1
|
Lee DH, Lee HJ, Yang G, Kim DY, Kim JU, Yook TH, Lee JH, Kim HJ. A novel treatment strategy targeting cellular pathways with natural products to alleviate sarcopenia. Phytother Res 2024; 38:5033-5051. [PMID: 39099170 DOI: 10.1002/ptr.8301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 07/08/2024] [Accepted: 07/12/2024] [Indexed: 08/06/2024]
Abstract
Sarcopenia is a condition marked by a significant reduction in muscle mass and strength, primarily due to the aging process, which critically impacts muscle protein dynamics, metabolic functions, and overall physical functionality. This condition leads to increased body fat and reduced daily activity, contributing to severe health issues and a lower quality of life among the elderly. Recognized in the ICD-10-CM only in 2016, sarcopenia lacks definitive treatment options despite its growing prevalence and substantial social and economic implications. Given the aging global population, addressing sarcopenia has become increasingly relevant and necessary. The primary causes include aging, cachexia, diabetes, and nutritional deficiencies, leading to imbalances in protein synthesis and degradation, mitochondrial dysfunction, and hormonal changes. Exercise remains the most effective intervention, but it is often impractical for individuals with limited mobility, and pharmacological options such as anabolic steroids and myostatin inhibitors are not FDA-approved and are still under investigation. This review is crucial as it examines the potential of natural products as a novel treatment strategy for sarcopenia, targeting multiple mechanisms involved in its pathogenesis. By exploring natural products' multi-targeted effects, this study aims to provide innovative and practical solutions for sarcopenia management. Therefore, this review indicates significant improvements in muscle mass and function with the use of specific natural compounds, suggesting promising alternatives for those unable to engage in regular physical activity.
Collapse
Affiliation(s)
- Da Hee Lee
- College of Korean Medicine, Woosuk University, Jeonju-si, Republic of Korea
| | - Hye Jin Lee
- College of Korean Medicine, Woosuk University, Jeonju-si, Republic of Korea
| | - Gabsik Yang
- College of Korean Medicine, Woosuk University, Jeonju-si, Republic of Korea
| | - Dae Yong Kim
- College of Korean Medicine, Woosuk University, Jeonju-si, Republic of Korea
| | - Jong Uk Kim
- College of Korean Medicine, Woosuk University, Jeonju-si, Republic of Korea
| | - Tae Han Yook
- College of Korean Medicine, Woosuk University, Jeonju-si, Republic of Korea
| | - Jun Ho Lee
- College of Korean Medicine, Woosuk University, Jeonju-si, Republic of Korea
- Da Capo Co., Ltd., Jeonju-si, Republic of Korea
| | - Hong Jun Kim
- College of Korean Medicine, Woosuk University, Jeonju-si, Republic of Korea
| |
Collapse
|
2
|
Ju L, Diao J, Zhang J, Dai F, Zhou H, Han Z, Hu R, Pei T, Wang F, He Z, Fu X, Wang M, Xiao W, Ma Y. Shenshuai Yingyang Jiaonang ameliorates chronic kidney disease-associated muscle atrophy in rats by inhibiting ferroptosis mediated by the HIF-1α/SLC7A11 pathway. Heliyon 2024; 10:e29093. [PMID: 38665562 PMCID: PMC11043956 DOI: 10.1016/j.heliyon.2024.e29093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 03/26/2024] [Accepted: 03/31/2024] [Indexed: 04/28/2024] Open
Abstract
Objective Shenshuai Yingyang Jiaonang (SSYYJN), a traditional Chinese medicine formula, can ameliorate muscle atrophy associated with chronic kidney disease (CKD). However, its mechanisms of action remain unclear. This study is to investigate the molecular mechanisms involved in the effects of SSYYJN in ameliorating muscle atrophy associated with CKD in rats. Methods: The chemical compounds of SSYYJN were identified by UPLC-Q-Orbitrap HRMS. Considering the dose-response relationship of the identified compounds, male SD rats were randomly divided into Sham, Model, SSYYJN, and α-Keto Acid (KA) groups. Subsequently, we assessed the therapeutic and anti-ferroptotic effects of SSYYJN. Network pharmacology studies were used to predict the molecular mechanism of SSYYJN on ferroptosis and were further verified for accuracy. Results A total of 42 active compounds were identified from SSYYJN. SSYYJN alleviated muscle atrophy caused by CKD, as evidenced by changes in body weight, serum biochemical indices, mass and histopathology of the skeletal muscle, and the levels of MuRF1. SSYYJN reduced the levels of iron, MDA, and ROS, increased the levels of GSH, NAPDH, and Gpx4. Network pharmacology analysis indicated that SSYYJN exerted anti-ferroptotic effects that were closely related to the HIF-1α signaling pathway. Molecular protein and genetic test results showed that SSYYJN increased HIF-1α protein and increased SLC7A11. Conclusions SSYYJN attenuates muscle atrophy in CKD by inhibiting ferroptosis through the activation of the HIF-1α/SLC7A11 pathway and might be a promising traditional Chinese medicine for muscle atrophy in CKD.
Collapse
Affiliation(s)
- Liliang Ju
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Jianxin Diao
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Jiaxing Zhang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Fahong Dai
- Shenzhen Bao'an Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Hong Zhou
- National Clinical Research Center for Kidney Disease, Nanfang Hospital, Guangzhou, China
- Guangdong Provincial Clinical Research Center for Kidney Disease, Guangzhou, China
| | - Zhongxiao Han
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Rong Hu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Tingting Pei
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Fujing Wang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Zhuoen He
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Xiuqiong Fu
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Mingqing Wang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Wei Xiao
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
- Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education, Guangdong Pharmaceutical University, Guangzhou, China
| | - Yun Ma
- Clinical Pharmacy Center, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
3
|
Tarantino G, Sinatti G, Citro V, Santini SJ, Balsano C. Sarcopenia, a condition shared by various diseases: can we alleviate or delay the progression? Intern Emerg Med 2023; 18:1887-1895. [PMID: 37490203 PMCID: PMC10543607 DOI: 10.1007/s11739-023-03339-z] [Citation(s) in RCA: 68] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 06/01/2023] [Indexed: 07/26/2023]
Abstract
Sarcopenia is a severe condition common to various chronic diseases and it is reckoned as a major health problem. It encompasses many different molecular mechanisms that have been for a while discovered but not definitely clarified. Although sarcopenia is a disability status that leads to serious health consequences, the scarcity of suitable animal models has curtailed research addressing this disorder. Another limitation in the field of clinical investigation of sarcopenic patients is the lack of a generally accepted definition coupled with the difficulty of adopting common diagnostic criteria. In fact, both do not permit to clarify the exact prevalence rate and consequently limit physicians to establish any kind of therapeutical approach or, when possible, to adopt preventive measures. Unfortunately, there is no standardized cure, apart from doing more physical activity and embracing a balanced diet, but newly discovered substances start being considered. In this review, authors try to give an overview addressing principal pathways of sarcopenia and offer critical features of various possible interventions.
Collapse
Affiliation(s)
- Giovanni Tarantino
- Department of Clinical Medicine and Surgery, Federico II University Medical School of Naples, Naples, Italy
| | - Gaia Sinatti
- Department of Life, Health and Environmental Sciences‑MESVA, School of Emergency‑Urgency Medicine, University of L'Aquila, 67100, L'Aquila, Italy
| | - Vincenzo Citro
- Department of General Medicine, "Umberto I" Hospital, Nocera Inferiore, SA, Italy
| | - Silvano Jr Santini
- Department of Life, Health and Environmental Sciences‑MESVA, School of Emergency‑Urgency Medicine, University of L'Aquila, 67100, L'Aquila, Italy
- Francesco Balsano Foundation, Via Giovanni Battista Martini 6, 00198, Rome, Italy
| | - Clara Balsano
- Department of Life, Health and Environmental Sciences‑MESVA, School of Emergency‑Urgency Medicine, University of L'Aquila, 67100, L'Aquila, Italy.
- Francesco Balsano Foundation, Via Giovanni Battista Martini 6, 00198, Rome, Italy.
| |
Collapse
|
4
|
Ticinesi A, Nouvenne A, Cerundolo N, Parise A, Meschi T. Accounting Gut Microbiota as the Mediator of Beneficial Effects of Dietary (Poly)phenols on Skeletal Muscle in Aging. Nutrients 2023; 15:nu15102367. [PMID: 37242251 DOI: 10.3390/nu15102367] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/14/2023] [Accepted: 05/16/2023] [Indexed: 05/28/2023] Open
Abstract
Sarcopenia, the age-related loss of muscle mass and function increasing the risk of disability and adverse outcomes in older people, is substantially influenced by dietary habits. Several studies from animal models of aging and muscle wasting indicate that the intake of specific polyphenol compounds can be associated with myoprotective effects, and improvements in muscle strength and performance. Such findings have also been confirmed in a smaller number of human studies. However, in the gut lumen, dietary polyphenols undergo extensive biotransformation by gut microbiota into a wide range of bioactive compounds, which substantially contribute to bioactivity on skeletal muscle. Thus, the beneficial effects of polyphenols may consistently vary across individuals, depending on the composition and metabolic functionality of gut bacterial communities. The understanding of such variability has recently been improved. For example, resveratrol and urolithin interaction with the microbiota can produce different biological effects according to the microbiota metabotype. In older individuals, the gut microbiota is frequently characterized by dysbiosis, overrepresentation of opportunistic pathogens, and increased inter-individual variability, which may contribute to increasing the variability of biological actions of phenolic compounds at the skeletal muscle level. These interactions should be taken into great consideration for designing effective nutritional strategies to counteract sarcopenia.
Collapse
Affiliation(s)
- Andrea Ticinesi
- Department of Medicine and Surgery, University of Parma, Via Antonio Gramsci 14, 43126 Parma, Italy
- Microbiome Research Hub, University of Parma, Parco Area delle Scienze 11/1, 43124 Parma, Italy
- Geriatric-Rehabilitation Department, Azienda Ospedaliero-Universitaria di Parma, Via Antonio Gramsci 14, 43126 Parma, Italy
| | - Antonio Nouvenne
- Microbiome Research Hub, University of Parma, Parco Area delle Scienze 11/1, 43124 Parma, Italy
- Geriatric-Rehabilitation Department, Azienda Ospedaliero-Universitaria di Parma, Via Antonio Gramsci 14, 43126 Parma, Italy
| | - Nicoletta Cerundolo
- Geriatric-Rehabilitation Department, Azienda Ospedaliero-Universitaria di Parma, Via Antonio Gramsci 14, 43126 Parma, Italy
| | - Alberto Parise
- Geriatric-Rehabilitation Department, Azienda Ospedaliero-Universitaria di Parma, Via Antonio Gramsci 14, 43126 Parma, Italy
| | - Tiziana Meschi
- Department of Medicine and Surgery, University of Parma, Via Antonio Gramsci 14, 43126 Parma, Italy
- Microbiome Research Hub, University of Parma, Parco Area delle Scienze 11/1, 43124 Parma, Italy
- Geriatric-Rehabilitation Department, Azienda Ospedaliero-Universitaria di Parma, Via Antonio Gramsci 14, 43126 Parma, Italy
| |
Collapse
|
5
|
Jeon DY, Jeong SY, Lee JW, Kim J, Kim JH, Chu HS, Jeong WJ, Lee BJ, Ahn B, Kim J, Choi SH, Park JW. FOXO1 Is a Key Mediator of Glucocorticoid-Induced Expression of Tristetraprolin in MDA-MB-231 Breast Cancer Cells. Int J Mol Sci 2022; 23:ijms232213673. [PMID: 36430156 PMCID: PMC9693238 DOI: 10.3390/ijms232213673] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 11/03/2022] [Accepted: 11/04/2022] [Indexed: 11/10/2022] Open
Abstract
The mRNA destabilizing factor tristetraprolin (TTP) functions as a tumor suppressor by down-regulating cancer-associated genes. TTP expression is significantly reduced in various cancers, which contributes to cancer processes. Enforced expression of TTP impairs tumorigenesis and abolishes maintenance of the malignant state, emphasizing the need to identify a TTP inducer in cancer cells. To search for novel candidate agents for inducing TTP in cancer cells, we screened a library containing 1019 natural compounds using MCF-7 breast cancer cells transfected with a reporter vector containing the TTP promoter upstream of the luciferase gene. We identified one molecule, of which the enantiomers are betamethasone 21-phosphate (BTM-21-P) and dexamethasone 21-phosphate (BTM-21-P), as a potent inducer of TTP in cancer cells. We confirmed that BTM-21-P, DXM-21-P, and dexamethasone (DXM) induced the expression of TTP in MDA-MB-231 cells in a glucocorticoid receptor (GR)-dependent manner. To identify potential pathways linking BTM-21-P and DXM-21-P to TTP induction, we performed an RNA sequencing-based transcriptome analysis of MDA-MB-231 cells at 3 h after treatment with these compounds. A heat map analysis of FPKM expression showed a similar expression pattern between cells treated with the two compounds. The KEGG pathway analysis results revealed that the upregulated DEGs were strongly associated with several pathways, including the Hippo signaling pathway, PI3K-Akt signaling pathway, FOXO signaling pathway, NF-κB signaling pathway, and p53 signaling pathway. Inhibition of the FOXO pathway using a FOXO1 inhibitor blocked the effects of BTM-21-P and DXM-21-P on the induction of TTP in MDA-MB-231 cells. We found that DXM enhanced the binding of FOXO1 to the TTP promoter in a GR-dependent manner. In conclusion, we identified a natural compound of which the enantiomers are DXM-21-P and BTM-21-P as a potent inducer of TTP in breast cancer cells. We also present new insights into the role of FOXO1 in the DXM-21-P- and BTM-21-P-induced expression of TTP in cancer cells.
Collapse
Affiliation(s)
- Do Yong Jeon
- Department of Biological Sciences, University of Ulsan, Ulsan 44610, Korea
| | - So Yeon Jeong
- Department of Biological Sciences, University of Ulsan, Ulsan 44610, Korea
| | - Ju Won Lee
- Department of Biological Sciences, University of Ulsan, Ulsan 44610, Korea
| | - Jeonghwan Kim
- School of System Biomedical Science, Soongsil University, Seoul 06978, Korea
| | - Jee Hyun Kim
- RopheLBio, B102, Seoul Forest M Tower, Seoul 04778, Korea
| | - Hun Su Chu
- RopheLBio, B102, Seoul Forest M Tower, Seoul 04778, Korea
| | - Won Jin Jeong
- RopheLBio, B102, Seoul Forest M Tower, Seoul 04778, Korea
| | - Byung Ju Lee
- Department of Biological Sciences, University of Ulsan, Ulsan 44610, Korea
| | - Byungyong Ahn
- Department of Food Science and Nutrition, University of Ulsan, Ulsan 44610, Korea
| | - Junil Kim
- School of System Biomedical Science, Soongsil University, Seoul 06978, Korea
| | - Seong Hee Choi
- RopheLBio, B102, Seoul Forest M Tower, Seoul 04778, Korea
- Correspondence: (S.H.C.); (J.W.P.)
| | - Jeong Woo Park
- Department of Biological Sciences, University of Ulsan, Ulsan 44610, Korea
- Correspondence: (S.H.C.); (J.W.P.)
| |
Collapse
|