mishra
- School of Bioengineering and Biosciences, Lovely Professional University , Phagwara (Punjab)-144411 , India
| | - Aditi Chattaraj
- School of Bioengineering and Biosciences, Lovely Professional University , Phagwara (Punjab)-144411 , India
| | - Alaa AA Aljabali
- Department of Pharmaceutics & Pharmaceutical Technology, Yarmouk University , Irbid , Jordan
| | - Mohamed El-Tanani
- College of Pharmacy, Ras Al Khaimah Medical and Health Sciences University , UAE
| | - Murtaza M Tambuwala
- Lincoln Medical School, University of Lincoln , Brayford Pool Campus, Lincoln LN6 7TS, England , UK
| | - Vijay Mishra
- School of Pharmaceutical Sciences, Lovely Professional University , Phagwara (Punjab)-144411 , India
| |
Collapse
|
2
|
Wu Q, Zhu Y, Duan H, Zhu L, Zhang Y, Xu H, Egun IL, He H. Nano-Silicon@Exfoliated Graphite/Pyrolytic Polyaniline Composite of a High-Performance Cathode for Lithium Storage. MATERIALS (BASEL, SWITZERLAND) 2023; 16:1584. [PMID: 36837214 PMCID: PMC9967963 DOI: 10.3390/ma16041584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 01/21/2023] [Accepted: 02/10/2023] [Indexed: 06/18/2023]
Abstract
In this paper, a Si@EG composite was prepared by liquid phase mixing and the elevated temperature solid phase method, while polyaniline was synthesized by the in situ chemical polymerization of aniline monomer to coat the surface of nano-silicon and exfoliated graphite composites (Si@EG). Pyrolytic polyaniline (p-PANI) coating prevents the agglomeration of silicon nanoparticles, forming a good conductive network that effectively alleviates the volume expansion effect of silicon electrodes. SEM, TEM, XRD, Raman, TGA and BET were used to observe the morphology and analyze the structure of the samples. The electrochemical properties of the materials were tested by the constant current charge discharge and cyclic voltammetry (CV) methods. The results show that Si@EG@p-PANI not only inhibits the agglomeration between silicon nanoparticles and forms a good conductive network but also uses the outermost layer of p-PANI carbon coating to effectively alleviate the volume expansion of silicon nanoparticles during cycling. Si@EG@p-PANI had a high initial specific capacity of 1491 mAh g-1 and still maintains 752 mAh g-1 after 100 cycles at 100 mA g-1, which shows that it possesses excellent electrochemical stability and reversibility.
Collapse
Affiliation(s)
- Qian Wu
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Yinghong Zhu
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Haojie Duan
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Lin Zhu
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Yuting Zhang
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Hongqiang Xu
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Ishioma Laurene Egun
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Ningbo China, Ningbo 315100, China
| | - Haiyong He
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| |
Collapse
|
3
|
Rationally designed rGO@CNTs@CNFs film as self-supporting binder-free Si electrodes for high-performance lithium-ion batteries. J Colloid Interface Sci 2022; 631:249-257. [DOI: 10.1016/j.jcis.2022.11.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 11/01/2022] [Accepted: 11/06/2022] [Indexed: 11/12/2022]
|
4
|
Three-dimensional network of nitrogen-doped carbon matrix-encapsulated Si nanoparticles/carbon nanofibers hybrids for lithium-ion battery anodes with excellent capability. Sci Rep 2022; 12:16002. [PMID: 36163350 PMCID: PMC9512820 DOI: 10.1038/s41598-022-20026-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Accepted: 09/07/2022] [Indexed: 12/01/2022] Open
Abstract
Three-dimensionally structured silicon (Si)–carbon (C) nanocomposites have great potential as anodes in lithium-ion batteries (LIBs). Here, we report a Nitrogen-doped graphene/carbon-encapsulated Si nanoparticle/carbon nanofiber composite (NG/C@Si/CNF) prepared by methods of surface modification, electrostatic self-assembly, cross-linking with heat treatment, and further carbonization as a potential high-performance anode for LIBs. The N-doped C matrix wrapped around Si nanoparticles improved the electrical conductivity of the composites and buffered the volume change of Si nanoparticles during lithiation/delithiation. Uniformly dispersed CNF in composites acted as conductive networks for the fast transport of ions and electrons. The entire tightly connected organic material of NG/C@Si and CNF prevented the crushing and shedding of particles and maintained the integrity of the electrode structure. The NG/C@Si/CNF composite exhibited better rate capability and cycling performance compared with the other electrode materials. After 100 cycles, the electrode maintained a high reversible specific capacity of 1371.4 mAh/g.
Collapse
|
5
|
Strategies for Controlling or Releasing the Influence Due to the Volume Expansion of Silicon inside Si-C Composite Anode for High-Performance Lithium-Ion Batteries. MATERIALS 2022; 15:ma15124264. [PMID: 35744323 PMCID: PMC9228666 DOI: 10.3390/ma15124264] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 06/10/2022] [Accepted: 06/13/2022] [Indexed: 02/01/2023]
Abstract
Currently, silicon is considered among the foremost promising anode materials, due to its high capacity, abundant reserves, environmental friendliness, and low working potential. However, the huge volume changes in silicon anode materials can pulverize the material particles and result in the shedding of active materials and the continual rupturing of the solid electrolyte interface film, leading to a short cycle life and rapid capacity decay. Therefore, the practical application of silicon anode materials is hindered. However, carbon recombination may remedy this defect. In silicon/carbon composite anode materials, silicon provides ultra-high capacity, and carbon is used as a buffer, to relieve the volume expansion of silicon; thus, increasing the use of silicon-based anode materials. To ensure the future utilization of silicon as an anode material in lithium-ion batteries, this review considers the dampening effect on the volume expansion of silicon particles by the formation of carbon layers, cavities, and chemical bonds. Silicon-carbon composites are classified herein as coated core-shell structure, hollow core-shell structure, porous structure, and embedded structure. The above structures can adequately accommodate the Si volume expansion, buffer the mechanical stress, and ameliorate the interface/surface stability, with the potential for performance enhancement. Finally, a perspective on future studies on Si-C anodes is suggested. In the future, the rational design of high-capacity Si-C anodes for better lithium-ion batteries will narrow the gap between theoretical research and practical applications.
Collapse
|
6
|
Basso Peressut A, Di Virgilio M, Bombino A, Latorrata S, Muurinen E, Keiski RL, Dotelli G. Investigation of Sulfonated Graphene Oxide as the Base Material for Novel Proton Exchange Membranes. Molecules 2022; 27:1507. [PMID: 35268613 PMCID: PMC8912047 DOI: 10.3390/molecules27051507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 02/20/2022] [Accepted: 02/22/2022] [Indexed: 11/16/2022] Open
Abstract
This work deals with the development of graphene oxide (GO)-based self-assembling membranes as possible innovative proton conductors to be used in polymer electrolyte membrane fuel cells (PEMFCs). Nowadays, the most adopted electrolyte is Chemours' Nafion; however, it reveals significant deficiencies such as strong dehydration at high temperature and low humidity, which drastically reduces its proton conductivity. The presence of oxygenated moieties in the GO framework makes it suitable for functionalization, which is required to enhance the promising, but insufficient, proton-carrying features of GO. In this study, sulfonic acid groups (-SO3H) that should favor proton transport were introduced in the membrane structure via a reaction between GO and concentrated sulfuric acid. Six acid-to-GO molar ratios were adopted in the synthesis procedure, giving rise to final products with different sulfonation degrees. All the prepared samples were characterized by means of TGA, ATR-FTIR and Raman spectroscopy, temperature-dependent XRD, SEM and EDX, which pointed out morphological and microstructural changes resulting from the functionalization stage, confirming its effectiveness. Regarding functional features, electrochemical impedance spectroscopy (EIS) as well as measurements of ion exchange capacity (IEC) were carried out to describe the behavior of the various samples, with pristine GO and commercial Nafion® 212 used as reference. EIS tests were performed at five different temperatures (20, 40, 60, 80 and 100 °C) under high (95%) and medium (42%) relative humidity conditions. Compared to both GO and Nafion® 212, the sulfonated specimens demonstrate an increase in the number of ion-carrying groups, as proved by both IEC and EIS tests, which reveal the enhanced proton conductivity of these novel membranes. Specifically, an acid-to-GO molar ratio of 10 produces a six-fold improvement of IEC (4.23 meq g-1) with respect to pure GO (0.76 meq g-1), while a maximum eight-fold improvement (5.72 meq g-1) is achieved in SGO-15.
Collapse
Affiliation(s)
- Andrea Basso Peressut
- Department of Chemistry, Materials and Chemical Engineering “Giulio Natta”, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano, Italy; (A.B.P.); (A.B.); (S.L.)
| | - Matteo Di Virgilio
- Department of Chemistry, Materials and Chemical Engineering “Giulio Natta”, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano, Italy; (A.B.P.); (A.B.); (S.L.)
| | - Antonella Bombino
- Department of Chemistry, Materials and Chemical Engineering “Giulio Natta”, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano, Italy; (A.B.P.); (A.B.); (S.L.)
| | - Saverio Latorrata
- Department of Chemistry, Materials and Chemical Engineering “Giulio Natta”, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano, Italy; (A.B.P.); (A.B.); (S.L.)
| | - Esa Muurinen
- Environmental and Chemical Engineering Research Unit, Faculty of Technology, University of Oulu, Pentti Kaiteran katu 1, FI-90014 Oulu, Finland; (E.M.); (R.L.K.)
| | - Riitta L. Keiski
- Environmental and Chemical Engineering Research Unit, Faculty of Technology, University of Oulu, Pentti Kaiteran katu 1, FI-90014 Oulu, Finland; (E.M.); (R.L.K.)
| | - Giovanni Dotelli
- Department of Chemistry, Materials and Chemical Engineering “Giulio Natta”, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano, Italy; (A.B.P.); (A.B.); (S.L.)
| |
Collapse
|
7
|
Lv S, Zhu Y, Wang X, Zhu Y, Wang K, Ni H, Gu R. Research on the Morphology Reconstruction of Deep Cryogenic Treatment on PtRu/nitrogen-Doped Graphene Composite Carbon Nanofibers. MATERIALS (BASEL, SWITZERLAND) 2022; 15:908. [PMID: 35160852 PMCID: PMC8838454 DOI: 10.3390/ma15030908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 01/19/2022] [Accepted: 01/20/2022] [Indexed: 02/01/2023]
Abstract
To improve the performance of PtRu/nitrogen-doped graphene composite carbon nanofibers, the composite carbon nanofibers were thermally compensated by deep cryogenic treatment (DCT), which realized the morphology reconstruction of composite carbon nanofibers. The effects of different DCT times were compared: 12 h, 18 h, and 24 h. The morphology reconstruction mechanism was explored by combining the change of inner chain structure and material group. The results showed that the fibers treated for 12 h had better physical and chemical properties, where the diameter is evenly distributed between 500 and 800 nm. Combined with Fourier infrared analysis, the longer the cryogenic time, the more easily the water vapor and nitrogen enter polymerization reaction, causing changes of chain structure and degradation performance. With great performance of carbonization and group transformation, the PtRu/nitrogen-doped graphene composite carbon nanofibers can be used as an efficient direct alcohol fuel cell catalyst and promote its commercialization.
Collapse
Affiliation(s)
- Shuaishuai Lv
- School of Mechanical Engineering, Nantong University, Nantong 226019, China; (S.L.); (X.W.); (Y.Z.); (K.W.)
| | - Yangyang Zhu
- Nantong Institute of Technology, Nantong 226019, China;
| | - Xingxing Wang
- School of Mechanical Engineering, Nantong University, Nantong 226019, China; (S.L.); (X.W.); (Y.Z.); (K.W.)
| | - Yu Zhu
- School of Mechanical Engineering, Nantong University, Nantong 226019, China; (S.L.); (X.W.); (Y.Z.); (K.W.)
| | - Kaixuan Wang
- School of Mechanical Engineering, Nantong University, Nantong 226019, China; (S.L.); (X.W.); (Y.Z.); (K.W.)
| | - Hongjun Ni
- School of Mechanical Engineering, Nantong University, Nantong 226019, China; (S.L.); (X.W.); (Y.Z.); (K.W.)
| | - Ruobo Gu
- Nantong Vocational College of Science & Technology, Nantong 226019, China;
| |
Collapse
|
8
|
Zhang X, Jin S, Zhang Y, Wang L, Liu Y, Duan Q. One-Pot Facile Synthesis of Noble Metal Nanoparticles Supported on rGO with Enhanced Catalytic Performance for 4-Nitrophenol Reduction. Molecules 2021; 26:molecules26237261. [PMID: 34885841 PMCID: PMC8659260 DOI: 10.3390/molecules26237261] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 11/22/2021] [Accepted: 11/23/2021] [Indexed: 11/16/2022] Open
Abstract
In this study, reduced graphene oxide (rGO)-supported noble metal (gold, silver, and platinum) nanoparticle catalysts were prepared via the one-pot facile co-reduction technique. Various measurement techniques were used to investigate the structures and properties of the catalysts. The relative intensity ratios of ID/IG in rGO/Au, rGO/Ag, rGO/Pt, and GO were 1.106, 1.078, 1.047, and 0.863, respectively. The results showed the formation of rGO and that noble metal nanoparticles were decorated on rGO. Furthermore, the catalytic activities of the designed nanocomposites were investigated via 4-nitrophenol. The catalysts were used in 4-nitrophenol reduction. The catalytic performance of the catalysts was evaluated using the apparent rate constant k values. The k value of rGO/Au was 0.618 min-1, which was higher than those of rGO/Ag (0.55 min-1) and rGO/Pt (0.038 min-1). The result proved that the rGO/Au catalyst exhibited a higher catalytic performance than the rGO/Ag catalyst and the rGO/Pt catalyst. The results provide a facile method for the synthesis of rGO-supported nanomaterials in catalysis.
Collapse
Affiliation(s)
- Xiaolong Zhang
- School of Materials Science and Engineering, Changchun University of Science and Technology, Changchun 130022, China;
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun 130103, China; (S.J.); (Y.Z.); (L.W.); (Y.L.)
| | - Shilei Jin
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun 130103, China; (S.J.); (Y.Z.); (L.W.); (Y.L.)
| | - Yuhan Zhang
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun 130103, China; (S.J.); (Y.Z.); (L.W.); (Y.L.)
| | - Liyuan Wang
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun 130103, China; (S.J.); (Y.Z.); (L.W.); (Y.L.)
| | - Yang Liu
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun 130103, China; (S.J.); (Y.Z.); (L.W.); (Y.L.)
| | - Qian Duan
- School of Materials Science and Engineering, Changchun University of Science and Technology, Changchun 130022, China;
- Correspondence: ; Tel.: +86-43-85583015
| |
Collapse
|