1
|
El-Saadony MT, Saad AM, Alkafaas SS, Dladla M, Ghosh S, Elkafas SS, Hafez W, Ezzat SM, Khedr SA, Hussien AM, Fahmy MA, Elesawi IE, Salem HM, Mohammed DM, Abd El-Mageed TA, Ahmed AE, Mosa WFA, El-Tarabily MK, AbuQamar SF, El-Tarabily KA. Chitosan, derivatives, and its nanoparticles: Preparation, physicochemical properties, biological activities, and biomedical applications - A comprehensive review. Int J Biol Macromol 2025:142832. [PMID: 40187443 DOI: 10.1016/j.ijbiomac.2025.142832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 03/17/2025] [Accepted: 04/02/2025] [Indexed: 04/07/2025]
Abstract
Chitosan, derived from the deacetylation of chitin, is the second most widely used natural polymer, valued for its nontoxic, biocompatible, and biodegradable properties. These attributes have driven extensive research into diverse applications of chitosan and various derivatives. The key characteristics of chitosan muco-adhesion, permeability enhancement, drug release modulation, and antimicrobial activity are primarily due to its amino and hydroxyl groups. However, the limited solubility of raw chitosan in water and most organic solvents has posed challenges for broader application. Numerous chemically modified derivatives have been developed to address these inadequacies with improved physical and chemical properties. Among these derivatives, chitosan nanoparticles have emerged as versatile drug carriers with precise release kinetics and the capacity for targeted delivery, greatly enhancing drug efficacy and safety profiles for therapeutic applications. Due to these unique physicochemical properties, chitosan and chitosan nanoparticles are promising for improved drug delivery, vaccine administration, transplantation, gene therapy, and diagnostics. This review examines the physicochemical properties and bioactivities of chitosan and chitosan nanoparticles, emphasizing their broad-ranging biomedical applications.
Collapse
Affiliation(s)
- Mohamed T El-Saadony
- Department of Agricultural Microbiology, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt.
| | - Ahmed M Saad
- Biochemistry Department, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt
| | - Samar Sami Alkafaas
- Molecular Cell Biology Unit, Division of Biochemistry, Department of Chemistry, Faculty of Science, Tanta University, Tanta 31527, Egypt
| | - Mthokozisi Dladla
- Department of Genetics, Faculty of Natural and Agricultural Sciences, University of the Free State, Bloemfontein 9301, South Africa
| | - Soumya Ghosh
- Department of Genetics, Faculty of Natural and Agricultural Sciences, University of the Free State, Bloemfontein 9301, South Africa
| | - Sara Samy Elkafas
- Production Engineering and Mechanical Design Department, Faculty of Engineering, Menofia University, Menofia 32511, Egypt; Faculty of Control System and Robotics, Information Technologies, Mechanics and Optics (ITMO) University, Saint-Petersburg 191002, Russia
| | - Wael Hafez
- Medical Research Division, Department of Internal Medicine, The National Research Centre, Cairo 11511, Egypt
| | - Salma Mohamed Ezzat
- Department of Chemistry, Division of Biochemistry, Faculty of Science, Tanta University, Tanta 44511, Egypt
| | - Sohila A Khedr
- Industrial Biotechnology Department, Faculty of Science, Tanta University, Tanta 31733, Egypt
| | - Aya Misbah Hussien
- Biotechnology Department at Institute of Graduate Studies and Research, Alexandria University, Alexandria, Egypt
| | - Mohamed A Fahmy
- Department of Agricultural Microbiology, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt
| | - Ibrahim Eid Elesawi
- Biochemistry Department, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt
| | - Heba M Salem
- Department of Poultry Diseases, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt; Department of Diseases of Birds, Rabbits, Fish & Their Care & Wildlife, School of Veterinary Medicine, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Dina Mostafa Mohammed
- Nutrition and Food Sciences Department, National Research Centre, Dokki, Giza 12622, Egypt
| | - Taia A Abd El-Mageed
- Department of Soils and Water, Faculty of Agriculture, Fayoum University, Fayoum 63514, Egypt
| | - Ahmed Ezzat Ahmed
- Department of Biology, College of Science, King Khalid University, Abha 61413, Saudi Arabia
| | - Walid F A Mosa
- Plant Production Department (Horticulture-Pomology), Faculty of Agriculture, Saba Basha, Alexandria University, Alexandria 21531, Egypt
| | | | - Synan F AbuQamar
- Department of Biology, College of Science, United Arab Emirates University, Al Ain 15551, United Arab Emirates.
| | - Khaled A El-Tarabily
- Department of Biology, College of Science, United Arab Emirates University, Al Ain 15551, United Arab Emirates.
| |
Collapse
|
2
|
Biswas R, Mondal S, Ansari MA, Sarkar T, Condiuc IP, Trifas G, Atanase LI. Chitosan and Its Derivatives as Nanocarriers for Drug Delivery. Molecules 2025; 30:1297. [PMID: 40142072 PMCID: PMC11946192 DOI: 10.3390/molecules30061297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Revised: 03/06/2025] [Accepted: 03/10/2025] [Indexed: 03/28/2025] Open
Abstract
Chitosan (CS) occurs naturally as an alkaline polysaccharide and has been demonstrated to have several activities of a biological nature. Additionally, as CS chains have functional hydroxyl and amino groups that are active, their applications can be expanded by chemically or molecularly altering the molecules to incorporate new functional groups. Due to its outstanding qualities, including biodegradability, biocompatibility, non-toxicity, and accessibility, it has received significant interest in all areas of biomedicine and nanomaterials being extremely promising as drug nanocarrier. The last decades have produced a lot of interest in CS-based nanoparticles (CSNPs), with an increasing number of research papers from around 1500 in 2015 to almost 5000 in 2024. The degree of crosslinking, the particulate system's shape, size, and density, in addition to the drug's physical and chemical properties, all have a role in how the drug is transported and released from CSNPs. When creating potential drug delivery systems based on CSNPs, all these factors must be considered. In earlier, CSNPs were employed to enhance the pharmacotherapeutics, pharmacokinetics, and solubility properties of drugs. By investigating its positively charged characteristics and changeable functional groups, CS has evolved into a versatile drug delivery system. The drug release from CSNPs will definitely be influenced by various changes to the functional groups, charges, and polymer backbone. This review mainly discusses the most important results published in the last decade. Despite the promising advantages of CSNPs, challenges related to the translation into clinical stages remain and further in vitro and in vivo studies are mandatory.
Collapse
Affiliation(s)
- Ranu Biswas
- Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, WB, India; (R.B.); (S.M.); (M.A.A.); (T.S.)
| | - Sourav Mondal
- Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, WB, India; (R.B.); (S.M.); (M.A.A.); (T.S.)
| | - Md Ahesan Ansari
- Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, WB, India; (R.B.); (S.M.); (M.A.A.); (T.S.)
| | - Tanima Sarkar
- Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, WB, India; (R.B.); (S.M.); (M.A.A.); (T.S.)
| | - Iustina Petra Condiuc
- Faculty of Medicine, Grigore T. Popa University of Medicine and Pharmacy, 700115 Iasi, Romania;
| | - Gisela Trifas
- “Cristofor Simionescu” Faculty of Chemical Engineering and Environmental Protection, “Gheorghe Asachi” Technical University of Iasi, 700050 Iasi, Romania;
| | - Leonard Ionut Atanase
- “Cristofor Simionescu” Faculty of Chemical Engineering and Environmental Protection, “Gheorghe Asachi” Technical University of Iasi, 700050 Iasi, Romania;
- Faculty of Medicine, “Apollonia” University of Iasi, 700511 Iasi, Romania
- Academy of Romanian Scientists, 050045 Bucharest, Romania
| |
Collapse
|
3
|
Zhu H, Chen S, Xue J, Wang X, Yang T, He J, Luo Y. Advances and challenges in green extraction of chitin for food and agriculture applications: A review. Int J Biol Macromol 2025; 297:139762. [PMID: 39800035 DOI: 10.1016/j.ijbiomac.2025.139762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 01/03/2025] [Accepted: 01/09/2025] [Indexed: 01/15/2025]
Abstract
Chitin, the second most abundant polysaccharide in nature, offers numerous practical applications due to its versatile functional properties. However, its utilization is constrained by significant challenges in extraction, as well as low solubility and high crystallinity. While traditional chemical and biological fermentation methods can achieve high-purity chitin, these processes are often environmentally harmful or time/energy-consuming. Ionic liquids and deep eutectic solvents have emerged as more sustainable alternatives for chitin extraction, though both methods still face certain limitations, which are comprehensively discussed in this review. Besides extraction, chitin or modified chitin is increasingly being used to create a variety of biomaterials, which have shown considerable potential in food applications, including food packaging, preservation, stabilization, and nutrient encapsulation and delivery. Furthermore, the applications of chitin-based biomaterials are also reviewed in agriculture, where they are utilized as fertilizers, biocides, the elicitation of plants, or to treat seeds. This review not only provides a deeper understanding of the advancements and limitations in green chitin extraction methods but also highlights the broad potential of chitin-based biomaterials in both food and agriculture.
Collapse
Affiliation(s)
- Honglin Zhu
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT 06269, United States
| | - Sunni Chen
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT 06269, United States
| | - Jingyi Xue
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT 06269, United States
| | - Xinhao Wang
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT 06269, United States
| | - Tiangang Yang
- Department of Chemistry, University of Connecticut, Storrs, CT 06269, United States
| | - Jie He
- Department of Chemistry, University of Connecticut, Storrs, CT 06269, United States
| | - Yangchao Luo
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT 06269, United States.
| |
Collapse
|
4
|
Zannat A, Shamshina JL. Chitin isolation from crustaceans and mushrooms: The need for quantitative assessment. Carbohydr Polym 2025; 348:122882. [PMID: 39567124 DOI: 10.1016/j.carbpol.2024.122882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 10/10/2024] [Accepted: 10/14/2024] [Indexed: 11/22/2024]
Abstract
This review examines key journal articles on the isolation of chitin from mushroom biomass comparing these findings to those related to crustacean chitin. It highlights the need for standardizing chitin characterization, emphasizing that chitin comprises a family of polymers with variations in molecular weight (Mw), degree of acetylation (%DA), and acetylation patterns (PA), leading to diverse physicochemical properties and biological activities. The review positions fungi and mushrooms as emerging sources of 'vegan' chitin, being non-animal and free from allergenic proteins. Their ability to be cultivated year-round, along with rapid growth and low-cost biowaste substrates, makes them attractive alternatives to crustacean chitin. Market adoption of mushroom chitin will depend on its potential applications in high-value products. Traditionally, chitin characterization has been semi-qualitative, but there is now a growing recognition of how sample inconsistencies impact research quality. This review underscores the importance of quantitative analysis for achieving practical, repeatable, and reproducible results while addressing the challenges in characterizing fungal chitin. We argue that accurately determining the properties of fungal chitin is essential and should be a fundamental aspect of every study, as these properties significantly influence the polymer's characteristics and biological activity.
Collapse
Affiliation(s)
- Akhiri Zannat
- Fiber and Biopolymer Research Institute, Department of Plant and Soil Science, Texas Tech University, TX 79409, United States
| | - Julia L Shamshina
- Fiber and Biopolymer Research Institute, Department of Plant and Soil Science, Texas Tech University, TX 79409, United States; Department of Chemistry and Biochemistry, Texas Tech University, TX 79409, United States.
| |
Collapse
|
5
|
Elouali S, Hamdan YA, Benali S, Lhomme P, Gosselin M, Raquez JM, Rhazi M. Extraction of chitin and chitosan from Hermetia illucens breeding waste: A greener approach for industrial application. Int J Biol Macromol 2024; 285:138302. [PMID: 39638207 DOI: 10.1016/j.ijbiomac.2024.138302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 11/20/2024] [Accepted: 12/01/2024] [Indexed: 12/07/2024]
Abstract
Sustainably exploiting the waste of the black soldier fly (BSF) to produce chitin and chitosan remains a challenge. This work valorizes the pupal cases of BSF for chitin and chitosan extraction. Four chemical extraction processes have been employed. Process 1, the standard method for this source, served as a control. Processes 2 and 3 were designed to assess and select the most effective delipidation method, while the optimized Process 4 involved autoclave conditions (121 °C-2.2 Bar). All chitin derivatives obtained were characterized by FTIR, SEM, XRD, 1H NMR, TGA, potentiometry, viscosimetry, and ICP-OES. Extraction using Process 4 (P4) proved to be the most efficient, demonstrating a deproteinization efficiency of 94.25 ± 0.6 % in a total reaction time of 1.15 ± 0.08 h and water consumption of 250 ± 26.86 L/kg, significantly lower than in other processes. In terms of yield, this process resulted in chitin and chitosan with respective yields of 34.74 ± 1.15 % and 83.33 ± 1.28 %, outperforming the other methods. Regarding physicochemical properties, P4 produced chitin and chitosan with improved thermal stability, with DTGmax values of 421 °C and 345 °C respectively. Additionally, the crystallinity of chitin was reduced by 25.68 %. For chitosan, the degree of acetylation (DA) was the lowest, while maintaining a high molecular weight of 220,378 g.mol-1. These results confirm that P4 is efficient and environmentally friendly, making it well-suited for industrial applications.
Collapse
Affiliation(s)
- Samia Elouali
- Interdisciplinary Laboratory in Bio-Resources, Environment and Materials, Higher Normal School, Cadi Ayyad University, 40000 Marrakech, Morocco; University of Mons (UMONS) - Laboratory of Polymeric and Composite Materials (LPCM), Center of Innovation and Research in Materials and Polymers (CIRMAP), Place du Parc 20, 7000 Mons, Belgium.
| | - Youssef Ait Hamdan
- Interdisciplinary Laboratory in Bio-Resources, Environment and Materials, Higher Normal School, Cadi Ayyad University, 40000 Marrakech, Morocco; Univ Rennes, CNRS, ISCR-UMR 6226, F-35000 Rennes, France
| | - Samira Benali
- University of Mons (UMONS) - Laboratory of Polymeric and Composite Materials (LPCM), Center of Innovation and Research in Materials and Polymers (CIRMAP), Place du Parc 20, 7000 Mons, Belgium
| | - Patrick Lhomme
- Laboratory of Zoology, Research Institute for Bioscience, Mons University, Mons 7000, Belgium; International Centre For Agricultural Research In The Dry Areas, Rabat 10000, Morocco
| | - Matthias Gosselin
- Laboratory of Entomology, Haute École Provinciale de Hainaut - Condorcet, Ath, Belgium
| | - Jean-Marie Raquez
- University of Mons (UMONS) - Laboratory of Polymeric and Composite Materials (LPCM), Center of Innovation and Research in Materials and Polymers (CIRMAP), Place du Parc 20, 7000 Mons, Belgium
| | - Mohammed Rhazi
- Interdisciplinary Laboratory in Bio-Resources, Environment and Materials, Higher Normal School, Cadi Ayyad University, 40000 Marrakech, Morocco
| |
Collapse
|
6
|
Li R, Hsueh PH, Ulfadillah SA, Wang ST, Tsai ML. Exploring the Sustainable Utilization of Deep Eutectic Solvents for Chitin Isolation from Diverse Sources. Polymers (Basel) 2024; 16:3187. [PMID: 39599277 PMCID: PMC11598258 DOI: 10.3390/polym16223187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 11/11/2024] [Accepted: 11/14/2024] [Indexed: 11/29/2024] Open
Abstract
Deep eutectic solvents (DES) represent an innovative and environmentally friendly approach for chitin isolation. Chitin is a natural nitrogenous polysaccharide, characterized by its abundance of amino and hydroxyl groups. The hydrogen bond network in DES can disrupt the crystalline structure of chitin, facilitating its isolation from bioresources by dissolving or degrading other components. DES are known for their low cost, natural chemical constituents, and recyclability. Natural deep eutectic solvents (NADES), a subclass of DES made from natural compounds, offer higher biocompatibility, biodegradability, and the lowest biotoxicity, making them highly promising for the production of eco-friendly chitin products. This review summarized studies on chitin isolation by DES, including reviews of biomass resources, isolation conditions (raw materials, DES compositions, solid-liquid ratios, temperature, and time), and the physicochemical properties of chitin products. Consequently, we have concluded that tailoring an appropriate DES-based process on the specific composition of the raw material can notably improve isolation efficiency. Acidic DES are particularly effective for extracting chitin from materials with high mineral content, such as crustacean bio-waste; for instance, the choline chloride-lactic acid DES achieved purity levels comparable to those of commercial chemical methods. By contrast, alkaline DES are better suited for chitin isolation from protein-rich sources, such as squid pens. DES facilitate calcium carbonate removal through H+ ion release and leverage unique hydrogen bonding interactions for efficient deproteination. Among these, potassium carbonate-glycerol DES have demonstrated optimal efficacy. Nonetheless, further comprehensive research is essential to evaluate the environmental impact, economic feasibility, and safety of DES application in chitin production.
Collapse
Affiliation(s)
| | | | | | - Shang-Ta Wang
- Department of Food Science, National Taiwan Ocean University, Keelung 202301, Taiwan; (R.L.); (P.-H.H.); (S.A.U.)
| | - Min-Lang Tsai
- Department of Food Science, National Taiwan Ocean University, Keelung 202301, Taiwan; (R.L.); (P.-H.H.); (S.A.U.)
| |
Collapse
|
7
|
Gao M, Tang H, Zhu H. Advances in extraction, utilization, and development of chitin/chitosan and its derivatives from shrimp shell waste. Compr Rev Food Sci Food Saf 2024; 23:e70008. [PMID: 39223761 DOI: 10.1111/1541-4337.70008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 07/19/2024] [Accepted: 08/13/2024] [Indexed: 09/04/2024]
Abstract
Shrimp consumption is in great demand among the seafood used globally. However, this expansion has resulted in the substantial generation and disposal of shrimp shell waste. Through literature search, it has been observed that since 2020, global scholars have shown unprecedented interest in shrimp shell waste and its chitin/chitosan. However, these new insights lack corresponding and comprehensive summarization and analysis. Therefore, this article provides a detailed review of the extraction methods, applications, and the latest research developments on chitin/chitosan from shrimp shells, including micro-nano derivatives, from 2020 to the present. The results indicate that chemical extraction remains the primary technique for the extraction and preparation of chitin/chitosan from shrimp shells. With further refinement and development, adjusting parameters in the chemical extraction process or employing auxiliary techniques such as microwave and radiation enable the customization of target products with different characteristics (e.g., deacetylation degree, molecular weight, and degree of acetylation) according to specific needs. Additionally, in pursuit of environmentally friendly, efficient, and gentle extraction processes, recent research has shifted toward microbial fermentation and green solvent methods for chitin/chitosan extraction. Beyond the traditional antibacterial, film-forming, and encapsulation functionalities, research into the applications of chitosan in biomedical, food processing, new materials, water treatment, and adsorption fields is gradually deepening. Chitin/chitosan derivatives and their modified products have also been a focal point of research in recent years. However, with the rapid expansion, the future development of chitin/chitosan and its derivatives still faces challenges related to the unclear mechanism of action and the complexities associated with industrial scale-up.
Collapse
Affiliation(s)
- Mingyue Gao
- College of Life Sciences, Qingdao University, Qingdao, China
| | - Hanqi Tang
- Personal Department, Shandong University, Qingdao, China
| | - Hongguang Zhu
- College of Life Sciences, Qingdao University, Qingdao, China
| |
Collapse
|
8
|
Zhan Z, Feng Y, Zhao J, Qiao M, Jin Q. Valorization of Seafood Waste for Food Packaging Development. Foods 2024; 13:2122. [PMID: 38998628 PMCID: PMC11241680 DOI: 10.3390/foods13132122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 06/28/2024] [Accepted: 06/30/2024] [Indexed: 07/14/2024] Open
Abstract
Packaging plays a crucial role in protecting food by providing excellent mechanical properties as well as effectively blocking water vapor, oxygen, oil, and other contaminants. The low degradation of widely used petroleum-based plastics leads to environmental pollution and poses health risks. This has drawn interest in renewable biopolymers as sustainable alternatives. The seafood industry generates significant waste that is rich in bioactive substances like chitin, chitosan, gelatins, and alginate, which can replace synthetic polymers in food packaging. Although biopolymers offer biodegradability, biocompatibility, and non-toxicity, their films often lack mechanical and barrier properties compared with synthetic polymer films. This comprehensive review discusses the chemical structure, characteristics, and extraction methods of biopolymers derived from seafood waste and their usage in the packaging area as reinforcement or base materials to guide researchers toward successful plastics replacement and commercialization. Our review highlights recent advancements in improving the thermal durability, mechanical strength, and barrier properties of seafood waste-derived packaging, explores the mechanisms behind these improvements, and briefly mentions the antimicrobial activities and mechanisms gained from these biopolymers. In addition, the remaining challenges and future directions for using seafood waste-derived biopolymers for packaging are discussed. This review aims to guide ongoing efforts to develop seafood waste-derived biopolymer films that can ultimately replace traditional plastic packaging.
Collapse
Affiliation(s)
- Zhijing Zhan
- School of Food and Agriculture, University of Maine, Orono, ME 04469, USA
| | - Yiming Feng
- Virginia Seafood AREC, Virginia Polytechnic Institute and State University, Hampton, VA 23662, USA
- Department of Biological Systems Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - Jikai Zhao
- School of Earth, Environmental, and Marine Sciences, The University of Texas Rio Grande Valley, Edinburg, TX 78542, USA
| | - Mingyu Qiao
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT 06269, USA
- Center for Clean Energy Engineering (C2E2), University of Connecticut, Storrs, CT 05269, USA
- Institute of Materials Science (IMS), University of Connecticut, Storrs, CT 06269, USA
| | - Qing Jin
- School of Food and Agriculture, University of Maine, Orono, ME 04469, USA
| |
Collapse
|
9
|
Celebi Ö, Bahadir T, Şimşek İ, Aydın F, Kahve Hİ, Tulun Ş, Büyük F, Celebi H. Surface defects due to bacterial residue on shrimp shell. Int J Biol Macromol 2024; 263:130353. [PMID: 38403225 DOI: 10.1016/j.ijbiomac.2024.130353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 02/12/2024] [Accepted: 02/19/2024] [Indexed: 02/27/2024]
Abstract
The changes in the surface chemistry and morphological structure of chitin forms obtained from shrimp shells (ShpS) with and without microorganisms were evaluated. Total mesophilic aerobic bacteria (TMAB), estimated Pseudomonas spp. and Enterococcus spp. were counted in Shp-S by classical cultural counting on agar medium, where the counts were 6.56 ± 0.09, 6.30 ± 0.12, and 3.15 ± 0.03 CFU/g, respectively. Fourier Transform Infrared (FTIR) Spectroscopy and Scanning Electron Microscopy (SEM)/Energy dispersed X-ray (EDX) were used to assess the surface chemistry/functional groups and morphological structure for ChTfree (non-microorganism), and ChTmo (with microorganisms). ChTfree FTIR spectra presented a detailed chitin structure by OH, NH, and CO stretching vibrations, whereas specific peaks of chitin could not be detected in ChTmo. Major differences were also found in SEM analysis for ChTfree and ChTmo. ChTfree had a flat, prominent micropore, partially homogeneous structure, while ChTmo had a layered, heterogeneous, complex dense fibrous, and lost pores form. The degree of deacetylation was calculated for ChTfree and ChTmo according to FTIR and EDX data. The results suggest that the degree of deacetylation decreases in the presence of microorganisms, affecting the production of beneficial components negatively. The findings were also supported by the molecular docking model.
Collapse
Affiliation(s)
- Özgür Celebi
- Department of Microbiology, Faculty of Veterinary Medicine Kafkas University, 36000 Kars, Turkey
| | - Tolga Bahadir
- Department of Environmental Engineering, Faculty of Engineering, Aksaray University, 68100 Aksaray, Turkey
| | - İsmail Şimşek
- Department of Environmental Engineering, Faculty of Engineering, Aksaray University, 68100 Aksaray, Turkey
| | - Furkan Aydın
- Department of Food Engineering, Faculty of Engineering, Aksaray University, 68100 Aksaray, Turkey
| | - Halil İbrahim Kahve
- Department of Food Engineering, Faculty of Engineering, Aksaray University, 68100 Aksaray, Turkey
| | - Şevket Tulun
- Department of Environmental Engineering, Faculty of Engineering, Aksaray University, 68100 Aksaray, Turkey
| | - Fatih Büyük
- Department of Microbiology, Faculty of Veterinary Medicine Kafkas University, 36000 Kars, Turkey
| | - Hakan Celebi
- Department of Environmental Engineering, Faculty of Engineering, Aksaray University, 68100 Aksaray, Turkey.
| |
Collapse
|
10
|
Kadokawa JI. An overview on acylation methods of α-chitin. Int J Biol Macromol 2024; 262:130166. [PMID: 38360241 DOI: 10.1016/j.ijbiomac.2024.130166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 01/28/2024] [Accepted: 02/11/2024] [Indexed: 02/17/2024]
Abstract
This article overviews the acylation methods of α-chitin developed over the last four decades. The acylation of polysaccharides has been identified as a useful approach for conferring properties such as thermoplasticity. Owing to the poor solubility of α-chitin, its acylation using acid anhydrides and acyl chlorides has been traditionally investigated under heterogeneous conditions in strong acidic media. Although chitin chains depolymerize under acidic conditions, the resultant derivatives exhibit certain properties and functions. Solvents, such as LiCl/N,N-dimethyladcetamide, ionic liquids, and deep eutectic solvents, are suitable for α-chitin dissolution; therefore, acylation methods for α-chitin under homogeneous conditions have been developed using these solvents as reaction media. The functional materialization of the resultant derivatives was achieved by introducing appropriate substituents and controlling their ratios.
Collapse
Affiliation(s)
- Jun-Ichi Kadokawa
- Graduate School of Science and Engineering, Kagoshima University, 1-21-40 Korimoto, Kagoshima 890-0065, Japan.
| |
Collapse
|
11
|
Zhang J, Mohd Said F, Jing Z. Hydrogels based on seafood chitin: From extraction to the development. Int J Biol Macromol 2023; 253:126482. [PMID: 37640188 DOI: 10.1016/j.ijbiomac.2023.126482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 07/31/2023] [Accepted: 08/22/2023] [Indexed: 08/31/2023]
Abstract
Chitin is extensively applied in vast applications due to its excellent biological properties, such as biodegradable and non-toxic. About 50 % of waste generated during seafood processing is chitin. Conventionally, chitin is extracted via chemical method. However, it has many shortcomings. Many novel extraction methods have emerged, including enzymatic hydrolysis, microbial fermentation, ultrasonic or microwave-assisted, ionic liquids, and deep eutectic solvents. Chitin and its derivatives-based hydrogels have attracted much attention due to their excellent properties. Nevertheless, they all have many limitations. Therefore, the preparation and application of chitin and its derivatives-based hydrogels are still facing great challenges. This review focuses on the challenges and prospects for sustainable chitin extraction from seafood waste and the preparation and application of chitin and its derivatives-based hydrogels. First section summarizes the mechanism and application of several methods of extracting chitin. The different extraction methods were evaluated from the aspects of yield, degree of acetylation, and protein and mineral residuals. The shortcomings of the extraction methods are also discussed. Next section summarizes the preparation and application of chitin and its derivatives-based hydrogels. Overall, we hope this mini-review can provide a practical reference for selecting chitin extraction methods from seafood and applying chitin and its derivatives-based hydrogels.
Collapse
Affiliation(s)
- Juanni Zhang
- Faculty of Chemical and Process Engineering Technology, Universiti Malaysia Pahang Al-Sultan Abdullah, Lebuh Persiaran Tun Khalil Yaakob, 26300 Kuantan, Pahang, Malaysia
| | - Farhan Mohd Said
- Faculty of Chemical and Process Engineering Technology, Universiti Malaysia Pahang Al-Sultan Abdullah, Lebuh Persiaran Tun Khalil Yaakob, 26300 Kuantan, Pahang, Malaysia.
| | - Zhanxin Jing
- College of Chemistry and Environment, Guangdong Ocean University, 524088 Zhanjiang, Guangdong, China
| |
Collapse
|
12
|
Chitin, Chitosan, and Nanochitin: Extraction, Synthesis, and Applications. Polymers (Basel) 2022; 14:polym14193989. [PMID: 36235937 PMCID: PMC9571330 DOI: 10.3390/polym14193989] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 09/15/2022] [Accepted: 09/20/2022] [Indexed: 11/24/2022] Open
Abstract
Crustacean shells are a sustainable source of chitin. Extracting chitin from crustacean shells is ongoing research, much of which is devoted to devising a sustainable process that yields high-quality chitin with minimal waste. Chemical and biological methods have been used extensively for this purpose; more recently, methods based on ionic liquids and deep eutectic solvents have been explored. Extracted chitin can be converted into chitosan or nanochitin. Once chitin is obtained and modified into the desired form, it can be used in a wide array of applications, including as a filler material, in adsorbents, and as a component in biomaterials, among others. Describing the extraction of chitin, synthesis of chitosan and nanochitin, and applications of these materials is the aim of this review. The first section of this review summarizes and compares common chitin extraction methods, highlighting the benefits and shortcomings of each, followed by descriptions of methods to convert chitin into chitosan and nanochitin. The second section of this review discusses some of the wide range of applications of chitin and its derivatives.
Collapse
|
13
|
Pellis A, Guebitz GM, Nyanhongo GS. Chitosan: Sources, Processing and Modification Techniques. Gels 2022; 8:gels8070393. [PMID: 35877478 PMCID: PMC9322947 DOI: 10.3390/gels8070393] [Citation(s) in RCA: 80] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 06/11/2022] [Accepted: 06/19/2022] [Indexed: 02/07/2023] Open
Abstract
Chitosan, a copolymer of glucosamine and N-acetyl glucosamine, is derived from chitin. Chitin is found in cell walls of crustaceans, fungi, insects and in some algae, microorganisms, and some invertebrate animals. Chitosan is emerging as a very important raw material for the synthesis of a wide range of products used for food, medical, pharmaceutical, health care, agriculture, industry, and environmental pollution protection. This review, in line with the focus of this special issue, provides the reader with (1) an overview on different sources of chitin, (2) advances in techniques used to extract chitin and converting it into chitosan, (3) the importance of the inherent characteristics of the chitosan from different sources that makes them suitable for specific applications and, finally, (4) briefly summarizes ways of tailoring chitosan for specific applications. The review also presents the influence of the degree of acetylation (DA) and degree of deacetylation (DDA), molecular weight (Mw) on the physicochemical and biological properties of chitosan, acid-base behavior, biodegradability, solubility, reactivity, among many other properties that determine processability and suitability for specific applications. This is intended to help guide researchers select the right chitosan raw material for their specific applications.
Collapse
Affiliation(s)
- Alessandro Pellis
- Department of Chemistry and Industrial Chemistry, University of Genova, Via Dodecaneso 31, 16146 Genova, Italy;
| | - Georg M. Guebitz
- Department of Agrobiotechnology, IFA-Tulln, Institute of Environmental Biotechnology, University of Natural Ressources and Life Sciences, 1180 Vienna, Austria;
| | - Gibson Stephen Nyanhongo
- Department of Agrobiotechnology, IFA-Tulln, Institute of Environmental Biotechnology, University of Natural Ressources and Life Sciences, 1180 Vienna, Austria;
- Department of Biotechnology and Food Technology, Faculty of Science, University of Johannesburg, Johannesburg P.O. Box 17011, South Africa
- Correspondence:
| |
Collapse
|
14
|
Characteristics of Marine Biomaterials and Their Applications in Biomedicine. Mar Drugs 2022; 20:md20060372. [PMID: 35736175 PMCID: PMC9228671 DOI: 10.3390/md20060372] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 05/21/2022] [Accepted: 05/27/2022] [Indexed: 02/04/2023] Open
Abstract
Oceans have vast potential to develop high-value bioactive substances and biomaterials. In the past decades, many biomaterials have come from marine organisms, but due to the wide variety of organisms living in the oceans, the great diversity of marine-derived materials remains explored. The marine biomaterials that have been found and studied have excellent biological activity, unique chemical structure, good biocompatibility, low toxicity, and suitable degradation, and can be used as attractive tissue material engineering and regenerative medicine applications. In this review, we give an overview of the extraction and processing methods and chemical and biological characteristics of common marine polysaccharides and proteins. This review also briefly explains their important applications in anticancer, antiviral, drug delivery, tissue engineering, and other fields.
Collapse
|