1
|
Feleke R, Jogaudaite S, Velentza-Almpani E, Yeung-Yeung L, Clode D, Ko JH, Shin B, Matthews S, Otero-Jimenez M, Wojewska MJ, Gray-Rodriguez S, Marzi SJ, Spires-Jones MP, Spires-Jones TL, Johnson MR, Alegre-Abarrategui J. Seeding-competent early tau multimers are associated with cell type-specific transcriptional signatures. Acta Neuropathol 2025; 149:31. [PMID: 40183825 PMCID: PMC11971191 DOI: 10.1007/s00401-025-02869-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 03/01/2025] [Accepted: 03/16/2025] [Indexed: 04/05/2025]
Abstract
The initial molecular alterations of Alzheimer's disease (AD) are unknown. Established AD is characterized by profound structural and transcriptional alterations in the human brain, with the hallmark neuropathological features being beta-amyloid (Aβ) accumulation in senile plaques and hyperphosphorylated fibrillar tau in neurofibrillary tangles (NFTs). Previous evidence indicates that tau multimerization into small aggregates is one of the earliest molecular alterations, anticipating the accumulation of hyperphosphorylated tau in NFTs. In this study, we investigated the seeding capacity of these early small tau multimers and the transcriptional changes associated with them, aiming to unveil early pathogenic processes in AD-type tau pathology. Early tau multimers visualized with tau proximity ligation assay (tau-PLA) in the post-mortem temporal cortex demonstrated high seeding activity detected by real-time quaking-induced conversion (RT-QuIC) assay and induction of aggregates in a tau biosensor cell line. Using single-nucleus transcriptomics, we showed that brain tissue harboring seeding-competent early tau multimers, but without significant NFT pathology, is associated with substantial gene expression alterations across diverse cell types when compared to control tissue lacking either multimers or NFTs. Differentially expressed genes, such as APP, MAPT, and PSEN1, exhibited significant enrichment of AD heritability in up-regulated genes within excitatory neurons, astrocytes, and oligodendrocytes. Pseudotime analysis exposed a positive correlation between the progression of tau pathology and the expression of genes marking reactive astrocytes. In summary, our results support the hypothesis that seeding-competent tau multimerization may initiate AD-type tau pathology cascades before the accumulation of tau in NFTs. This research contributes valuable insights into the early molecular events associated with AD, with implications for future diagnostic and therapeutic strategies.
Collapse
Affiliation(s)
- Rahel Feleke
- Department of Brain Sciences, Imperial College London, Hammersmith Hospital, London, W12 0NN, UK
| | - Simona Jogaudaite
- Department of Brain Sciences, Imperial College London, Hammersmith Hospital, London, W12 0NN, UK
| | | | - Leung Yeung-Yeung
- Department of Brain Sciences, Imperial College London, Hammersmith Hospital, London, W12 0NN, UK
| | - Daniel Clode
- Department of Brain Sciences, Imperial College London, Hammersmith Hospital, London, W12 0NN, UK
| | - Jeong Hun Ko
- Department of Brain Sciences, Imperial College London, Hammersmith Hospital, London, W12 0NN, UK
| | - Ben Shin
- Department of Brain Sciences, Imperial College London, Hammersmith Hospital, London, W12 0NN, UK
| | - Steve Matthews
- Department of Brain Sciences, Imperial College London, Hammersmith Hospital, London, W12 0NN, UK
| | - Maria Otero-Jimenez
- Department of Brain Sciences, Imperial College London, Hammersmith Hospital, London, W12 0NN, UK
| | - Marcelina J Wojewska
- Department of Brain Sciences, Imperial College London, Hammersmith Hospital, London, W12 0NN, UK
| | - Sandra Gray-Rodriguez
- Department of Brain Sciences, Imperial College London, Hammersmith Hospital, London, W12 0NN, UK
| | - Sarah J Marzi
- Department of Brain Sciences, Imperial College London, Hammersmith Hospital, London, W12 0NN, UK
- UK Dementia Research Institute at King's College London, London, SE5 9RT, UK
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, SE5 9RT, UK
| | - Maxwell P Spires-Jones
- Centre for Discovery Brain Sciences and UK Dementia Research Institute, The University of Edinburgh, Edinburgh, EH8 9JZ, UK
| | - Tara L Spires-Jones
- Centre for Discovery Brain Sciences and UK Dementia Research Institute, The University of Edinburgh, Edinburgh, EH8 9JZ, UK
| | - Michael R Johnson
- Department of Brain Sciences, Imperial College London, Hammersmith Hospital, London, W12 0NN, UK
| | | |
Collapse
|
2
|
Hatzimanolis O, Sykes AM, Cristino AS. Circular RNAs in neurological conditions - computational identification, functional validation, and potential clinical applications. Mol Psychiatry 2025; 30:1652-1675. [PMID: 39966624 PMCID: PMC11919710 DOI: 10.1038/s41380-025-02925-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 01/11/2025] [Accepted: 02/10/2025] [Indexed: 02/20/2025]
Abstract
Non-coding RNAs (ncRNAs) have gained significant attention in recent years due to advancements in biotechnology, particularly high-throughput total RNA sequencing. These developments have led to new understandings of non-coding biology, revealing that approximately 80% of non-coding regions in the genome possesses biochemical functionality. Among ncRNAs, circular RNAs (circRNAs), first identified in 1976, have emerged as a prominent research field. CircRNAs are abundant in most human cell types, evolutionary conserved, highly stable, and formed by back-splicing events which generate covalently closed ends. Notably, circRNAs exhibit high expression levels in neural tissue and perform diverse biochemical functions, including acting as molecular sponges for microRNAs, interacting with RNA-binding proteins to regulate their availability and activity, modulating transcription and splicing, and even translating into functional peptides in some cases. Recent advancements in computational and experimental methods have enhanced our ability to identify and validate circRNAs, providing valuable insights into their biological roles. This review focuses on recent developments in circRNA research as they related to neuropsychiatric and neurodegenerative conditions. We also explore their potential applications in clinical diagnostics, therapeutics, and future research directions. CircRNAs remain a relatively underexplored area of non-coding biology, particularly in the context of neurological disorders. However, emerging evidence supports their role as critical players in the etiology and molecular mechanisms of conditions such as schizophrenia, bipolar disorder, major depressive disorder, Alzheimer's disease, and Parkinson's disease. These findings suggest that circRNAs may provide a novel framework contributing to the molecular dysfunctions underpinning these complex neurological conditions.
Collapse
Affiliation(s)
- Oak Hatzimanolis
- Institute for Biomedicine and Glycomics, Griffith University, Brisbane, QLD, Australia
| | - Alex M Sykes
- Institute for Biomedicine and Glycomics, Griffith University, Brisbane, QLD, Australia
| | - Alexandre S Cristino
- Institute for Biomedicine and Glycomics, Griffith University, Brisbane, QLD, Australia.
| |
Collapse
|
3
|
Hu B, Shi Y, Xiong F, Chen YT, Zhu X, Carrillo E, Wen X, Drolet N, Rajpurohit C, Xu X, Lee DF, Soto C, Zhong S, Jayaraman V, Zheng H, Li W. Rewired m6A methylation of promoter antisense RNAs in Alzheimer's disease regulates global gene transcription in the 3D nucleome. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.22.644756. [PMID: 40196645 PMCID: PMC11974732 DOI: 10.1101/2025.03.22.644756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/09/2025]
Abstract
N6-methyladenosine (m6A) is the most prevalent internal RNA modification that can impact mRNA expression post-transcriptionally. Recent progress indicates that m6A also acts on nuclear or chromatin-associated RNAs to impact transcriptional and epigenetic processes. However, the landscapes and functional roles of m6A in human brains and neurodegenerative diseases, including Alzheimer's disease (AD), have been under-explored. Here, we examined RNA m6A methylome using total RNA-seq and meRIP-seq in middle frontal cortex tissues of post-mortem human brains from individuals with AD and age-matched counterparts. Our results revealed AD-associated alteration of m6A methylation on both mRNAs and various noncoding RNAs. Notably, a series of promoter antisense RNAs (paRNAs) displayed cell-type-specific expression and changes in AD, including one produced adjacent to the MAPT locus that encodes the Tau protein. We found that MAPT-paRNA is enriched in neurons, and m6A positively controls its expression. In iPSC-derived human excitatory neurons, MAPT-paRNA promotes expression of hundreds of genes related to neuronal and synaptic functions, including a key AD resilience gene MEF2C, and plays a neuroprotective role against excitotoxicity. By examining RNA-DNA interactome in the three-dimensional (3D) nuclei of human brains, we demonstrated that brain paRNAs can interact with both cis- and trans-chromosomal target genes to impact their transcription. These data together reveal previously unexplored landscapes and functions of noncoding RNAs and m6A methylome in brain gene regulation, neuronal survival and AD pathogenesis.
Collapse
Affiliation(s)
- Benxia Hu
- Department of Biochemistry and Molecular Biology, McGovern Medical School, University of Texas Health Science Center, Houston, TX, USA
| | - Yuqiang Shi
- Department of Biochemistry and Molecular Biology, McGovern Medical School, University of Texas Health Science Center, Houston, TX, USA
| | - Feng Xiong
- Department of Biochemistry and Molecular Biology, McGovern Medical School, University of Texas Health Science Center, Houston, TX, USA
| | - Yi-Ting Chen
- Department of Biochemistry and Molecular Biology, McGovern Medical School, University of Texas Health Science Center, Houston, TX, USA
- The University of Texas MD Anderson Cancer Center and UTHealth Houston Graduate School of Biomedical Sciences, Houston, TX, USA
| | - Xiaoyu Zhu
- Department of Biochemistry and Molecular Biology, McGovern Medical School, University of Texas Health Science Center, Houston, TX, USA
| | - Elisa Carrillo
- Department of Biochemistry and Molecular Biology, McGovern Medical School, University of Texas Health Science Center, Houston, TX, USA
| | - Xingzhao Wen
- Program in Bioinformatics and Systems Biology, University of California San Diego, La Jolla, CA, USA
- Shu Chien-Gene Lay Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
| | - Nathan Drolet
- Department of Biochemistry and Molecular Biology, McGovern Medical School, University of Texas Health Science Center, Houston, TX, USA
| | - Chetan Rajpurohit
- Huffington Center on Aging, Baylor College of Medicine, Houston, Texas, USA
| | - Xiangmin Xu
- Department of Anatomy and Neurobiology, School of Medicine, University of California, Irvine, CA, USA
- Center for Neural Circuit Mapping (CNCM), University of California, Irvine, CA, USA
| | - Dung-Fang Lee
- The University of Texas MD Anderson Cancer Center and UTHealth Houston Graduate School of Biomedical Sciences, Houston, TX, USA
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Claudio Soto
- The University of Texas MD Anderson Cancer Center and UTHealth Houston Graduate School of Biomedical Sciences, Houston, TX, USA
- Department of Neurology, McGovern Medical School, University of Texas Health Science Center, Houston, TX, USA
| | - Sheng Zhong
- Program in Bioinformatics and Systems Biology, University of California San Diego, La Jolla, CA, USA
- Shu Chien-Gene Lay Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
| | - Vasanthi Jayaraman
- Department of Biochemistry and Molecular Biology, McGovern Medical School, University of Texas Health Science Center, Houston, TX, USA
- The University of Texas MD Anderson Cancer Center and UTHealth Houston Graduate School of Biomedical Sciences, Houston, TX, USA
| | - Hui Zheng
- Huffington Center on Aging, Baylor College of Medicine, Houston, Texas, USA
| | - Wenbo Li
- Department of Biochemistry and Molecular Biology, McGovern Medical School, University of Texas Health Science Center, Houston, TX, USA
- The University of Texas MD Anderson Cancer Center and UTHealth Houston Graduate School of Biomedical Sciences, Houston, TX, USA
| |
Collapse
|
4
|
Xu Q, Liu D, Zhu LQ, Su Y, Huang HZ. Long non-coding RNAs as key regulators of neurodegenerative protein aggregation. Alzheimers Dement 2025; 21:e14498. [PMID: 39936251 DOI: 10.1002/alz.14498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 11/26/2024] [Accepted: 12/02/2024] [Indexed: 02/13/2025]
Abstract
The characteristic events in neurodegenerative diseases (NDDs) encompass protein misfolding, aggregation, accumulation, and their related cellular dysfunction, synaptic function loss. While distinct proteins are implicated in the pathological processes of different NDDs, the process of protein misfolding and aggregation remains notably similar across various conditions. Specifically, proteins undergo misfolding into beta-folded (β-folded) conformation, resulting in the formation of insoluble amyloid proteins. Despite advancements in comprehending protein aggregation, certain facets of this intricate process remain incompletely elucidated. In recent years, the concept that long non-coding RNAs (lncRNAs) contribute to protein aggregation has gained recognition. LncRNAs influence the formation of protein aggregates by facilitating protein overexpression through the regulation of gene transcription and translation, inhibiting protein degradation via lysosomal and autophagic pathways, and targeting aberrant modifications and phase transitions of proteins. A better understanding of the relationship between lncRNAs and aberrant protein aggregation is an important step in dissecting the underlying molecular mechanisms and will contribute to the discovery of new therapeutic targets and strategies. HIGHLIGHTS: NDDs are marked by protein misfolding, aggregation, and accumulation, leading to cellular dysfunction and loss of synaptic function. Despite different proteins being involved in various NDDs, the process of misfolding into β-folded conformations and forming insoluble amyloid proteins is consistent across conditions. The role of lncRNAs in protein aggregation has gained attention, as they regulate gene transcription and translation, inhibit protein degradation, and target aberrant protein modifications. Understanding the link between lncRNAs and protein aggregation is crucial for uncovering molecular mechanisms and developing new therapeutic targets.
Collapse
Affiliation(s)
- Qi Xu
- Department of Neurology, Union Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Dan Liu
- Department of Genetics, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Ling-Qiang Zhu
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Ying Su
- Department of Neurology, Union Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - He-Zhou Huang
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Department of Anesthesiology Department, Union Hospital, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
5
|
Kumar S, Ramos E, Hidalgo A, Rodarte D, Sharma B, Torres MM, Devara D, Gadad SS. Integrated Multi-Omics Analyses of Synaptosomes Revealed Synapse-Centered Novel Targets in Alzheimer's Disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.09.631584. [PMID: 39868328 PMCID: PMC11761606 DOI: 10.1101/2025.01.09.631584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
Synapse dysfunction is an early event in Alzheimer's disease (AD) caused by various factors such as Amyloid beta, p-tau, inflammation, and aging. However, the exact molecular mechanism of synapse dysfunction in AD is largely unknown. To understand this, we comprehensively analyzed the synaptosome fraction in postmortem brain samples from AD patients and cognitively normal individuals. We conducted high-throughput transcriptomic analyses to identify changes in microRNA (miRNA) and mRNA levels in synaptosomes extracted from the brains of both unaffected individuals and those with Alzheimer's disease (AD). Additionally, we performed mass spectrometry analysis of synaptosomal proteins in the same sample group. These analyses revealed significant differences in the levels of miRNAs, mRNAs, and proteins between the groups. To further understand the pathways or molecules involved, we used an integrated omics approach and studied the molecular interactions of deregulated synapse miRNAs, mRNAs, and proteins in the samples from individuals with AD and the control group, which demonstrated the impact of deregulated miRNAs on their target mRNAs and proteins. Furthermore, the DIABLO analysis highlighted complex relationships between mRNAs, miRNAs, and proteins that could be key in understanding the pathophysiology of AD. Our study identified synapse-centered novel candidates that could be critical in restoring synapse dysfunction in AD.
Collapse
|
6
|
Alldred MJ, Ibrahim KW, Pidikiti H, Chiosis G, Mufson EJ, Stutzmann GE, Ginsberg SD. Down syndrome frontal cortex layer III and layer V pyramidal neurons exhibit lamina specific degeneration in aged individuals. Acta Neuropathol Commun 2024; 12:182. [PMID: 39605035 PMCID: PMC11603868 DOI: 10.1186/s40478-024-01891-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 11/16/2024] [Indexed: 11/29/2024] Open
Abstract
Selective vulnerability of neuronal populations occurs in both Down syndrome (DS) and Alzheimer's disease (AD), resulting in disproportional degeneration of pyramidal neurons (PNs) affecting memory and executive function. Elucidating the cellular mechanisms underlying the selective vulnerability of these populations will provide pivotal insights for disease progression in DS and AD. Single population RNA-sequencing analysis was performed on neurons critical for executive function, prefrontal cortex Brodmann area 9 (BA9) layer III (L3) and layer V (L5) excitatory PNs in postmortem human DS and age- and sex-matched control (CTR) brains. Data mining was performed on differentially expressed genes (DEGs) from PNs in each lamina with DEGs divergent between lamina identified and interrogated. Bioinformatic inquiry of L3 PNs revealed more unique/differentially expressed DEGs (uDEGs) than in L5 PNs in DS compared to CTR subjects, indicating gene dysregulation shows both spatial and cortical laminar projection neuron dependent dysregulation. DS triplicated human chromosome 21 (HSA21) comprised a subset of DEGs only dysregulated in L3 or L5 neurons, demonstrating partial cellular specificity in HSA21 expression. These HSA21 uDEGs had a disproportionally high number of noncoding RNAs, suggesting lamina specific dysfunctional gene regulation. L3 uDEGs revealed overall more dysregulation of cellular pathways and processes, many relevant to early AD pathogenesis, while L5 revealed processes suggestive of frank AD pathology. These findings indicate that trisomy differentially affects a subpopulation of uDEGs in L3 and L5 BA9 projection neurons in aged individuals with DS, which may inform circuit specific pathogenesis underlying DS and AD.
Collapse
Affiliation(s)
- Melissa J Alldred
- Center for Dementia Research, Nathan Kline Institute, 140 Old Orangeburg Road, Orangeburg, NY, 10962, 845-398-2170, USA
- Department of Psychiatry, New York University Grossman School of Medicine, New York, NY, USA
| | - Kyrillos W Ibrahim
- Center for Dementia Research, Nathan Kline Institute, 140 Old Orangeburg Road, Orangeburg, NY, 10962, 845-398-2170, USA
| | - Harshitha Pidikiti
- Center for Dementia Research, Nathan Kline Institute, 140 Old Orangeburg Road, Orangeburg, NY, 10962, 845-398-2170, USA
| | - Gabriela Chiosis
- Program in Chemical Biology, Sloan Kettering Institute, New York, NY, USA
- Breast Cancer Medicine Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Elliott J Mufson
- Department of Translational Neuroscience and Neurology, Barrow Neurological Institute, Phoenix, AZ, USA
| | - Grace E Stutzmann
- Center for Neurodegenerative Disease and Therapeutics, Rosalind Franklin University, The Chicago Medical School, North Chicago, IL, USA
| | - Stephen D Ginsberg
- Center for Dementia Research, Nathan Kline Institute, 140 Old Orangeburg Road, Orangeburg, NY, 10962, 845-398-2170, USA.
- Department of Psychiatry, New York University Grossman School of Medicine, New York, NY, USA.
- Department of Neuroscience & Physiology, New York University Grossman School of Medicine, New York, NY, USA.
- NYU Neuroscience Institute, New York University Grossman School of Medicine, New York, NY, USA.
| |
Collapse
|
7
|
Yin X, Liao Y, Li F, Li J, Du J. Enzyme-Assisted Fluorescence Biosensor Based on Circular Single-Stranded DNA Without Group Modification for MicroRNA Detection. BIOSENSORS 2024; 14:527. [PMID: 39589986 PMCID: PMC11592054 DOI: 10.3390/bios14110527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 10/27/2024] [Accepted: 10/29/2024] [Indexed: 11/28/2024]
Abstract
Fluorescent biosensor, which has the characteristics of high sensitivity, specificity, and low cost, can be directly detected in physiological fluids such as blood and serum. Therefore, the development of fluorescence sensor platforms for miRNA detection has a positive effect on the prevention and treatment of various diseases. In this paper, miR-34a was selected as a biological indicator of Alzheimer's disease (AD). We designed a circular single-stranded DNA (CSSD) biosensor, which uses two unmodified single-stranded DNA (ssDNA) with complementary ends, DNAa and DNAb, to form CSSD by DNA sequence pairing to improve thermal stability and achieve signal amplification. At the same time, CSSD can react with miR-34a, and then the DNA of the DNA-RNA chain is hydrolyzed by duplex-specific nuclease (DSN enzyme). Finally, miR-34a is released to partake in the subsequent step, thus realizing cycle amplification. By evaluating the change in fluorescence signal under the optimized conditions, we discovered that this approach exhibits impressive sensitivity, with a detection threshold reaching as low as 0.36 nM. This surpasses the performance of numerous preceding miRNA detection biosensors. Furthermore, the system displays excellent detection capabilities even in intricate settings like serum, showcasing a strong ability to differentiate and choose effectively. In summary, this is a signal-off fluorescent biosensor, which realizes the purpose of double amplification of biosensor signal by using CSSD and enzyme assistance so that it can be used as a valuable tool for early diagnosis of diseases.
Collapse
Affiliation(s)
| | | | | | | | - Jie Du
- School of Materials Science and Engineering, Hainan University, Haikou 570228, China; (X.Y.); (Y.L.); (F.L.); (J.L.)
| |
Collapse
|
8
|
Wu X, Xia P, Yang L, Lu C, Lu Z. The roles of long non-coding RNAs in Alzheimer's disease diagnosis, treatment, and their involvement in Alzheimer's disease immune responses. Noncoding RNA Res 2024; 9:659-666. [PMID: 38577023 PMCID: PMC10987299 DOI: 10.1016/j.ncrna.2024.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 02/27/2024] [Accepted: 03/16/2024] [Indexed: 04/06/2024] Open
Abstract
Alzheimer's disease (AD) is the most frequent type of dementia, presenting a substantial danger to the health and well-being of the aged population. It has arisen as a significant public health problem with considerable socioeconomic repercussions. Unfortunately, no effective treatments or diagnostic tools are available for Alzheimer's disease. Despite substantial studies on the pathophysiology of Alzheimer's, the molecular pathways underpinning its development remain poorly understood. Long non-coding RNAs (lncRNAs) vary in size from 200 nucleotides to over 100 kilobytes and have been found to play critical roles in various vital biological processes that play critical in developing Alzheimer's disease. This review intends to examine the functions of long non-coding RNAs in diagnosing and treating Alzheimer's disease and their participation in immunological responses associated with AD.
Collapse
Affiliation(s)
- Xiaoben Wu
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Pengcheng Xia
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Lei Yang
- Department of Medical Engineering, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Chao Lu
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Zhiming Lu
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| |
Collapse
|
9
|
Hernández-Contreras KA, Martínez-Díaz JA, Hernández-Aguilar ME, Herrera-Covarrubias D, Rojas-Durán F, Chi-Castañeda LD, García-Hernández LI, Aranda-Abreu GE. Alterations of mRNAs and Non-coding RNAs Associated with Neuroinflammation in Alzheimer's Disease. Mol Neurobiol 2024; 61:5826-5840. [PMID: 38236345 DOI: 10.1007/s12035-023-03908-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 12/27/2023] [Indexed: 01/19/2024]
Abstract
Alzheimer's disease is a neurodegenerative pathology whose pathognomonic hallmarks are increased generation of β-amyloid (Aβ) peptide, production of hyperphosphorylated (pTau), and neuroinflammation. The last is an alteration closely related to the progression of AD and although it is present in multiple neurodegenerative diseases, the pathophysiological events that characterize neuroinflammatory processes vary depending on the disease. In this article, we focus on mRNA and non-coding RNA alterations as part of the pathophysiological events characteristic of neuroinflammation in AD and the influence of these alterations on the course of the disease through interaction with multiple RNAs related to the generation of Aβ, pTau, and neuroinflammation itself.
Collapse
Affiliation(s)
- Karla Aketzalli Hernández-Contreras
- Doctorado en Investigaciones Cerebrales/Universidad Veracruzana, Av. Luis Castelazo Ayala S/N, Carr. Xalapa-Veracruz, Km 3.5, C.P. 91190, Xalapa, Veracruz, México
| | - Jorge Antonio Martínez-Díaz
- Instituto de Investigaciones Cerebrales/Universidad Veracruzana, Av. Luis Castelazo Ayala S/N, Carr. Xalapa-Veracruz, Km 3.5, C.P. 91190, Xalapa, Veracruz, México
| | - María Elena Hernández-Aguilar
- Instituto de Investigaciones Cerebrales/Universidad Veracruzana, Av. Luis Castelazo Ayala S/N, Carr. Xalapa-Veracruz, Km 3.5, C.P. 91190, Xalapa, Veracruz, México
| | - Deissy Herrera-Covarrubias
- Instituto de Investigaciones Cerebrales/Universidad Veracruzana, Av. Luis Castelazo Ayala S/N, Carr. Xalapa-Veracruz, Km 3.5, C.P. 91190, Xalapa, Veracruz, México
| | - Fausto Rojas-Durán
- Instituto de Investigaciones Cerebrales/Universidad Veracruzana, Av. Luis Castelazo Ayala S/N, Carr. Xalapa-Veracruz, Km 3.5, C.P. 91190, Xalapa, Veracruz, México
| | - Lizbeth Donají Chi-Castañeda
- Instituto de Investigaciones Cerebrales/Universidad Veracruzana, Av. Luis Castelazo Ayala S/N, Carr. Xalapa-Veracruz, Km 3.5, C.P. 91190, Xalapa, Veracruz, México
| | - Luis Isauro García-Hernández
- Instituto de Investigaciones Cerebrales/Universidad Veracruzana, Av. Luis Castelazo Ayala S/N, Carr. Xalapa-Veracruz, Km 3.5, C.P. 91190, Xalapa, Veracruz, México
| | - Gonzalo Emiliano Aranda-Abreu
- Instituto de Investigaciones Cerebrales/Universidad Veracruzana, Av. Luis Castelazo Ayala S/N, Carr. Xalapa-Veracruz, Km 3.5, C.P. 91190, Xalapa, Veracruz, México.
| |
Collapse
|
10
|
Halder D, Das S, Joseph A. An insight into structure-activity relationship of naturally derived biological macromolecules for the treatment of Alzheimer's disease: a review. J Biomol Struct Dyn 2024; 42:6455-6471. [PMID: 37378526 DOI: 10.1080/07391102.2023.2230279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 06/21/2023] [Indexed: 06/29/2023]
Abstract
Alzheimer's disease (AD) is a neurological disorder that affects millions of people worldwide. There are currently no cures for AD, although various drugs are used to manage the symptoms and reduce the disease's progression. AChE inhibitors such as rivastigmine, donepezil, galantamine, and the NMDA glutamate receptor antagonist memantine are currently FDA-approved drugs used in the treatment of AD. Recently, naturally derived biological macromolecules have shown promising results in the treatment of AD. Several biological macromolecules derived from natural sources are in various stages of preclinical and clinical trials. During the literature search, it was observed that there is a lack of a comprehensive review that particularly focuses on the role of naturally derived biological macromolecules (protein, carbohydrates, lipids, and nucleic acids) in the treatment of AD and the structure-activity relationship (SAR) approach for understanding the medicinal chemistry perspective. This review focuses on the SAR and probable mechanisms of action of biological macromolecules derived from natural sources for the treatment of AD, including peptides, proteins, enzymes, and polysaccharides. The paper further addresses the therapeutic possibilities of monoclonal antibodies, enzymes, and vaccines for the treatment of AD. Overall, the review provides insight into the SAR of naturally derived biological macromolecules in the treatment of AD. The ongoing research in this field holds great promise for the future development of AD treatment and provides hope for individuals affected by this devastating disease.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Debojyoti Halder
- Department of Pharmaceutical Chemistry, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, India
| | - Subham Das
- Department of Pharmaceutical Chemistry, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, India
| | - Alex Joseph
- Department of Pharmaceutical Chemistry, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, India
| |
Collapse
|
11
|
Gallo CM, Kistler SA, Natrakul A, Labadorf AT, Beffert U, Ho A. APOER2 splicing repertoire in Alzheimer's disease: Insights from long-read RNA sequencing. PLoS Genet 2024; 20:e1011348. [PMID: 39038048 PMCID: PMC11293713 DOI: 10.1371/journal.pgen.1011348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 08/01/2024] [Accepted: 06/21/2024] [Indexed: 07/24/2024] Open
Abstract
Disrupted alternative splicing plays a determinative role in neurological diseases, either as a direct cause or as a driver in disease susceptibility. Transcriptomic profiling of aged human postmortem brain samples has uncovered hundreds of aberrant mRNA splicing events in Alzheimer's disease (AD) brains, associating dysregulated RNA splicing with disease. We previously identified a complex array of alternative splicing combinations across apolipoprotein E receptor 2 (APOER2), a transmembrane receptor that interacts with both the neuroprotective ligand Reelin and the AD-associated risk factor, APOE. Many of the human APOER2 isoforms, predominantly featuring cassette splicing events within functionally important domains, are critical for the receptor's function and ligand interaction. However, a comprehensive repertoire and the functional implications of APOER2 isoforms under both physiological and AD conditions are not fully understood. Here, we present an in-depth analysis of the splicing landscape of human APOER2 isoforms in normal and AD states. Using single-molecule, long-read sequencing, we profiled the entire APOER2 transcript from the parietal cortex and hippocampus of Braak stage IV AD brain tissues along with age-matched controls and investigated several functional properties of APOER2 isoforms. Our findings reveal diverse patterns of cassette exon skipping for APOER2 isoforms, with some showing region-specific expression and others unique to AD-affected brains. Notably, exon 15 of APOER2, which encodes the glycosylation domain, showed less inclusion in AD compared to control in the parietal cortex of females with an APOE ɛ3/ɛ3 genotype. Also, some of these APOER2 isoforms demonstrated changes in cell surface expression, APOE-mediated receptor processing, and synaptic number. These variations are likely critical in inducing synaptic alterations and may contribute to the neuronal dysfunction underlying AD pathogenesis.
Collapse
Affiliation(s)
- Christina M. Gallo
- Department of Biology, Boston University, Boston, Massachusetts, United States of America
- Department of Pharmacology, Physiology & Biophysics, Boston University Chobanian & Avedisian School of Medicine, Boston, Massachusetts, United States of America
| | - Sabrina A. Kistler
- Department of Biology, Boston University, Boston, Massachusetts, United States of America
- Department of Pharmacology, Physiology & Biophysics, Boston University Chobanian & Avedisian School of Medicine, Boston, Massachusetts, United States of America
| | - Anna Natrakul
- Department of Biology, Boston University, Boston, Massachusetts, United States of America
| | - Adam T. Labadorf
- Bioinformatics Program, Boston University, Boston, Massachusetts, United States of America
- Department of Neurology, Boston University Chobanian & Avedisian School of Medicine, Boston, Massachusetts, United States of America
| | - Uwe Beffert
- Department of Biology, Boston University, Boston, Massachusetts, United States of America
| | - Angela Ho
- Department of Biology, Boston University, Boston, Massachusetts, United States of America
- Department of Pharmacology, Physiology & Biophysics, Boston University Chobanian & Avedisian School of Medicine, Boston, Massachusetts, United States of America
| |
Collapse
|
12
|
Yang S, Kim SH, Yang E, Kang M, Joo JY. Molecular insights into regulatory RNAs in the cellular machinery. Exp Mol Med 2024; 56:1235-1249. [PMID: 38871819 PMCID: PMC11263585 DOI: 10.1038/s12276-024-01239-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 02/27/2024] [Accepted: 03/05/2024] [Indexed: 06/15/2024] Open
Abstract
It is apparent that various functional units within the cellular machinery are derived from RNAs. The evolution of sequencing techniques has resulted in significant insights into approaches for transcriptome studies. Organisms utilize RNA to govern cellular systems, and a heterogeneous class of RNAs is involved in regulatory functions. In particular, regulatory RNAs are increasingly recognized to participate in intricately functioning machinery across almost all levels of biological systems. These systems include those mediating chromatin arrangement, transcription, suborganelle stabilization, and posttranscriptional modifications. Any class of RNA exhibiting regulatory activity can be termed a class of regulatory RNA and is typically represented by noncoding RNAs, which constitute a substantial portion of the genome. These RNAs function based on the principle of structural changes through cis and/or trans regulation to facilitate mutual RNA‒RNA, RNA‒DNA, and RNA‒protein interactions. It has not been clearly elucidated whether regulatory RNAs identified through deep sequencing actually function in the anticipated mechanisms. This review addresses the dominant properties of regulatory RNAs at various layers of the cellular machinery and covers regulatory activities, structural dynamics, modifications, associated molecules, and further challenges related to therapeutics and deep learning.
Collapse
Affiliation(s)
- Sumin Yang
- Department of Pharmacy, College of Pharmacy, Hanyang University, Ansan, Gyeonggi-do, 15588, Republic of Korea
| | - Sung-Hyun Kim
- Department of Pharmacy, College of Pharmacy, Hanyang University, Ansan, Gyeonggi-do, 15588, Republic of Korea
| | - Eunjeong Yang
- Department of Pharmacy, College of Pharmacy, Hanyang University, Ansan, Gyeonggi-do, 15588, Republic of Korea
| | - Mingon Kang
- Department of Computer Science, University of Nevada, Las Vegas, NV, 89154, USA
| | - Jae-Yeol Joo
- Department of Pharmacy, College of Pharmacy, Hanyang University, Ansan, Gyeonggi-do, 15588, Republic of Korea.
| |
Collapse
|
13
|
Piergiorge RM, Vasconcelos ATRD, Santos-Rebouças CB. Understanding the (epi)genetic dysregulation in Parkinson's disease through an integrative brain competitive endogenous RNA network. Mech Ageing Dev 2024; 219:111942. [PMID: 38762037 DOI: 10.1016/j.mad.2024.111942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/10/2024] [Accepted: 05/12/2024] [Indexed: 05/20/2024]
Abstract
Parkinson's disease (PD) is a rapidly growing neurodegenerative disorder characterized by dopaminergic neuron loss in the substantia nigra pars compacta (SN) and aggregation of α-synuclein. Its aetiology involves a multifaceted interplay among genetic, environmental, and epigenetic factors. We integrated brain gene expression data from PD patients to construct a comprehensive regulatory network encompassing messenger RNAs (mRNAs), microRNAs (miRNAs), circular RNAs (circRNAs) and, for the first time, RNA binding proteins (RBPs). Expression data from the SN of PD patients and controls were systematically selected from public databases to identify combined differentially expressed genes (DEGs). Brain co-expression analysis revealed modules comprising significant DEGs that function cooperatively. The relationships among co-expressed DEGs, miRNAs, circRNAs, and RBPs revealed an intricate competitive endogenous RNA (ceRNA) network responsible for post-transcriptional dysregulation in PD. Many genes in the ceRNA network, including the TOMM20 and HMGCR genes, overlap with the most relevant genes in our previous Alzheimer's disease-associated ceRNA network, suggesting common underlying mechanisms between both conditions. Moreover, in the ceRNA subnetwork, the RBP Aly/REF export factor (ALYREF), which acts as an RNA 5-methylcytosine(m5C)-binding protein, stood out. Our data sheds new light on the potential role of brain ceRNA networks in PD pathogenesis.
Collapse
Affiliation(s)
- Rafael Mina Piergiorge
- Department of Genetics, Institute of Biology Roberto Alcantara Gomes, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | | | - Cíntia Barros Santos-Rebouças
- Department of Genetics, Institute of Biology Roberto Alcantara Gomes, Rio de Janeiro State University, Rio de Janeiro, Brazil.
| |
Collapse
|
14
|
Lumpkin CJ, Patel H, Potts GK, Chaurasia S, Gibilisco L, Srivastava GP, Lee JY, Brown NJ, Amarante P, Williams JD, Karran E, Townsend M, Woods D, Ravikumar B. Broad proteomics analysis of seeding-induced aggregation of α-synuclein in M83 neurons reveals remodeling of proteostasis mechanisms that might contribute to Parkinson's disease pathogenesis. Mol Brain 2024; 17:26. [PMID: 38778381 PMCID: PMC11110445 DOI: 10.1186/s13041-024-01099-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 05/11/2024] [Indexed: 05/25/2024] Open
Abstract
Aggregation of misfolded α-synuclein (α-syn) is a key characteristic feature of Parkinson's disease (PD) and related synucleinopathies. The nature of these aggregates and their contribution to cellular dysfunction is still not clearly elucidated. We employed mass spectrometry-based total and phospho-proteomics to characterize the underlying molecular and biological changes due to α-syn aggregation using the M83 mouse primary neuronal model of PD. We identified gross changes in the proteome that coincided with the formation of large Lewy body-like α-syn aggregates in these neurons. We used protein-protein interaction (PPI)-based network analysis to identify key protein clusters modulating specific biological pathways that may be dysregulated and identified several mechanisms that regulate protein homeostasis (proteostasis). The observed changes in the proteome may include both homeostatic compensation and dysregulation due to α-syn aggregation and a greater understanding of both processes and their role in α-syn-related proteostasis may lead to improved therapeutic options for patients with PD and related disorders.
Collapse
Affiliation(s)
- Casey J Lumpkin
- AbbVie, Cambridge Research Center, 200 Sidney Street Cambridge, Cambridge, MA, 02139, USA
- Laboratory of Aging and Infertility Research, Department of Biology, Northeastern University, Boston, Massachusetts, USA
| | - Hiral Patel
- AbbVie, Cambridge Research Center, 200 Sidney Street Cambridge, Cambridge, MA, 02139, USA
| | - Gregory K Potts
- Discovery Research, AbbVie Inc, 1 North Waukegan Rd, North Chicago, IL, 60064, USA
| | - Shilpi Chaurasia
- Excelra Knowledge Solutions Pvt Ltd, Uppal, Hyderabad, India, 500039
| | - Lauren Gibilisco
- Genomics Research Center, Computational Biology Neuroscience, AbbVie, Cambridge Research Center, 200 Sidney Street, Cambridge, MA, 02139, USA
| | - Gyan P Srivastava
- Data & Statistical Sciences, AbbVie, Cambridge Research Center, 200 Sidney Street, Cambridge, MA, 02139, USA
| | - Janice Y Lee
- Discovery Research, AbbVie Inc, 1 North Waukegan Rd, North Chicago, IL, 60064, USA
| | - Nathan J Brown
- Biotherapeutics, AbbVie Bioresearch Center, 100 Research Drive, Worcester, MA, 01605, USA
| | - Patricia Amarante
- AbbVie, Cambridge Research Center, 200 Sidney Street Cambridge, Cambridge, MA, 02139, USA
| | - Jon D Williams
- Discovery Research, AbbVie Inc, 1 North Waukegan Rd, North Chicago, IL, 60064, USA
| | - Eric Karran
- AbbVie, Cambridge Research Center, 200 Sidney Street Cambridge, Cambridge, MA, 02139, USA
| | - Matthew Townsend
- AbbVie, Cambridge Research Center, 200 Sidney Street Cambridge, Cambridge, MA, 02139, USA
| | - Dori Woods
- Laboratory of Aging and Infertility Research, Department of Biology, Northeastern University, Boston, Massachusetts, USA.
| | - Brinda Ravikumar
- AbbVie, Cambridge Research Center, 200 Sidney Street Cambridge, Cambridge, MA, 02139, USA.
| |
Collapse
|
15
|
Song L, Pan Q, Zhou G, Liu S, Zhu B, Lin P, Hu X, Zha J, Long Y, Luo B, Chen J, Tang Y, Tang J, Xiang X, Xie X, Deng X, Chen G. SHMT2 Mediates Small-Molecule-Induced Alleviation of Alzheimer Pathology Via the 5'UTR-dependent ADAM10 Translation Initiation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2305260. [PMID: 38183387 PMCID: PMC10953581 DOI: 10.1002/advs.202305260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 11/27/2023] [Indexed: 01/08/2024]
Abstract
It is long been suggested that one-carbon metabolism (OCM) is associated with Alzheimer's disease (AD), whereas the potential mechanisms remain poorly understood. Taking advantage of chemical biology, that mitochondrial serine hydroxymethyltransferase (SHMT2) directly regulated the translation of ADAM metallopeptidase domain 10 (ADAM10), a therapeutic target for AD is reported. That the small-molecule kenpaullone (KEN) promoted ADAM10 translation via the 5' untranslated region (5'UTR) and improved cognitive functions in APP/PS1 mice is found. SHMT2, which is identified as a target gene of KEN and the 5'UTR-interacting RNA binding protein (RBP), mediated KEN-induced ADAM10 translation in vitro and in vivo. SHMT2 controls AD signaling pathways through binding to a large number of RNAs and enhances the 5'UTR activity of ADAM10 by direct interaction with GAGGG motif, whereas this motif affected ribosomal scanning of eukaryotic initiation factor 2 (eIF2) in the 5'UTR. Together, KEN exhibits therapeutic potential for AD by linking OCM with RNA processing, in which the metabolic enzyme SHMT2 "moonlighted" as RBP by binding to GAGGG motif and promoting the 5'UTR-dependent ADAM10 translation initiation.
Collapse
Affiliation(s)
- Li Song
- Department of NeurologyChongqing Key Laboratory of Major Neurological and Mental DisordersThe First Affiliated Hospital of Chongqing Medical UniversityChongqing400016China
| | - Qiu‐Ling Pan
- Department of NeurologyChongqing Key Laboratory of Major Neurological and Mental DisordersThe First Affiliated Hospital of Chongqing Medical UniversityChongqing400016China
| | - Gui‐Feng Zhou
- Department of NeurologyChongqing Key Laboratory of Major Neurological and Mental DisordersThe First Affiliated Hospital of Chongqing Medical UniversityChongqing400016China
| | - Sheng‐Wei Liu
- Department of PharmacyYongchuan Hospital of Chongqing Medical UniversityChongqing402160China
| | - Bing‐Lin Zhu
- Department of NeurologyChongqing Key Laboratory of Major Neurological and Mental DisordersThe First Affiliated Hospital of Chongqing Medical UniversityChongqing400016China
| | - Pei‐Jia Lin
- Department of NeurologyChongqing Key Laboratory of Major Neurological and Mental DisordersThe First Affiliated Hospital of Chongqing Medical UniversityChongqing400016China
| | - Xiao‐Tong Hu
- Department of NeurologyChongqing Key Laboratory of Major Neurological and Mental DisordersThe First Affiliated Hospital of Chongqing Medical UniversityChongqing400016China
- Department of Health ManagementDaping HospitalArmy Medical universityChongqing400042China
| | - Jing‐Si Zha
- Department of NeurologyChongqing Key Laboratory of Major Neurological and Mental DisordersThe First Affiliated Hospital of Chongqing Medical UniversityChongqing400016China
- Department of Internal MedicineThe Southwest University HospitalChongqing400715China
| | - Yan Long
- Department of NeurologyChongqing Key Laboratory of Major Neurological and Mental DisordersThe First Affiliated Hospital of Chongqing Medical UniversityChongqing400016China
- Department of Geriatric MedicineDaping HospitalArmy Medical universityChongqing400042China
| | - Biao Luo
- Department of NeurologyChongqing Key Laboratory of Major Neurological and Mental DisordersThe First Affiliated Hospital of Chongqing Medical UniversityChongqing400016China
| | - Jian Chen
- Department of NeurologyChongqing Key Laboratory of Major Neurological and Mental DisordersThe First Affiliated Hospital of Chongqing Medical UniversityChongqing400016China
| | - Ying Tang
- Department of NeurologyChongqing Key Laboratory of Major Neurological and Mental DisordersThe First Affiliated Hospital of Chongqing Medical UniversityChongqing400016China
- Department of NeurologyWest China HospitalSichuan UniversityChengdu610041China
| | - Jing Tang
- Department of NeurologyChongqing Key Laboratory of Major Neurological and Mental DisordersThe First Affiliated Hospital of Chongqing Medical UniversityChongqing400016China
| | - Xiao‐Jiao Xiang
- Department of NeurologyChongqing Key Laboratory of Major Neurological and Mental DisordersThe First Affiliated Hospital of Chongqing Medical UniversityChongqing400016China
- Department of Nuclear MedicineThe Second Affiliated Hospital of Chongqing Medical UniversityChongqing400010China
| | - Xiao‐Yong Xie
- Department of NeurologyChongqing Key Laboratory of Major Neurological and Mental DisordersThe First Affiliated Hospital of Chongqing Medical UniversityChongqing400016China
| | - Xiao‐Juan Deng
- Department of NeurologyChongqing Key Laboratory of Major Neurological and Mental DisordersThe First Affiliated Hospital of Chongqing Medical UniversityChongqing400016China
| | - Guo‐Jun Chen
- Department of NeurologyChongqing Key Laboratory of Major Neurological and Mental DisordersThe First Affiliated Hospital of Chongqing Medical UniversityChongqing400016China
| |
Collapse
|
16
|
Yeganeh Markid T, Hosseinpour Feizi MA, Talebi M, Rezazadeh M, Khalaj-Kondori M. Gene expression investigation of four key regulators of polyadenylation and alternative adenylation in the periphery of late-onset Alzheimer's disease patients. Gene 2024; 895:148013. [PMID: 37981081 DOI: 10.1016/j.gene.2023.148013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 10/11/2023] [Accepted: 11/15/2023] [Indexed: 11/21/2023]
Abstract
BACKGROUND Alzheimer's disease (AD) is a genetic and sporadic neurodegenerative disease considered by an archetypal cognitive impairment and a decrease in less common cognitive impairment. Notably, the discovery of goals in this paradigm is still a challenge, and understanding basic mechanisms is an important step toward improving disease management. Polyadenylation (PA) and alternative polyadenylation (APA) are two of the most critical RNA processing stages in 3'UTRs that influence various AD-related genes. METHODS In this study, we assessed Cleavage and polyadenylation specificity factors 1 and 6 (CPSF1 and CPSF6), cleavage stimulation factor 1 (CSTF1), and WD Repeat Domain 33 (WDR33) genes expression in the periphery of 50 AD patients and 50 healthy individuals with age and gender-matched by quantitative real-time PCR. RESULTS Comparing AD patients with healthy people using expression analysis revealed a substantial increase in CSTF1 (posterior beta = 0.773, adjusted P-value = 0.042). Significant positive correlations were found between CSTF1 and CPSF1 (r = 0.365, P < 0.001), WDR33 (r = 0.506, P < 0.001), and CPSF6 (r = 0.446, P < 0.001) expression levels. CONCLUSION Although further research is required to determine their potential contribution to AD, our findings offer a fresh perspective on molecular regulatory pathways associated with AD pathogenic mechanisms associated with PA and APA.
Collapse
Affiliation(s)
- Tarlan Yeganeh Markid
- Clinical Research Development Unit of Tabriz Valiasr Hospital, Tabriz University of Medical Sciences, Iran; Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | | | - Mahnaz Talebi
- Neurosciences Research Center (NSRC), Tabriz University of Medical Sciences, Tabriz, Iran
| | - Maryam Rezazadeh
- Clinical Research Development Unit of Tabriz Valiasr Hospital, Tabriz University of Medical Sciences, Iran; Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Mohammad Khalaj-Kondori
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran.
| |
Collapse
|
17
|
Mainali N, Balasubramaniam M, Johnson J, Ayyadevara S, Shmookler Reis RJ. Leave-one-out-analysis (LOOA): web-based tool to predict influential proteins and interactions in aggregate-crosslinking proteomic data. Bioinformation 2024; 20:4-10. [PMID: 38352912 PMCID: PMC10859942 DOI: 10.6026/973206300200004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 01/31/2024] [Accepted: 01/31/2024] [Indexed: 02/16/2024] Open
Abstract
Many age-progressive diseases are accompanied by (and likely caused by) the presence of protein aggregation in affected tissues. Protein aggregates are conjoined by complex protein-protein interactions, which remain poorly understood. Knowledge of the proteins that comprise aggregates, and their adherent interfaces, can be useful to identify therapeutic targets to treat or prevent pathology, and to discover small molecules for disease interventions. We present web-based software to evaluate and rank influential proteins and protein-protein interactions based on graph modelling of the cross linked aggregate interactome. We have used two network-graph-based techniques: Leave-One-Vertex-Out (LOVO) and Leave-One-Edge-Out (LOEO), each followed by dimension reduction and calculation of influential vertices and edges using Principal Components Analysis (PCA) implemented as an R program. This method enables researchers to quickly and accurately determine influential proteins and protein-protein interactions present in their aggregate interactome data.
Collapse
Affiliation(s)
- Nirjal Mainali
- Bioinformatics Program, University of Arkansas for Medical Sciences and University of Arkansas at Little Rock, Little Rock, AR, 72205, USA
| | | | - Jay Johnson
- Bioinformatics Program, University of Arkansas for Medical Sciences and University of Arkansas at Little Rock, Little Rock, AR, 72205, USA
| | - Srinivas Ayyadevara
- Department of Geriatrics, Reynolds Institute on Aging, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA
- McClellan Veterans Medical Center, Central Arkansas Veterans Healthcare Service, Little Rock, AR, 72205, USA
| | - Robert J. Shmookler Reis
- Department of Geriatrics, Reynolds Institute on Aging, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA
- McClellan Veterans Medical Center, Central Arkansas Veterans Healthcare Service, Little Rock, AR, 72205, USA
| |
Collapse
|
18
|
Du W, Quan X, Wang C, Song Q, Mou J, Pei D. Regulation of tumor metastasis and CD8 + T cells infiltration by circRNF216/miR-576-5p/ZC3H12C axis in colorectal cancer. Cell Mol Biol Lett 2024; 29:19. [PMID: 38267865 PMCID: PMC10809481 DOI: 10.1186/s11658-024-00539-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 01/17/2024] [Indexed: 01/26/2024] Open
Abstract
BACKGROUND The tumor immune microenvironment (TIME) is an important regulator of tumor progression, growth and metastasis. In addition, tumor metastasis is one of the principal obstacles to the treatment of colorectal cancer (CRC). Circular RNAs (circRNAs) have been recognized as important regulators in the development of malignancies. However, their specific roles and mechanisms in both CRC metastasis and TIME have not been thoroughly investigated. METHODS High-throughput next-generation sequencing technology and real-time fluorescence quantitative PCR technology were performed to identify differential circRNAs in CRC. Functional assays including transwell assay, wound healing assay, and metastasis models were conducted to assess the effect of circRNF216 on CRC metastasis. In addition, luciferase reporter, western blot, RNA immunoprecipitation (RIP), and fluorescent in situ hybridization (FISH) were performed to explore the underlying mechanism of circRNF216. The level of immune infiltration was assessed by bioinformatics analysis and flow cytometry in CRC model. Furthermore, rescue and mutation experiments were used for verification. RESULTS circRNF216 was identified as a putative tumor suppressor that is downregulated in CRC tissues and cells. Overexpression of circRNF216 inhibits metastasis in vitro and vivo. Mechanistically, circRNF216 acts as a competitive endogenous RNA (ceRNA) for miR-576-5p, alleviating miR-576-5p repression on its target ZC3H12C, which in turn downregulated N-cadherin. Additionally, circRNF216 could enhance the infiltration level of CD8+ T cells by upregulating ZC3H12C, ultimately inhibiting the development of CRC, which suggests that circRNF216 is a potential biomarker for the treatment of CRC. CONCLUSIONS Here, we provide novel mechanistic insight revealing how circRNF216 functioned in CRC metastasis and TIME via the circRNF216/miR-576-5p/ZC3H12C pathway. Therefore, circRNF216 holds promise as a potential therapeutic target and novel diagnostic marker for CRC.
Collapse
Affiliation(s)
- Wenqi Du
- Department of Pathology, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu, 221004, People's Republic of China
- Department of Human Anatomy, Xuzhou Medical University, Xuzhou, China
- Cancer Institute, Xuzhou Medical University, Xuzhou, China
| | - Xin Quan
- Department of Pathology, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu, 221004, People's Republic of China
| | - Chaoqun Wang
- Department of Pathology, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu, 221004, People's Republic of China
| | - Qiuya Song
- Department of Pathology, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu, 221004, People's Republic of China
| | - Jie Mou
- School of Pharmacy, Xuzhou Medical University, Xuzhou, China.
| | - Dongsheng Pei
- Department of Pathology, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu, 221004, People's Republic of China.
- Cancer Institute, Xuzhou Medical University, Xuzhou, China.
| |
Collapse
|
19
|
Zammit AR, Bennett DA, Buchman AS. From theory to practice: translating the concept of cognitive resilience to novel therapeutic targets that maintain cognition in aging adults. Front Aging Neurosci 2024; 15:1303912. [PMID: 38283067 PMCID: PMC10811007 DOI: 10.3389/fnagi.2023.1303912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 12/06/2023] [Indexed: 01/30/2024] Open
Abstract
While the concept of cognitive resilience is well-established it has not been defined in a way that can be measured. This has been an impediment to studying its underlying biology and to developing instruments for its clinical assessment. This perspective highlights recent work that has quantified the expression of cortical proteins associated with cognitive resilience, thus facilitating studies of its complex underlying biology and the full range of its clinical effects in aging adults. These initial studies provide empirical support for the conceptualization of resilience as a continuum. Like other conventional risk factors, some individuals manifest higher-than-average cognitive resilience and other individuals manifest lower-than-average cognitive resilience. These novel approaches for advancing studies of cognitive resilience can be generalized to other aging phenotypes and can set the stage for the development of clinical tools that might have the potential to measure other mechanisms of resilience in aging adults. These advances also have the potential to catalyze a complementary therapeutic approach that focuses on augmenting resilience via lifestyle changes or therapies targeting its underlying molecular mechanisms to maintain cognition and brain health even in the presence of untreatable stressors like brain pathologies that accumulate in aging adults.
Collapse
Affiliation(s)
- Andrea R. Zammit
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, IL, United States
- Department of Psychiatry and Behavioral Sciences, Rush University Medical Center, Chicago, IL, United States
| | - David A. Bennett
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, IL, United States
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, United States
| | - Aron S. Buchman
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, IL, United States
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, United States
| |
Collapse
|
20
|
Piergiorge RM, da Silva Francisco Junior R, de Vasconcelos ATR, Santos-Rebouças CB. Multi-layered transcriptomic analysis reveals a pivotal role of FMR1 and other developmental genes in Alzheimer's disease-associated brain ceRNA network. Comput Biol Med 2023; 166:107494. [PMID: 37769462 DOI: 10.1016/j.compbiomed.2023.107494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 09/05/2023] [Accepted: 09/15/2023] [Indexed: 09/30/2023]
Abstract
Alzheimer's disease (AD) is an increasingly neurodegenerative disorder that causes progressive cognitive decline and memory impairment. Despite extensive research, the underlying causes of late-onset AD (LOAD) are still in progress. This study aimed to establish a network of competing regulatory interactions involving circular RNAs (circRNAs), microRNAs (miRNAs), RNA-binding proteins (RBPs), and messenger RNAs (mRNAs) connected to LOAD. A systematic analysis of publicly available expression data was conducted to identify integrated differentially expressed genes (DEGs) from the hippocampus of LOAD patients. Subsequently, gene co-expression analysis identified modules comprising highly expressed DEGs that act cooperatively. The competition between co-expressed DEGs and miRNAs/RBPs and the simultaneous interactions between circRNA and miRNA/RBP revealed a complex ceRNA network responsible for post-transcriptional regulation in LOAD. Hippocampal expression data for miRNAs, circRNAs, and RBPs were used to filter relevant relationships for AD. An integrated topological score was used to identify the highly connected hub gene, from which a brain core ceRNA subnetwork was generated. The Fragile X Messenger Ribonucleoprotein 1 (FMR1) coding for the RBP FMRP emerged as the prominent driver gene in this subnetwork. FMRP has been previously related to AD but not in a ceRNA network context. Also, the substantial number of neurodevelopmental genes in the ceRNA subnetwork and their related biological pathways strengthen that AD shares common pathological mechanisms with developmental conditions. Our results enhance the current knowledge about the convergent ceRNA regulatory pathways underlying AD and provide potential targets for identifying early biomarkers and developing novel therapeutic interventions.
Collapse
Affiliation(s)
- Rafael Mina Piergiorge
- Department of Genetics, Institute of Biology Roberto Alcantara Gomes, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | | | | | - Cíntia Barros Santos-Rebouças
- Department of Genetics, Institute of Biology Roberto Alcantara Gomes, State University of Rio de Janeiro, Rio de Janeiro, Brazil.
| |
Collapse
|
21
|
Bhatnagar D, Ladhe S, Kumar D. Discerning the Prospects of miRNAs as a Multi-Target Therapeutic and Diagnostic for Alzheimer's Disease. Mol Neurobiol 2023; 60:5954-5974. [PMID: 37386272 DOI: 10.1007/s12035-023-03446-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 06/14/2023] [Indexed: 07/01/2023]
Abstract
Although over the last few decades, numerous attempts have been made to halt Alzheimer's disease (AD) progression and mitigate its symptoms, only a few have been proven beneficial. Most medications available, still only cater to the symptoms of the disease rather than fixing the cause at the root level. A novel approach involving the use of miRNAs, which work on the principle of gene silencing, is being explored by scientists. Naturally present miRNAs in the biological system help to regulate various genes than may be implicated in AD-like BACE-1 and APP. One miRNA thus, holds the power to keep a check on several genes, conferring it the ability to be used as a multi-target therapeutic. With aging and the onset of diseased pathology, dysregulation of these miRNAs is observed. This flawed miRNA expression is responsible for the unusual buildup of amyloid proteins, fibrillation of tau proteins in the brain, neuronal death and other hallmarks leading to AD. The use of miRNA mimics and miRNA inhibitors provides an attractive perspective for fixing the upregulation and downregulation of miRNAs that led to abnormal cellular activities. Furthermore, the detection of miRNAs in the CSF and serum of diseased patients might be considered an earlier biomarker for the disease. While most of the therapies designed around AD have not succeeded completely, the targeting of dysregulated miRNAs in AD patients might give a new direction to scholars to develop an effective treatment for Alzheimer's disease.
Collapse
Affiliation(s)
- Devyani Bhatnagar
- Department of Pharmaceutical Chemistry, Poona College of Pharmacy, Bharati Vidyapeeth (Deemed to Be University), Erandwane, Pune, 411038, Maharashtra, India
| | - Shreya Ladhe
- Department of Pharmaceutical Chemistry, Poona College of Pharmacy, Bharati Vidyapeeth (Deemed to Be University), Erandwane, Pune, 411038, Maharashtra, India
| | - Dileep Kumar
- Department of Pharmaceutical Chemistry, Poona College of Pharmacy, Bharati Vidyapeeth (Deemed to Be University), Erandwane, Pune, 411038, Maharashtra, India.
- Department of Entomology, University of California, Davis, One Shields Ave, Davis, CA, 95616, USA.
- UC Davis Comprehensive Cancer Center, University of California, Davis, One Shields Ave, Davis, CA, 95616, USA.
| |
Collapse
|
22
|
Varesi A, Campagnoli LIM, Barbieri A, Rossi L, Ricevuti G, Esposito C, Chirumbolo S, Marchesi N, Pascale A. RNA binding proteins in senescence: A potential common linker for age-related diseases? Ageing Res Rev 2023; 88:101958. [PMID: 37211318 DOI: 10.1016/j.arr.2023.101958] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/09/2023] [Accepted: 05/18/2023] [Indexed: 05/23/2023]
Abstract
Aging represents the major risk factor for the onset and/or progression of various disorders including neurodegenerative diseases, metabolic disorders, and bone-related defects. As the average age of the population is predicted to exponentially increase in the coming years, understanding the molecular mechanisms underlying the development of aging-related diseases and the discovery of new therapeutic approaches remain pivotal. Well-reported hallmarks of aging are cellular senescence, genome instability, autophagy impairment, mitochondria dysfunction, dysbiosis, telomere attrition, metabolic dysregulation, epigenetic alterations, low-grade chronic inflammation, stem cell exhaustion, altered cell-to-cell communication and impaired proteostasis. With few exceptions, however, many of the molecular players implicated within these processes as well as their role in disease development remain largely unknown. RNA binding proteins (RBPs) are known to regulate gene expression by dictating at post-transcriptional level the fate of nascent transcripts. Their activity ranges from directing primary mRNA maturation and trafficking to modulation of transcript stability and/or translation. Accumulating evidence has shown that RBPs are emerging as key regulators of aging and aging-related diseases, with the potential to become new diagnostic and therapeutic tools to prevent or delay aging processes. In this review, we summarize the role of RBPs in promoting cellular senescence and we highlight their dysregulation in the pathogenesis and progression of the main aging-related diseases, with the aim of encouraging further investigations that will help to better disclose this novel and captivating molecular scenario.
Collapse
Affiliation(s)
- Angelica Varesi
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy.
| | | | - Annalisa Barbieri
- Department of Drug Sciences, Section of Pharmacology, University of Pavia, Pavia, Italy
| | - Lorenzo Rossi
- Institute of Molecular Biology and Biophysics, ETH Zurich, Zurich, Switzerland
| | | | - Ciro Esposito
- Department of Internal Medicine and Therapeutics, University of Pavia, Italy; Nephrology and dialysis unit, ICS S. Maugeri SPA SB Hospital, Pavia, Italy; High School in Geriatrics, University of Pavia, Italy
| | | | - Nicoletta Marchesi
- Department of Drug Sciences, Section of Pharmacology, University of Pavia, Pavia, Italy
| | - Alessia Pascale
- Department of Drug Sciences, Section of Pharmacology, University of Pavia, Pavia, Italy.
| |
Collapse
|
23
|
Lukiw WJ. MicroRNA (miRNA) Complexity in Alzheimer's Disease (AD). BIOLOGY 2023; 12:788. [PMID: 37372073 DOI: 10.3390/biology12060788] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 05/11/2023] [Accepted: 05/18/2023] [Indexed: 06/29/2023]
Abstract
AD is a complex, progressive, age-related neurodegenerative disorder representing the most common cause of senile dementia and neurological dysfunction in our elderly domestic population. The widely observed heterogeneity of AD is a reflection of the complexity of the AD process itself and the altered molecular-genetic mechanisms operating in the diseased human brain and CNS. One of the key players in this complex regulation of gene expression in human pathological neurobiology are microRNAs (miRNAs) that, through their actions, shape the transcriptome of brain cells that normally associate with very high rates of genetic activity, gene transcription and messenger RNA (mRNA) generation. The analysis of miRNA populations and the characterization of their abundance, speciation and complexity can further provide valuable clues to our molecular-genetic understanding of the AD process, especially in the sporadic forms of this common brain disorder. Current in-depth analyses of high-quality AD and age- and gender-matched control brain tissues are providing pathophysiological miRNA-based signatures of AD that can serve as a basis for expanding our mechanistic understanding of this disorder and the future design of miRNA- and related RNA-based therapeutics. This focused review will consolidate the findings from multiple laboratories as to which are the most abundant miRNA species, both free and exosome-bound in the human brain and CNS, which miRNA species appear to be the most prominently affected by the AD process and review recent developments and advancements in our understanding of the complexity of miRNA signaling in the hippocampal CA1 region of AD-affected brains.
Collapse
Affiliation(s)
- Walter J Lukiw
- LSU Neuroscience Center, Louisiana State University Health Science Center, New Orleans, LA 70112, USA
- Alchem Biotech Research, Toronto, ON M5S 1A8, Canada
- Department of Ophthalmology, LSU Health Science Center, New Orleans, LA 70112, USA
- Department Neurology, Louisiana State University Health Science Center, New Orleans, LA 70112, USA
| |
Collapse
|
24
|
Cai HY, Chen SR, Wang Y, Jiao JJ, Qiao J, Hölscher C, Wang ZJ, Zhang SX, Wu MN. Integrated analysis of the lncRNA-associated ceRNA network in Alzheimer's disease. Gene 2023; 876:147484. [PMID: 37187245 DOI: 10.1016/j.gene.2023.147484] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 04/07/2023] [Accepted: 05/09/2023] [Indexed: 05/17/2023]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disease that worsens with age. Long non-coding RNAs (lncRNAs) dysregulation and its associated competing endogenous RNA (ceRNA) network have a potential connection with the occurrence and development of AD. A total of 358 differentially expressed genes (DEGs) were screened via RNA sequencing, including 302 differentially expressed mRNAs (DEmRNAs) and 56 differential expressed lncRNAs (DElncRNAs). Anti-sense lncRNA is the main type of DElncRNA, which plays a major role in the cis and trans regulation. The constructed ceRNA network consisted of 4 lncRNAs (NEAT1, LINC00365, FBXL19-AS1, RAI1-AS1719) and 4 microRNAs (miRNAs) (HSA-Mir-27a-3p, HSA-Mir-20b-5p, HSA-Mir-17-5p, HSA-Mir-125b-5p), and 2 mRNAs (MKNK2, F3). Functional enrichment analysis revealed that DEmRNAs are involved in related biological functions of AD. The co-expressed DEmRNAs (DNAH11, HGFAC, TJP3, TAC1, SPTSSB, SOWAHB, RGS4, ADCYAP1) of humans and mice were screened and verified by real-time quantitative polymerase chain reaction (qRT-PCR). In this study, we analyzed the expression profile of human AD-related lncRNA genes, constructed a ceRNA network, and performed functional enrichment analysis of DEmRNAs between human and mice. The obtained gene regulatory networks and target genes can be used to further analyze AD-related pathological mechanisms to optimize AD diagnosis and treatment.
Collapse
Affiliation(s)
- Hong-Yan Cai
- Department of Microbiology and Immunology, Shanxi Medical University, Taiyuan, China; Key Laboratory of Cellular Physiology (Shanxi Medical University), Ministry of Education, Taiyuan, China; Key Laboratory of Cellular Physiology, Shanxi Province, China.
| | - Si-Ru Chen
- Department of Microbiology and Immunology, Shanxi Medical University, Taiyuan, China
| | - Yu Wang
- Department of Microbiology and Immunology, Shanxi Medical University, Taiyuan, China
| | - Juan-Juan Jiao
- Department of Physiology, Shanxi Medical University, Taiyuan, China
| | - Jun Qiao
- Key Laboratory of Cellular Physiology (Shanxi Medical University), Ministry of Education, Taiyuan, China; Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Christian Hölscher
- Academy of Chinese Medical Science, Henan university of Chinese medicine, Zhengzhou, China
| | - Zhao-Jun Wang
- Key Laboratory of Cellular Physiology (Shanxi Medical University), Ministry of Education, Taiyuan, China; Key Laboratory of Cellular Physiology, Shanxi Province, China; Department of Physiology, Shanxi Medical University, Taiyuan, China
| | - Sheng-Xiao Zhang
- Key Laboratory of Cellular Physiology (Shanxi Medical University), Ministry of Education, Taiyuan, China; Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Mei-Na Wu
- Key Laboratory of Cellular Physiology (Shanxi Medical University), Ministry of Education, Taiyuan, China; Key Laboratory of Cellular Physiology, Shanxi Province, China; Department of Physiology, Shanxi Medical University, Taiyuan, China.
| |
Collapse
|
25
|
LaForce GR, Philippidou P, Schaffer AE. mRNA isoform balance in neuronal development and disease. WILEY INTERDISCIPLINARY REVIEWS. RNA 2023; 14:e1762. [PMID: 36123820 PMCID: PMC10024649 DOI: 10.1002/wrna.1762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 07/11/2022] [Accepted: 08/15/2022] [Indexed: 11/07/2022]
Abstract
Balanced mRNA isoform diversity and abundance are spatially and temporally regulated throughout cellular differentiation. The proportion of expressed isoforms contributes to cell type specification and determines key properties of the differentiated cells. Neurons are unique cell types with intricate developmental programs, characteristic cellular morphologies, and electrophysiological potential. Neuron-specific gene expression programs establish these distinctive cellular characteristics and drive diversity among neuronal subtypes. Genes with neuron-specific alternative processing are enriched in key neuronal functions, including synaptic proteins, adhesion molecules, and scaffold proteins. Despite the similarity of neuronal gene expression programs, each neuronal subclass can be distinguished by unique alternative mRNA processing events. Alternative processing of developmentally important transcripts alters coding and regulatory information, including interaction domains, transcript stability, subcellular localization, and targeting by RNA binding proteins. Fine-tuning of mRNA processing is essential for neuronal activity and maintenance. Thus, the focus of neuronal RNA biology research is to dissect the transcriptomic mechanisms that underlie neuronal homeostasis, and consequently, predispose neuronal subtypes to disease. This article is categorized under: RNA in Disease and Development > RNA in Disease RNA in Disease and Development > RNA in Development.
Collapse
Affiliation(s)
- Geneva R LaForce
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, Ohio, USA
| | - Polyxeni Philippidou
- Department of Neurosciences, Case Western Reserve University, Cleveland, Ohio, USA
| | - Ashleigh E Schaffer
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, Ohio, USA
| |
Collapse
|
26
|
Zhuang J, Tian J, Xiong X, Li T, Chen Z, Chen R, Chen J, Li X. Associating brain imaging phenotypes and genetic risk factors via a hypergraph based netNMF method. Front Aging Neurosci 2023; 15:1052783. [PMID: 36936501 PMCID: PMC10017840 DOI: 10.3389/fnagi.2023.1052783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 02/08/2023] [Indexed: 03/06/2023] Open
Abstract
Abstract Alzheimer's disease (AD) is a severe neurodegenerative disease for which there is currently no effective treatment. Mild cognitive impairment (MCI) is an early disease that may progress to AD. The effective diagnosis of AD and MCI in the early stage has important clinical significance. Methods To this end, this paper proposed a hypergraph-based netNMF (HG-netNMF) algorithm for integrating structural magnetic resonance imaging (sMRI) of AD and MCI with corresponding gene expression profiles. Results Hypergraph regularization assumes that regions of interest (ROIs) and genes were located on a non-linear low-dimensional manifold and can capture the inherent prevalence of two modalities of data and mined high-order correlation features of the two data. Further, this paper used the HG-netNMF algorithm to construct a brain structure connection network and a protein interaction network (PPI) with potential role relationships, mine the risk (ROI) and key genes of both, and conduct a series of bioinformatics analyses. Conclusion Finally, this paper used the risk ROI and key genes of the AD and MCI groups to construct diagnostic models. The AUC of the AD group and MCI group were 0.8 and 0.797, respectively.
Collapse
Affiliation(s)
- Junli Zhuang
- Department of Vascular Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jinping Tian
- Faculty of Medicine, Jianghan University, Wuhan, China
| | - Xiaoxing Xiong
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
- *Correspondence: Xiaoxing Xiong,
| | - Taihan Li
- Department of Clinical Laboratory, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, China
- Taihan Li,
| | - Zhengwei Chen
- Department of Radiology, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, China
| | - Rong Chen
- Department of Radiology, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, China
| | - Jun Chen
- Department of Radiology, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, China
| | - Xiang Li
- School of Health, Wuhan University, Wuhan, China
| |
Collapse
|
27
|
Internal Ribosome Entry Site (IRES)-Mediated Translation and Its Potential for Novel mRNA-Based Therapy Development. Biomedicines 2022; 10:biomedicines10081865. [PMID: 36009412 PMCID: PMC9405587 DOI: 10.3390/biomedicines10081865] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/26/2022] [Accepted: 07/29/2022] [Indexed: 11/17/2022] Open
Abstract
Many conditions can benefit from RNA-based therapies, namely, those targeting internal ribosome entry sites (IRESs) and their regulatory proteins, the IRES trans-acting factors (ITAFs). IRES-mediated translation is an alternative mechanism of translation initiation, known for maintaining protein synthesis when canonical translation is impaired. During a stress response, it contributes to cell reprogramming and adaptation to the new environment. The relationship between IRESs and ITAFs with tumorigenesis and resistance to therapy has been studied in recent years, proposing new therapeutic targets and treatments. In addition, IRES-dependent translation initiation dysregulation is also related to neurological and cardiovascular diseases, muscular atrophies, or other syndromes. The participation of these structures in the development of such pathologies has been studied, yet to a far lesser extent than in cancer. Strategies involving the disruption of IRES–ITAF interactions or the modification of ITAF expression levels may be used with great impact in the development of new therapeutics. In this review, we aim to comprehend the current data on groups of human pathologies associated with IRES and/or ITAF dysregulation and their application in the designing of new therapeutic approaches using them as targets or tools. Thus, we wish to summarise the evidence in the field hoping to open new promising lines of investigation toward personalised treatments.
Collapse
|
28
|
Hill JM, Lukiw WJ. microRNA, the Innate-Immune System and SARS-CoV-2. Front Cell Infect Microbiol 2022; 12:887800. [PMID: 35782132 PMCID: PMC9245018 DOI: 10.3389/fcimb.2022.887800] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 05/02/2022] [Indexed: 12/31/2022] Open
Abstract
The single-stranded viral RNA (ssvRNA) known as the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) that causes COVID-19 can be effectively inactivated by a number of natural ribonucleic acid-based host cell defenses. One of the most important of these defenses includes the actions of a class of small non-coding RNAs (sncRNAs) known as microRNAs (miRNAs). Via base-pair complementarity miRNAs are capable of specifically targeting ssvRNA sequences such as SARS-CoV-2 promoting its inactivation and neutralization. RNA-sequencing and bioinformatics analysis indicate that multiple naturally-occurring human miRNAs have extensive complementarity to the SARS-CoV-2 ssvRNA genome. Since miRNA abundance, speciation, and complexity vary significantly amongst human individuals, this may in part explain the variability in the innate-immune and pathophysiological response of different individuals to SARS-CoV-2 and overall susceptibility to ssvRNA-mediated viral infection.
Collapse
Affiliation(s)
- James M. Hill
- Louisiana State University (LSU) Neuroscience Center, Louisiana State University Health Science Center, New Orleans, LA, United States
- Department of Ophthalmology, LSU Health Science Center, New Orleans, LA, United States
- Department of Pharmacology, Louisiana State University (LSU) Health Science Center, New Orleans, LA, United States
- Department of Microbiology, Louisiana State University (LSU) Health Science Center, New Orleans, LA, United States
| | - Walter J. Lukiw
- Louisiana State University (LSU) Neuroscience Center, Louisiana State University Health Science Center, New Orleans, LA, United States
- Department of Ophthalmology, LSU Health Science Center, New Orleans, LA, United States
- Department Neurology, Louisiana State University Health Science Center, New Orleans, LA, United States
- *Correspondence: Walter J. Lukiw,
| |
Collapse
|
29
|
Zwierzchowski-Zarate AN, Mendoza-Oliva A, Kashmer OM, Collazo-Lopez JE, White CL, Diamond MI. RNA induces unique tau strains and stabilizes Alzheimer's disease seeds. J Biol Chem 2022; 298:102132. [PMID: 35700826 PMCID: PMC9364032 DOI: 10.1016/j.jbc.2022.102132] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 06/08/2022] [Accepted: 06/09/2022] [Indexed: 11/25/2022] Open
Abstract
Tau aggregation underlies neurodegenerative tauopathies, and trans-cellular propagation of tau assemblies of unique structure, i.e. strains, may underlie the diversity of these disorders. Polyanions have been reported to induce tau aggregation in vitro, but the precise trigger to convert tau from an inert to a seed-competent form in disease states is unknown. RNA triggers tau fibril formation in vitro and has been observed to associate with neurofibrillary tangles in human brain. Here we have tested whether RNA exerts sequence-specific effects on tau assembly and strain formation. We found that three RNA homopolymers, polyA, polyU, and polyC, all bound tau, but only polyA RNA triggered seed and fibril formation. In addition, polyA:tau seeds and fibrils were sensitive to RNase. We also observed that the origin of the RNA influenced the ability of tau to adopt a structure that would form stable strains. Human RNA potently induced tau seed formation and created tau conformations that preferentially formed stable strains in a HEK293T cell model, whereas RNA from other sources, or heparin, produced strains that were not stably maintained in cultured cells. Finally, we found that soluble, but not insoluble seeds from Alzheimer's disease (AD) brain were also sensitive to RNase. We conclude that human RNA specifically induces formation of stable tau strains, and may trigger the formation of dominant pathological assemblies that propagate in AD, and possibly other tauopathies.
Collapse
Affiliation(s)
- Amy N Zwierzchowski-Zarate
- Center for Alzheimer's and Neurodegenerative Diseases, Peter O'Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX USA
| | - Aydé Mendoza-Oliva
- Center for Alzheimer's and Neurodegenerative Diseases, Peter O'Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX USA
| | - Omar M Kashmer
- Center for Alzheimer's and Neurodegenerative Diseases, Peter O'Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX USA
| | - Josue E Collazo-Lopez
- Center for Alzheimer's and Neurodegenerative Diseases, Peter O'Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX USA
| | - Charles L White
- Center for Alzheimer's and Neurodegenerative Diseases, Peter O'Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX USA
| | - Marc I Diamond
- Center for Alzheimer's and Neurodegenerative Diseases, Peter O'Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX USA.
| |
Collapse
|
30
|
TARBP2-stablized SNHG7 regulates blood-brain barrier permeability by acting as a competing endogenous RNA to miR-17-5p/NFATC3 in Aβ-microenvironment. Cell Death Dis 2022; 13:457. [PMID: 35562351 PMCID: PMC9106673 DOI: 10.1038/s41419-022-04920-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Revised: 05/03/2022] [Accepted: 05/05/2022] [Indexed: 12/14/2022]
Abstract
Breakdown of blood-brain barrier (BBB) is recognized as serious pathological marker of Alzheimer's disease development. Studies confirmed that β-amyloid (Aβ) deposition induced high BBB permeability by disrupting tight junction (TJ) proteins formed from endothelial cells (ECs). Here, we found TARBP2, SNHG7 and NFATC3 in expressions were increased and miR-17-5p expression was decreased in Aβ(1-42)-incubated ECs. Overexpression of TARBP2, SNHG7 and NFATC3 elevated BBB permeability and knockdown of them had converse results. Agomir-17-5p decreased BBB permeability and antagomir-17-5p increased BBB permeability. TARBP2 as a RNA-binding protein (RBP) bound to SNHG7 and resulted in longer half-life of SNHG7. The decreased expression of miR-17-5p had a negative post-transcriptional regulation to NFATC3, leading to the increased expression of NFATC3. In addition, SNHG7 regulated NFATC3 expression by acting as a molecule sponge targeting to miR-17-5p. NFATC3 inhibited TJ proteins expression by functioning as a transcription factor. TARBP2/SNHG7/miR-17-5p/NFATC3 pathway implied a potential mechanism in studies of BBB changes in AD pathological progression.
Collapse
|
31
|
Context-Dependent Regulation of Gene Expression by Non-Canonical Small RNAs. Noncoding RNA 2022; 8:ncrna8030029. [PMID: 35645336 PMCID: PMC9149963 DOI: 10.3390/ncrna8030029] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/27/2022] [Accepted: 04/28/2022] [Indexed: 12/02/2022] Open
Abstract
In recent functional genomics studies, a large number of non-coding RNAs have been identified. It has become increasingly apparent that noncoding RNAs are crucial players in a wide range of cellular and physiological functions. They have been shown to modulate gene expression on different levels, including transcription, post-transcriptional processing, and translation. This review aims to highlight the diverse mechanisms of the regulation of gene expression by small noncoding RNAs in different conditions and different types of human cells. For this purpose, various cellular functions of microRNAs (miRNAs), circular RNAs (circRNAs), snoRNA-derived small RNAs (sdRNAs) and tRNA-derived fragments (tRFs) will be exemplified, with particular emphasis on the diversity of their occurrence and on the effects on gene expression in different stress conditions and diseased cell types. The synthesis and effect on gene expression of these noncoding RNAs varies in different cell types and may depend on environmental conditions such as different stresses. Moreover, noncoding RNAs play important roles in many diseases, including cancer, neurodegenerative disorders, and viral infections.
Collapse
|
32
|
Reis MC, Patrun J, Ackl N, Winter P, Scheifele M, Danek A, Nolte D. A Severe Dementia Syndrome Caused by Intron Retention and Cryptic Splice Site Activation in STUB1 and Exacerbated by TBP Repeat Expansions. Front Mol Neurosci 2022; 15:878236. [PMID: 35493319 PMCID: PMC9048483 DOI: 10.3389/fnmol.2022.878236] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 03/08/2022] [Indexed: 11/23/2022] Open
Abstract
Heterozygous pathogenic variants in the STIP1 homologous and U-box containing protein 1 (STUB1) gene have been identified as causes of autosomal dominant inherited spinocerebellar ataxia type 48 (SCA48). SCA48 is characterized by an ataxic movement disorder that is often, but not always, accompanied by a cognitive affective syndrome. We report a severe early onset dementia syndrome that mimics frontotemporal dementia and is caused by the intronic splice donor variant c.524+1G>A in STUB1. Impaired splicing was demonstrated by RNA analysis and in minigene assays of mutated and wild-type constructs of STUB1. The most striking consequence of this splicing impairment was retention of intron 3 in STUB1, which led to an in-frame insertion of 63 amino acids (aa) (p.Arg175_Glu176ins63) into the highly conserved coiled-coil domain of its encoded protein, C-terminus of HSP70-interacting protein (CHIP). To a lesser extent, activation of two cryptic splice sites in intron 3 was observed. The almost exclusively used one, c.524+86, was not predicted by in silico programs. Variant c.524+86 caused a frameshift (p.Arg175fs*93) that resulted in a truncated protein and presumably impairs the C-terminal U-box of CHIP, which normally functions as an E3 ubiquitin ligase. The cryptic splice site c.524+99 was rarely used and led to an in-frame insertion of 33 aa (p.Arg175_Glu176ins33) that resulted in disruption of the coiled-coil domain, as has been previously postulated for complete intron 3 retention. We additionally detected repeat expansions in the range of reduced penetrance in the TATA box-binding protein (TBP) gene by excluding other genes associated with dementia syndromes. The repeat expansion was heterozygous in one patient but compound heterozygous in the more severely affected patient. Therefore, we concluded that the observed severe dementia syndrome has a digenic background, making STUB1 and TBP important candidate genes responsible for early onset dementia syndromes.
Collapse
Affiliation(s)
- Marlen Colleen Reis
- Institut für Humangenetik, Justus-Liebig-Universität Giessen, Giessen, Germany
| | - Julia Patrun
- Institut für Humangenetik, Justus-Liebig-Universität Giessen, Giessen, Germany
| | - Nibal Ackl
- Psychiatrische Dienste Thurgau, Münsterlingen, Switzerland
- Neurologische Klinik und Poliklinik, Klinikum der Universität München, Munich, Germany
| | - Pia Winter
- Institut für Humangenetik, Justus-Liebig-Universität Giessen, Giessen, Germany
| | | | - Adrian Danek
- Neurologische Klinik und Poliklinik, Klinikum der Universität München, Munich, Germany
| | - Dagmar Nolte
- Institut für Humangenetik, Justus-Liebig-Universität Giessen, Giessen, Germany
- *Correspondence: Dagmar Nolte,
| |
Collapse
|