1
|
Li H, Wang Y, Ran XY, Hao Q, Wang J, Zhang B, Guo Y. Virtual screening and characterization of novel myogenic peptides from bovine collagen hydrolysates: Targeting myomaker. Food Res Int 2025; 209:116267. [PMID: 40253143 DOI: 10.1016/j.foodres.2025.116267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 02/23/2025] [Accepted: 03/11/2025] [Indexed: 04/21/2025]
Abstract
The increasing prevalence of muscle aging, exacerbated by an aging population, poses a significant threat to public health, necessitating the development of more effective interventions. This study primarily aimed to elucidate the mechanism by which bovine bone collagen facilitates muscle differentiation and regeneration. Initially, peptide sequences within bovine bone collagen hydrolysate were identified using peptidomics. Molecular docking and dynamics simulations subsequently demonstrated that the peptide AGPPGPPGPAGK could form a stable complex with Myomaker, suggesting its potential to regulate myoblast differentiation by targeting Myomaker. The physicochemical properties of AGPPGPPGPAGK were predicted using various deep learning tools, providing insight into its functional capabilities. Further molecular and cellular experiments confirmed that the peptide could enhance myoblast differentiation by regulating energy metabolism. Transcriptome analysis further supported these findings, revealing that the peptide modulated energy metabolism during myoblast differentiation. Finally, a combined bioinformatic and transcriptomic analysis indicated a potential regulatory role of Hrh1 in energy metabolism during cell differentiation, a finding that warrants further investigation.
Collapse
Affiliation(s)
- Hanfeng Li
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China; School of Chemical Sciences, University of Chinese Academy of Sciences, Yuquan Road 19A, Beijing 100049, China.
| | - Yunci Wang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | | | - Qi Hao
- Weihai YinHe Biological Technology CO., LTD, China
| | - Jianing Wang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
| | - Bing Zhang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
| | - Yanchuan Guo
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China; School of Chemical Sciences, University of Chinese Academy of Sciences, Yuquan Road 19A, Beijing 100049, China.
| |
Collapse
|
2
|
Baskaran R, Chen YJ, Chang CF, Kuo HN, Liang CH, Abomughaid MM, Kumar KJS, Lin WT. Potato protein hydrolysate (PPH902) exerts anti-lipogenesis and lipolysis-promoting effect by inhibiting adipogenesis in 3T3-L1 adipocytes. 3 Biotech 2025; 15:83. [PMID: 40078570 PMCID: PMC11893942 DOI: 10.1007/s13205-025-04238-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 02/11/2025] [Indexed: 03/14/2025] Open
Abstract
Obesity is linked to cardiovascular disease, cerebrovascular disease, diabetes, and dyslipidemia, lowering quality of life, work productivity, and healthcare expenditures. The aim of this present study is to investigate the mechanism of potato protein (PP) post-treatment in regulating lipogenesis and lipolysis in 3T3-L1 adipocytes. 9% PP hydrolysed for 2 h (PPH902) shows high yield and better activity; thus, PPH902 was used in all other experiments. 3T3-L1 preadipocyte cells were used, the cell culture medium were changed every 2 days, IDH was added on Day 0. PPH902 was added on the 8th day, it was left for 72 h and then cells are collected. The relative triglyceride residual (RTR) content was quantified, and the expression of key lipid metabolism-related proteins was analyzed using Western blotting. PPH902 at concentrations of 400 ppm, 800 ppm, and 1600 ppm markedly decreases the RTR content. PPH902, at higher doses, modulates the expression of lipid production-associated transcription factors PPARγ, SREBP-1c, and FAS by activating AMPK, which inhibits lipogenesis and activates phosphorylated HSL to enhance lipolysis, so augmenting lipid metabolism. These findings suggest that PPH902 is an effective anti-lipogenic and lipolysis-promoting agent with potential applications in anti-obesity interventions.
Collapse
Affiliation(s)
- Rathinasamy Baskaran
- Department of Bioinformatics and Medical Engineering, Asia University, Taichung, 413305 Taiwan
| | - Yi-Ju Chen
- Department of Surgery, Taichung Veterans General Hospital, Taichung, 40704 Taiwan
| | - Ching-Fang Chang
- Department of Food Science, College of Agriculture and Health, Tunghai University, Taichung, 40704 Taiwan
| | - Hsin-Ning Kuo
- Department of Hospitality Management, College of Agriculture and Health, Tunghai University, Taichung, 407224 Taiwan
| | - Chih-Hung Liang
- Department of Food Science, College of Agriculture and Health, Tunghai University, Taichung, 40704 Taiwan
| | - Mosleh Mohammad Abomughaid
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, University of Bisha, 61922 Bisha, Saudi Arabia
| | - K. J. Senthil Kumar
- Bachelor Program of Biotechnology, National Chung Hsing University, Taichung, Taiwan
- Center for General Education, National Chung Hsing University, Taichung, Taiwan
| | - Wan-Teng Lin
- Department of Hospitality Management, College of Agriculture and Health, Tunghai University, Taichung, 407224 Taiwan
| |
Collapse
|
3
|
Hwang ES, Noh Y, Jeong HY, Lee JJ, Ahn BM, Lee J, Jang YJ. Improved skeletal muscle mass and strength through Protamex-mediated hydrolysis of perilla seed cake: Elevated rosmarinic acid levels as a contributing factor. Food Chem 2025; 463:141369. [PMID: 39326313 DOI: 10.1016/j.foodchem.2024.141369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 08/26/2024] [Accepted: 09/18/2024] [Indexed: 09/28/2024]
Abstract
Perilla seed cake (PSC) is a byproduct of oil extraction from perilla seeds. It is rich in proteins and bioactive compounds. PSC was enzymatically hydrolyzed to form PSC hydrolysate (PSCH) to enhance the absorption of PSC, and their effects on muscle health in mice were compared. High performance liquid chromatography-tandem mass spectrometry analysis revealed that PSC contains several polyphenols, including rosmarinic acid (RA), caffeic acid, apigenin, and luteolin. The hydrolysate showed 1.44- and 7.04-fold increases in RA and caffeic acid contents, respectively, compared to those of PSC. The intake of PSC, PSCH, and RA significantly improved muscle mass and exercise performance in mice by upregulating protein synthesis, myogenic differentiation, oxidative muscle fiber formation, fatty acid oxidation, and mitochondrial biogenesis; however, PSCH had better promoting effects than PSC. In conclusion, PSCH improves muscle health through its bioactive compounds (particularly RA), indicating the potential of PSCH and RA in functional foods.
Collapse
Affiliation(s)
- Eun Sol Hwang
- Department of Food Science and Technology, Seoul Women's University, Seoul 01797, Republic of Korea
| | - Yuran Noh
- Department of Food Science and Technology, Seoul Women's University, Seoul 01797, Republic of Korea
| | - Hyun Young Jeong
- Department of Food Science and Technology, Seoul Women's University, Seoul 01797, Republic of Korea
| | - Justin Jaesuk Lee
- Biomodulation Major, Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Republic of Korea
| | - Byeong Min Ahn
- Biomodulation Major, Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Republic of Korea
| | - JaeHwan Lee
- Department of Food Science and Biotechnology, Sungkyunkwan University, Suwon, Republic of Korea
| | - Young Jin Jang
- Department of Food Science and Technology, Seoul Women's University, Seoul 01797, Republic of Korea.
| |
Collapse
|
4
|
Wang M, Cai C, Jin W, Zhao Y, Mu Y, Ren L, Zhao D, Liu F, Sun L. 20(S)-ginsenoside Rg3 protects against diabetic muscle atrophy by promoting myoblastic differentiation and protecting mitochondrial function. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 134:155964. [PMID: 39168012 DOI: 10.1016/j.phymed.2024.155964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 07/29/2024] [Accepted: 08/15/2024] [Indexed: 08/23/2024]
Abstract
BACKGROUND High glucose levels are a primary cause of diabetes-associated cellular dysfunction and tissue damage. Muscles are the key insulin target organ and therefore, have a high level of sensitivity to hyperglycemia. Our previous study revealed that 20(S)-ginsenoside Rg3 (S-Rg3) is a monomer with a good myogenic differentiation effect in ginsenoside. Furthermore, it can alleviate dexamethasone-induced muscle atrophy by protecting mitochondrial function. However, whether S-Rg3 is effective for diabetic-induced muscle atrophy has not been reported. PURPOSE This study aimed to investigate the protective effect of S-Rg3 on diabetic-induced muscle atrophy. METHODS C2C12 myoblasts, Drosophila, and mice were used as model systems, and the protective effect of S-Rg3 on diabetes was evaluated by assessing the levels of glucose and lipids. Furthermore, H&E, toluidine blue, Giemsa, and immunofluorescence staining were performed to detect the effects of S-Rg3 on muscle atrophy and myogenic differentiation. Moreover, the effects of S-Rg3 on mitochondrial morphology and function were also evaluated by electron microscopy, flow cytometry, and Seahorse. In addition, the underlying pathways of S-Rg3 effects were detected by Western blot. The related inhibitors and gene mutations in Drosophila were used for validation. RESULTS The analysis of diabetic mice model fed with a high-fat diet (HFD) and high glucose (HG) revealed that in the injured C2C12 myoblasts, S-Rg3 treatment significantly reduced the levels of triglycerides and glucose. Furthermore, it promoted the differentiation of myoblasts and inhibited mitochondrial dysfunction. In the Drosophila HG and HFD diabetic model, S-Rg3 reduced triglyceride and trehalose levels, increased climbing distance values, promoted myoblasts differentiation, preserved mitochondrial function, and inhibited muscle atrophy. Mechanistically, the beneficial effects of S-Rg3 were at least partially associated with the phosphorylation of AMPK and FoxO3 together with the inhibition of Smad3 phosphorylation, this pathway was validated by the UAS-AMPKα-RNAi Drosophila model. CONCLUSION In summary, this study revealed mechanistic insights into how S-Rg3 protects against diabetes-associated muscle atrophy in cells, Drosophila, and mice.
Collapse
Affiliation(s)
- Manying Wang
- Research Center of Traditional Chinese Medicine, Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, China
| | - Changjiu Cai
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, China
| | - Wenqi Jin
- Research Center of Traditional Chinese Medicine, Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, China
| | - Yunyun Zhao
- Department of Endocrinology and Metabolism, Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, China
| | - Yue Mu
- Department of Endocrinology and Metabolism, Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, China
| | - Limei Ren
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, China
| | - Daqing Zhao
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, China
| | - Fangbing Liu
- Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun, China.
| | - Liwei Sun
- Research Center of Traditional Chinese Medicine, Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, China; Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Changchun, China.
| |
Collapse
|
5
|
Chen YJ, He YH, Lo YH, Yang HS, Abomughaid MM, Kumar KJS, Lin WT. Potato protein hydrolysate inhibits RANKL-induced osteoclast development by inhibiting osteoclastogenic genes via the NF-κB/MAPKs signaling pathways. ENVIRONMENTAL TOXICOLOGY 2024; 39:3991-4003. [PMID: 38606910 DOI: 10.1002/tox.24251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 03/09/2024] [Accepted: 03/14/2024] [Indexed: 04/13/2024]
Abstract
In recent times, there has been growing attention towards exploring the nutritional and functional aspects of potato protein, along with its diverse applications. In the present study, we examined the anti-osteoclast properties of potato protein hydrolysate (PP902) in vitro. Murine macrophages (RAW264.7) were differentiated into osteoclasts by receptor activator of nuclear factor-κB ligand (RANKL), and PP902 was examined for its inhibitory effect. Initially, treatment with PP902 was found to significantly prevent RANKL-induced morphological changes in macrophage cells, as determined by tartrate-resistant acid phosphatase (TRAP) staining analysis. This notion was further supported by F-actin analysis using a confocal microscope. Furthermore, PP902 treatment effectively and dose-dependently down-regulated the expression of RANKL-induced osteoclastogenic marker genes, including TRAP, CTR, RANK, NFATc1, OC-STAMP, and c-Fos. These inhibitory effects were associated with suppressing NF-κB transcriptional activation and subsequent reduced nuclear translocation. The decrease in NF-κB activity resulted from reduced activation of its upstream kinases, including I-κBα and IKKα. Moreover, PP902 significantly inhibited RANKL-induced p38MAPK and ERK1/2 activities. Nevertheless, PP902 treatment prevents RANKL-induced intracellular reactive oxygen species generation via increased HO-1 activity. The combined antioxidant and anti-inflammatory effects of PP902 resulted in significant suppression of osteoclastogenesis, suggesting its potential as an adjuvant therapy for osteoclast-related diseases.
Collapse
Affiliation(s)
- Yi-Ju Chen
- Department of Surgery, Taichung Veterans General Hospital, Taichung, Taiwan
- Department of Animal Science and Biotechnology, College of Agriculture and Health, Tunghai University, Taichung, Taiwan
| | - Yen-Hua He
- Department of Food Science, College of Agriculture and Health, Tunghai University, Taichung, Taiwan
| | - Yun-Hsin Lo
- Department of Food Science, College of Agriculture and Health, Tunghai University, Taichung, Taiwan
| | - Hong-Siang Yang
- Department of Hospitality Management, College of Agriculture and Health, Tunghai University, Taichung, Taiwan
| | - Mosleh Mohammad Abomughaid
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, University of Bisha, Bisha, Saudi Arabia
| | - K J Senthil Kumar
- Bachelor Program of Biotechnology and Center for General Education, National Chung Hsing University, Taichung, Taiwan
| | - Wan-Teng Lin
- Department of Hospitality Management, College of Agriculture and Health, Tunghai University, Taichung, Taiwan
- Research and Development Division, Utopia Holiday Hotel Corporation, Taichung, Taiwan
| |
Collapse
|
6
|
Lee HJ, Kim D, Do K, Yang CB, Jeon SW, Jang A. Effects of Horse Meat Hydrolysate on Oxidative Stress, Proinflammatory Cytokines, and the Ubiquitin-Proteasomal System of C2C12 Cells. Food Sci Anim Resour 2024; 44:132-145. [PMID: 38229864 PMCID: PMC10789556 DOI: 10.5851/kosfa.2023.e65] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 09/03/2023] [Accepted: 10/05/2023] [Indexed: 01/18/2024] Open
Abstract
Sarcopenia, the age-related muscle atrophy, is a serious concern as it is associated with frailty, reduced physical functions, and increased mortality risk. Protein supplementation is essential for preserving muscle mass, and horse meat can be an excellent source of proteins. Since sarcopenia occurs under conditions of oxidative stress, this study aimed to investigate the potential anti-muscle atrophy effect of horse meat hydrolysate using C2C12 cells. A horse meat hydrolysate less than 3 kDa (A4<3kDa) significantly increased the viability of C2C12 myoblasts against H2O2-induced cytotoxicity. Exposure of C2C12 myoblasts to lipopolysaccharide led to an elevation of cellular reactive oxygen species levels and mRNA expression of proinflammatory cytokines, including tumor necrosis factor-α and interleukin 6, and these effects were attenuated by A4<3kDa treatment. Additionally, A4<3kDa activated protein synthesis-related proteins through the protein kinase B/mechanistic target of rapamycin pathway, while decreasing the expression of activity and degradation-related proteins, such as Forkhead box O3, muscle RING finger protein-1, and Atrogin-1 in dexamethasone-treated C2C12 myotubes. Therefore, the natural material A4<3kDa has the potential ofprotecting against muscle atrophy, while further in vivo study is needed.
Collapse
Affiliation(s)
- Hee-Jeong Lee
- Department of Applied Animal Science,
Kangwon National University, Chuncheon 24341, Korea
| | - Dongwook Kim
- Department of Applied Animal Science,
Kangwon National University, Chuncheon 24341, Korea
| | - Kyoungtag Do
- Department of Animal Biotechnology, Jeju
National University, Jeju 63243, Korea
| | - Chang-Beom Yang
- Department of Animal Biotechnology, Jeju
National University, Jeju 63243, Korea
| | - Seong-Won Jeon
- Department of Animal Biotechnology, Jeju
National University, Jeju 63243, Korea
| | - Aera Jang
- Department of Applied Animal Science,
Kangwon National University, Chuncheon 24341, Korea
| |
Collapse
|
7
|
Raigond P, Jayanty SS, Parmar V, Dutt S, Changan SS, Luthra SK, Singh B. Health-Promoting compounds in Potatoes: Tuber exhibiting great potential for human health. Food Chem 2023; 424:136368. [PMID: 37210846 DOI: 10.1016/j.foodchem.2023.136368] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 02/20/2023] [Accepted: 05/10/2023] [Indexed: 05/23/2023]
Abstract
Potatoes are consumed worldwide because of their high accessibility, low cost, taste, and diversity of cooking methods. The high carbohydrate content of potatoes masks the presence of -vitamins, polyphenols, minerals, amino acids, lectins and protein inhibitors in the minds of consumers. The consumption of potatoes faces challenges among health-conscious people. This review paper attempted to provide up-to-date information on new metabolites reported in potatoes that play role in disease prevention and overall human well-being. We tried to compile information on antidiabetic, antihypertensive, anticancer, antiobesity, antihyperlipidemic, and anti-inflammatory potential of potato along with role in improving gut health and satiety. In-vitro studies, human cell culture, and experimental animal and human clinical studies showed potatoes to exhibit a variety of health-enhancing properties. This article will not only popularize potato as a healthy food, but will also improve its use as a staple for the foreseeable future.
Collapse
Affiliation(s)
- Pinky Raigond
- Division of Crop Physiology, Biochemistry & Post Harvest Technology, ICAR-Central Potato Research Institute, Shimla, Himachal Pradesh, India; ICAR-National Research Centre on Pomegranate, Solapur, India.
| | - Sastry S Jayanty
- Department of Horticulture and LA, Colorado State University, USA
| | - Vandana Parmar
- Division of Crop Physiology, Biochemistry & Post Harvest Technology, ICAR-Central Potato Research Institute, Shimla, Himachal Pradesh, India
| | - Som Dutt
- Division of Crop Physiology, Biochemistry & Post Harvest Technology, ICAR-Central Potato Research Institute, Shimla, Himachal Pradesh, India
| | - Sushil S Changan
- Division of Crop Physiology, Biochemistry & Post Harvest Technology, ICAR-Central Potato Research Institute, Shimla, Himachal Pradesh, India
| | - Satish Kumar Luthra
- Division of Crop Improvement, ICAR-Central Potato Research Institute-Regional Station, Modipuram, Uttar Pradesh, India
| | - Brajesh Singh
- Division of Crop Physiology, Biochemistry & Post Harvest Technology, ICAR-Central Potato Research Institute, Shimla, Himachal Pradesh, India
| |
Collapse
|
8
|
Zhang M, Li X, Cui X, Li R, Ma Z, Gao X. Selenomethionine promotes ANXA2 phosphorylation for proliferation and protein synthesis of myoblasts and skeletal muscle growth. J Nutr Biochem 2023; 115:109277. [PMID: 36739096 DOI: 10.1016/j.jnutbio.2023.109277] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 01/25/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023]
Abstract
Selenomethionine (Se-Met) has many beneficial effects on higher animals and human, and can regulate cellular physiology through distinct signaling pathways. However, the role and molecular mechanism of Se-Met in skeletal muscle growth remains unclear. In this study, we observed the effects of Se-Met on C2C12 myoblasts and skeletal muscle growth of mice, and explored the corresponding molecular mechanism. Se-Met affected proliferation and protein synthesis of C2C12 myoblasts in a hormesis type of relationship, and had an optimal stimulatory effect at 50 µM concentration. Se-Met also affected mTOR, ANXA2, and PKCα phosphorylation in the same manner. ANXA2 knockdown blocked the stimulation of Se-Met on cell proliferation and protein synthesis and inhibition of Se-Met on autophagy of C2C12 myoblasts. Western blotting analysis showed that PI3K inhibition blocked the stimulation of Se-Met on mTOR phosphorylation. ANXA2 knockdown further blocked the stimulation of Se-Met on PI3K and mTOR phosphorylation. Point mutation experiment showed that ANXA2 mediated the stimulation of Se-Met on the PI3K-mTOR signaling through phosphorylation at Ser26. PKCα interacted with ANXA2, and PKCα knockdown blocked the stimulation of Se-Met on ANXA2 phosphorylation at Ser26. Se-Met addition (7.5mg/kg diet, 4 weeks) increased mouse carcass weight, promoted gastrocnemius skeletal muscle growth and ANXA2 and mTOR phosphorylation in this tissue. Collectively, our findings reveal that Se-Met can promote proliferation and protein synthesis of myoblasts and skeletal muscle growth through ANXA2 phosphorylation.
Collapse
Affiliation(s)
- Minghui Zhang
- College of Animal Science, Yangtze University, Jingmi Road 88, Jingzhou, 434025, China; College of Life Science, Northeast Agricultural University, Changjiang Road 600, Xiangfang District, Harbin, 150030, China
| | - Xueying Li
- College of Animal Science, Yangtze University, Jingmi Road 88, Jingzhou, 434025, China; College of Life Science, Northeast Agricultural University, Changjiang Road 600, Xiangfang District, Harbin, 150030, China
| | - Xu Cui
- College of Animal Science, Yangtze University, Jingmi Road 88, Jingzhou, 434025, China; College of Life Science, Northeast Agricultural University, Changjiang Road 600, Xiangfang District, Harbin, 150030, China
| | - Rui Li
- College of Animal Science, Yangtze University, Jingmi Road 88, Jingzhou, 434025, China
| | - Zonghua Ma
- College of Life Science, Northeast Agricultural University, Changjiang Road 600, Xiangfang District, Harbin, 150030, China
| | - Xuejun Gao
- College of Animal Science, Yangtze University, Jingmi Road 88, Jingzhou, 434025, China
| |
Collapse
|
9
|
Zhu X, Wang J, Lu Y, Zhao Y, Zhang N, Wu W, Zhang Y, Fu Y. Potential of Food Protein-Derived Bioactive Peptides against Sarcopenia: A Comprehensive Review. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:5419-5437. [PMID: 36988097 DOI: 10.1021/acs.jafc.2c09094] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Sarcopenia is an age-related progressive muscle disorder characterized by accelerated loss of muscle mass, strength, and function, which are important causes of physiological dysfunctions in the elderly. At present, the main alleviating method includes protein supplements to stimulate synthesis of muscle proteins. Food protein-derived peptides containing abundant branched-chain amino acids have a remarkable effect on the improvement of sarcopenia. Understanding the underlying molecular mechanism and clarifying the structure-activity relationship is essential for the mitigation of sarcopenia. This present review recaps the epidemiology, pathogenesis, diagnosis, and treatment of sarcopenia, which facilitates a comprehensive understanding of sarcopenia. Moreover, the latest research progress on food-derived antisarcopenic peptides is reviewed, including their antisarcopenic activity, molecular mechanism as well as structural characteristics. Food-derived bioactive peptides can indeed alleviate/mitigate sarcopenia. These antisarcopenic peptides play a pivotal role mainly by activating the PI3K/Akt/mTOR and MAPK pathways and inhibiting the ubiquitin-proteasome system and AMPK pathway, thus promoting the synthesis of muscle proteins and inhibiting their degradation. Antisarcopenic peptides alleviate sarcopenia via specific peptides, which may be absorbed into the circulation and exhibit their bioactivity in intact forms. The present review provides a theoretical reference for mitigation and prevention of sarcopenia by food protein-derived bioactive peptides.
Collapse
Affiliation(s)
- Xiaoxue Zhu
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Jing Wang
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), Beijing Technology & Business University (BTBU), Beijing 100048, China
| | - Yujia Lu
- Department of Epidemiology, Harvard University T.H. Chan School of Public Health, 677 Huntington Avenue, Boston, Massachusetts 02115, United States
| | - Yuchen Zhao
- Department of Epidemiology, Harvard University T.H. Chan School of Public Health, 677 Huntington Avenue, Boston, Massachusetts 02115, United States
| | - Na Zhang
- Key Laboratory of Food Science and Engineering of Heilongjiang Province, College of Food Engineering, Harbin University of Commerce, Harbin 150076, China
| | - Wei Wu
- College of Animal Science and Technology, Southwest University, Chongqing 400715, China
| | - Yuhao Zhang
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Yu Fu
- College of Food Science, Southwest University, Chongqing 400715, China
| |
Collapse
|
10
|
Lee CW, Chang YB, Park CW, Han SH, Suh HJ, Ahn Y. Protein Hydrolysate from Spirulina platensis Prevents Dexamethasone-Induced Muscle Atrophy via Akt/Foxo3 Signaling in C2C12 Myotubes. Mar Drugs 2022; 20:md20060365. [PMID: 35736168 PMCID: PMC9229963 DOI: 10.3390/md20060365] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 05/18/2022] [Accepted: 05/27/2022] [Indexed: 02/01/2023] Open
Abstract
Loss of muscle mass is the primary symptom of sarcopenia. Protein intake is recommended to prevent muscle mass loss, and Spirulina platensis, a microalga with high protein content, is a potential protein supplement. Here, we evaluated the differentiation ability of C2C12 cells and the inhibitory effect of Spirulina hydrolysates (SPH) prepared by Collupulin on dexamethasone (DEX)-treated C2C12 cells. SPH contained 578.27 mg/g protein and 92.30 mg/g branched-chain amino acids. SPH increased C2C12 myotube length and diameter, likely owing to increased MyoD1 and Myf5 expression. Inhibition of increased Atrogin-1, MuRF-1, and FoxO3 expression by SPH in DEX-treated C2C12 cells suppressed DEX-induced muscle atrophy. Moreover, SPH inhibited the DEX-induced increase in cytosolic p-Akt protein expression and suppressed the increase in nuclear FoxO3a protein expression, thereby suppressing the increase in the protein expression of the ubiquitin-proteasome-related factors Atrogin-1 and MuRF-1, which are involved in muscle atrophy. SPH suppressed DEX-induced muscle atrophy by activating the Akt/FoxO3a pathway. SPH promoted C2C12 myoblast differentiation into myotubes and inhibited DEX-induced myotube atrophy by suppressing Atrogin-1 and MuRF-1 expression and regulating the FoxO3a transcription factor. Collectively, SPH can be used as a functional food to inhibit muscle atrophy and promote muscle regeneration.
Collapse
Affiliation(s)
- Chi-Woo Lee
- Department of Integrated Biomedical and Life Science, Graduate School, Korea University, Seoul 02841, Korea; (C.-W.L.); (Y.B.C.); (C.W.P.); (H.J.S.)
| | - Yeok Boo Chang
- Department of Integrated Biomedical and Life Science, Graduate School, Korea University, Seoul 02841, Korea; (C.-W.L.); (Y.B.C.); (C.W.P.); (H.J.S.)
| | - Chun Woong Park
- Department of Integrated Biomedical and Life Science, Graduate School, Korea University, Seoul 02841, Korea; (C.-W.L.); (Y.B.C.); (C.W.P.); (H.J.S.)
- BK21FOUR R&E Center for Learning Health Systems, Korea University, Seoul 02841, Korea
| | - Sung Hee Han
- Institute of Human Behavior & Genetic, College of Medicine, Korea University, Seoul 02841, Korea;
| | - Hyung Joo Suh
- Department of Integrated Biomedical and Life Science, Graduate School, Korea University, Seoul 02841, Korea; (C.-W.L.); (Y.B.C.); (C.W.P.); (H.J.S.)
- BK21FOUR R&E Center for Learning Health Systems, Korea University, Seoul 02841, Korea
| | - Yejin Ahn
- Department of Integrated Biomedical and Life Science, Graduate School, Korea University, Seoul 02841, Korea; (C.-W.L.); (Y.B.C.); (C.W.P.); (H.J.S.)
- Correspondence: ; Tel.: +82-2-940-2764
| |
Collapse
|
11
|
Decapeptide from Potato Hydrolysate Induces Myogenic Differentiation and Ameliorates High Glucose-Associated Modulations in Protein Synthesis and Mitochondrial Biogenesis in C2C12 Cells. Biomolecules 2022; 12:biom12040565. [PMID: 35454154 PMCID: PMC9032802 DOI: 10.3390/biom12040565] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 04/06/2022] [Accepted: 04/08/2022] [Indexed: 01/01/2023] Open
Abstract
Sarcopenia is characterized as an age-related loss of muscle mass that results in negative health consequences such as decreased strength, insulin resistance, slowed metabolism, increased body fat mass, and a substantially diminished quality of life. Additionally, conditions such as high blood sugar are known to further exacerbate muscle degeneration. Skeletal muscle development and regeneration following injury or disease are based on myoblast differentiation. Bioactive peptides are biologically active peptides found in foods that could have pharmacological functions. The aim of this paper was to investigate the effect of decapeptide DI-10 from the potato alcalase hydrolysate on myoblast differentiation, muscle protein synthesis, and mitochondrial biogenesis in vitro. The treatment of C2C12 myoblasts with DI-10 (10 µg/mL) did not induce cell death. DI-10 treatment in C2C12 myoblast cells accelerates the phosphorylation of promyogenic kinases such as ERK, Akt and mTOR proteins in a dose-dependent manner. DI-10 improves myotubes differentiation and upregulates the expression of myosin heavy chain (MyHC) protein in myoblast cells under differentiation medium with high glucose. DI-10 effectively increased the phosphorylation of promyogenic kinases Akt, mTOR, and mitochondrial-related transcription factors AMPK and PGC1α expression under hyperglycemic conditions. Further, decapeptide DI-10 decreased the expression of Murf1 and MAFbx proteins, which are involved in protein degradation and muscle atrophy. Our reports support that decapeptide DI-10 could be potentially used as a therapeutic candidate for preventing muscle degeneration in sarcopenia.
Collapse
|