1
|
Erkmen C, Rehman F, Mohamad SB, Kabir MZ. Probing the articaine-human serum albumin interaction and influences of paracetamol and caffeine on the interaction by spectroscopy, voltammetry, and bioinformatics. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 333:125776. [PMID: 39952066 DOI: 10.1016/j.saa.2025.125776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 12/24/2024] [Accepted: 01/20/2025] [Indexed: 02/17/2025]
Abstract
Interaction between a local anesthetic drug, articaine (ART) and human serum albumin (HSA) was investigated in the absence and presence of paracetamol (PAR) and caffeine (CAF) using spectroscopic, voltammetric, and computational techniques for the first time. The results demonstrated that increasing concentrations of ART in HSA solution led to a decrease in HSA fluorescence signal, indicating the ART-HSA complex formation via the static quenching mechanism. The binding strength of the complex was moderate (binding constant, Ka = 5.87 × 103 M-1 in fluorescence and 6.31 × 103 M-1 in voltammetric at 298 K). Thermodynamic analysis (ΔS = +28.32 J mol-1 K-1; ΔH = -30.17 kJ/mol) of the binding reaction suggested involvement of hydrophobic interactions, van der Waal's forces and hydrogen bonding in stabilizing the ART-HSA complex. Significant microenvironmental alterations near the Trp and Tyr residues of HSA consequent to the ART-HSA complex formation. ART predominantly binds to Sudlow's site I of HSA with more negative binding energy and stronger hydrophobic interactions compared to Site II. The stability of the ART-HSA complex at Site I over a 100 ns timeframe, supported by stable hydrogen bonding and compact HSA structure throughout the molecular dynamics simulations. The effect of PAR and CAF on the binding strength between ART and HSA was also examined, and presence of PAR and CAF in the reaction mixture produced significant reduction in the binding affinity of ART to HSA. These findings underscore the competitive binding between ART, PAR, and CAF, which impacts their pharmacokinetics and efficacy. This study provides valuable insights into the complex interactions between anesthetic drugs and common pharmaceuticals, potentially guiding clinical practices and drug development.
Collapse
Affiliation(s)
- Cem Erkmen
- Department of Analytical Chemistry, Faculty of Pharmacy, Istanbul Aydin University, Istanbul 34295, Türkiye; Application and Research Center for Advanced Studies, Istanbul Aydin University, Istanbul 34295, Türkiye.
| | - Fazal Rehman
- Biochemistry Program, Institute of Biological Sciences, Faculty of Science, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Saharuddin B Mohamad
- Faculty of Science, Bioinformatics Programme, Institute of Biological Sciences, Malaysia; Centre of Research for Computational Sciences and Informatics for Biology, Bioindustry, Environment, Agriculture and Healthcare, University of Malaya, Kuala Lumpur, Malaysia
| | | |
Collapse
|
2
|
Abd Ali AAkool W, Kashanian S, Hadidi S. Molecular interaction of antiviral drug penciclovir with DNA and HSA insights from experimental and docking studies. J Biomol Struct Dyn 2025; 43:2585-2595. [PMID: 38263739 DOI: 10.1080/07391102.2024.2303382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 10/11/2023] [Indexed: 01/25/2024]
Abstract
One approach to accelerate the availability of new cancer drugs is to test drugs approved for other conditions as anticancer agents. During recent decades, penciclovir (PNV) has been frequently utilized as a potent antiviral drug, in particular against infections caused by herpes viruses. Many antivirals interact with DNA and change their expression level, so determining the binding mode is of great importance. In our laboratory, we have focused our attention to design improved drugs that target cellular DNA, to understand the mechanism of action at the molecular level, and also to investigate the effect of antiviral drugs as anticancer agents. The results of ct-DNA-PNV interactions at physiological pH using fluorescence spectroscopy, UV-visible absorption spectroscopy, and molecular modeling reveal this drug binds well to ct-DNA through groove binding. The circular dichroism measurements displayed that PNV caused a slight change in the DNA structure which affirmed that the binding of PNV with the DNA occurs through the groove mode. Besides, multi-spectroscopic and molecular docking were used to evaluate how PNV interacts with human serum albumin under physiological conditions. The findings of fluorescence quenching suggested that static quenching was involved in the spontaneous development of HSA-PNV complex through hydrophobic force. The docking simulation results validated the findings of spectroscopic techniques.
Collapse
Affiliation(s)
| | | | - Saba Hadidi
- Inorganic Chemistry Department, Faculty of Chemistry, Razi University, Kermanshah, Iran
| |
Collapse
|
3
|
Bao Y, Wang Y, Liu H, Lan J, Li Z, Zong W, Zhao Z. Co-Existing Nanoplastics Further Exacerbates the Effects of Triclosan on the Physiological Functions of Human Serum Albumin. Life (Basel) 2025; 15:112. [PMID: 39860052 PMCID: PMC11766571 DOI: 10.3390/life15010112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 01/09/2025] [Accepted: 01/14/2025] [Indexed: 01/27/2025] Open
Abstract
The potential health risks posed by the coexistence of nanoplastics (NPs) and triclosan (TCS) have garnered significant attention. However, the effects and underlying mechanisms of NPs and TCS on key functional proteins at the molecular level remain poorly understood. This study reports the effect of polystyrene nanoplastics (PSNPs) on the binding of TCS to human serum albumin (HSA) using multispectral methods and molecular simulation systems. The experimental results show that TCS significantly inhibits HSA esterase activity, with exacerbating inhibition in the presence of PSNPs, which is attributed to the alteration of HSA conformation and microenvironment of the amino acid residues induced by PSNPs. Molecular docking and site marker competitive studies indicate that TCS predominantly binds to site I of subdomain Sudlow II and the presence of PSNPs does not affect the binding sites. Spectra analyses indicate that the quenching mechanism between TCS and HSA belongs to the static quenching type and the presence of PSNPs does not change the fluorescence quenching type. The HSA fluorescence quenching and the conformational alterations induced by TCS are further enhanced in the presence of PSNPs, indicating that PSNPs enhance the binding of TCS to HSA by making TCS more accessible to the binding sites. This study provides valuable information about the toxicity of PSNPs and TCS in case of co-exposure.
Collapse
Affiliation(s)
- Yan Bao
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Shandong Energy Institute, Qingdao New Energy Shandong Laboratory, Qingdao 266101, China
| | - Yaoyao Wang
- School of Environment and Geography, Qingdao University, Qingdao 266071, China
| | - Hongbin Liu
- School of Environment and Geography, Qingdao University, Qingdao 266071, China
| | - Jing Lan
- School of Environment and Geography, Qingdao University, Qingdao 266071, China
| | - Zhicai Li
- Anqiu Branch of Weifang Municipal Bureau of Ecology and Environment, Weifang 262199, China
| | - Wansong Zong
- College of Geography and Environment, Shandong Normal University, Jinan 250014, China
| | - Zongshan Zhao
- School of Environment and Geography, Qingdao University, Qingdao 266071, China
| |
Collapse
|
4
|
Galinato MGI, Wyant C, Lombardo AL, MacIsaac EK, Rios-Martinez DA, Kimrey CD, Castro AA. Generating globin-like reactivities in [human serum albumin-Fe II(heme)] complex through N-donor ligand addition. J Inorg Biochem 2025; 262:112743. [PMID: 39357192 DOI: 10.1016/j.jinorgbio.2024.112743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/11/2024] [Accepted: 09/20/2024] [Indexed: 10/04/2024]
Abstract
Human serum albumin (HSA) has a strong binding affinity for heme b, forming a complex in a 1:1 ratio with the co-factor ([HSA-FeIIIheme]). This system displays spectroscopic and functional properties comparable to globins when chemical derivatives mimicking them are incorporated into the protein matrix. The aim of this study is to generate globin-like systems using [HSA-FeIIIheme] as a protein template and binding N-donor ligands (imidazole, Im; and 1-methylimidazole, 1-MeIm) to construct artificial [HSA-Fe(heme)-(N-donor)] complexes. Their electronic structure and binding thermodynamics are investigated using UV-vis and (synchronous) fluorescence spectroscopies, while ligand-protein interactions are visualized using docking simulations. The imidazole derivatives have a strong affinity for [HSA-FeIIIheme] (K ∼ 104-106), where the spontaneous binding of Im and 1-MeIm are dominated by entropic and enthalpic effects, respectively. The reduced form of the [HSA-Fe(heme)-(N-donor)] complexes demonstrate nitrite reductase (NiR) activity similar to that observed in globins, but with significant differences in their rates. [HSA-FeIIheme-(1-MeIm)] reduces nitrite ∼4× faster than the Im analogue, and ∼ 30× faster than myoglobin (Mb). The enhanced NiR activity of [HSA-FeIIheme-(1-MeIm)] is a cumulative effect of several factors including a slightly expanded and more optimal heme binding pocket, nearby residues as possible proton sources, and a H-bonding interaction between 1-MeIm and residues Arg160 and Lys181 that may have a long-distance influence on the heme π electron density.
Collapse
Affiliation(s)
- Mary Grace I Galinato
- Department of Chemistry & Physics, Jacksonville University, 2800 University Blvd N, Jacksonville, FL 32211, United States; School of Science - Chemistry, Penn State Behrend, 4205 College Dr., Erie, PA 16563, United States.
| | - Christopher Wyant
- School of Science - Chemistry, Penn State Behrend, 4205 College Dr., Erie, PA 16563, United States
| | - Ashley L Lombardo
- School of Science - Chemistry, Penn State Behrend, 4205 College Dr., Erie, PA 16563, United States
| | - Ethan K MacIsaac
- Department of Chemistry & Physics, Jacksonville University, 2800 University Blvd N, Jacksonville, FL 32211, United States
| | - Daniella A Rios-Martinez
- School of Science - Chemistry, Penn State Behrend, 4205 College Dr., Erie, PA 16563, United States
| | - Christopher D Kimrey
- School of Science - Chemistry, Penn State Behrend, 4205 College Dr., Erie, PA 16563, United States
| | - Alexandra Alfonso Castro
- School of Science - Chemistry, Penn State Behrend, 4205 College Dr., Erie, PA 16563, United States
| |
Collapse
|
5
|
Ahmed NM, Ibrahim MM, Elmehasseb IM, Shaban SY. Picoplatin (II)-loaded chitosan nanocomposites as effective drug delivery systems: Preparation, mechanistic investigation of BSA/5-GMP/GSH binding and biological evaluations. Carbohydr Res 2024; 545:109292. [PMID: 39427432 DOI: 10.1016/j.carres.2024.109292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 10/15/2024] [Accepted: 10/16/2024] [Indexed: 10/22/2024]
Abstract
The goal of the current study is to improve the characteristics and bioavailability of the drug picoplatin (PPt) by encapsulating it in chitosan nanoparticles (CS NPs) which allows for the targeted delivery of cytotoxic cargo to cancerous tissue, reducing toxic side effects and raising the therapeutic index. When picoplatin was delivered into the CS, it was able to produce a complex with CS (PPt@CS NPs) that had an appropriate particle size of 275 ± 10 nm, a reasonably low PDI of 0.15 ± 0.05, and high stability (ζ = -22.1 ± 0.3 mV). Since almost all pharmaceuticals work by binding to specific proteins or DNA, the in vitro binding mechanism and affinity of bovine serum albumin (BSA), low molecular building units of nucleic acids (5-GMP), and Glutathione (GSH) (considering that cisplatin resistance could be due to a reaction between cisplatin and GSH) to PPt and PPt@CS NPs were examined using stopped-flow and other spectroscopic approaches. Through two reversible processes, a rapid second-order binding followed by a slower first-order isomerization reaction, and a static quenching mechanism, PPt and PPt@CS NPs bind to BSA with relative reactivity of around (PPt)/(PPt@CS NPs) = 1/2.5. The 5-GMP interaction studies demonstrated that, in addition to changing the binding mechanism, PPt's encapsulation in CS increases its rate of reaction through coordination affinity. PPt interacted with 5-GMP via two reversible processes, a rapid second-order binding to phosphate followed by a slower first-order migration to the N7 of pyrimidine moiety. PPt@CS NPs showed weaker binding to GSH compared to PPt and hence PPt@CS NPs exhibits a lower resistance factor. It was also found that the in vitro drug release of PPt@CS NPs in PBS at pH 7.4 was steady, releasing 30 % of the PPt in just 5 h. Nonetheless, 75 % of the release in a pH 5.4 solution containing 10 mM GSH-a solution that mimics the tumor microenvironment-shows that the PPt@CS NPs system is sensitive to GSH and specifically targets malignant tissue. The encapsulation of PPt in CS complex maintained its anticancer activity, as shown by an in vitro cell-survival assay on HepG2 cancer cell lines and also cleavage efficiency toward the minor groove of pBR322 DNA via the hydrolytic way. These findings collectively suggested that inclusion PPt in CS would be an effective strategy to formulate a novel picoplatin formulation intended for use as targeted anticancer treatment.
Collapse
Affiliation(s)
- Noha M Ahmed
- Chemistry Department, Faculty of Science, Kafrelsheikh University, Kafrelsheikh 33516, Egypt
| | - Mohamed M Ibrahim
- Department of Chemistry, College of Science, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia
| | - Ibrahim M Elmehasseb
- Chemistry Department, Faculty of Science, Kafrelsheikh University, Kafrelsheikh 33516, Egypt
| | - Shaban Y Shaban
- Chemistry Department, Faculty of Science, Kafrelsheikh University, Kafrelsheikh 33516, Egypt.
| |
Collapse
|
6
|
Jiang SL, Chen WC, Wu YT, Sui HY, Chen D, Li L, Wu T, Shi JH. Exploring the binding characteristics of bovine serum albumin with CDK4/6 inhibitors Ribociclib: Multi-spectral analysis and molecular simulation studies. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2024; 258:112992. [PMID: 39084139 DOI: 10.1016/j.jphotobiol.2024.112992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 06/12/2024] [Accepted: 07/15/2024] [Indexed: 08/02/2024]
Abstract
Ribociclib (RIB), a tyrosine kinase inhibitor, exhibits promising antitumor efficacy and controlled toxicity in HR+/HER2- breast cancer patients, which is closely related to the binding with plasma proteins. This study utilized a combination of spectroscopic techniques including UV spectroscopy, fluorescence spectroscopy, and circular dichroism (CD) as well as molecular docking and molecular dynamic simulation to clarify the binding mechanism between bovine serum albumin (BSA) and RIB. The findings demonstrated that RIB produced a 1:1 stoichiometric complex with BSA, which quenched BSA's fluorescence in the manner of the static quenching mechanism. Site labelling experiments pinpointed Site III on BSA as the primary binding site for RIB, a finding validated by molecular docking. Van der Waals forces and hydrogen bonding interactions as key drivers in the formation of RIB-BSA complexes, a conclusion supported by molecular docking. Molecular simulation studies suggested that the insertion of RIB into the hydrophobic cavity (Site III) of BSA induced subtle conformational changes in the BSA protein, and CD measurements confirmed alterations in BSA secondary structure content. Synchronous and three-dimensional fluorescence spectroscopy further demonstrated that RIB decreased the hydrophobicity of the microenvironment surrounding tyrosine and tryptophan residues. These findings offer valuable insights into the pharmacokinetics and structural modifications of RIB.
Collapse
Affiliation(s)
- Shao-Liang Jiang
- College of Pharmaceutic Science, Zhejiang University of Technology, Hangzhou 310032, China.
| | - Wang-Cai Chen
- College of Pharmaceutic Science, Zhejiang University of Technology, Hangzhou 310032, China
| | - Yu-Ting Wu
- College of Pharmaceutic Science, Zhejiang University of Technology, Hangzhou 310032, China
| | - Huan-Yu Sui
- College of Pharmaceutic Science, Zhejiang University of Technology, Hangzhou 310032, China
| | - Dong Chen
- College of Pharmaceutic Science, Zhejiang University of Technology, Hangzhou 310032, China
| | - Li Li
- College of Pharmaceutic Science, Zhejiang University of Technology, Hangzhou 310032, China
| | - Tao Wu
- Zhejiang Hengyu Biological Technology Co., Ltd, Shanghai, China.
| | - Jie-Hua Shi
- College of Pharmaceutic Science, Zhejiang University of Technology, Hangzhou 310032, China
| |
Collapse
|
7
|
Elshami FI, Elrefaei G, Ibrahim MM, Elmehasseb I, Shaban SY. GSH-responsive and folate receptor-targeted pyridine bisfolate-encapsulated chitosan nanoparticles for enhanced intracellular drug delivery in MCF-7 cells. Carbohydr Res 2024; 543:109207. [PMID: 39018698 DOI: 10.1016/j.carres.2024.109207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/08/2024] [Accepted: 07/08/2024] [Indexed: 07/19/2024]
Abstract
Folic acid receptor-targeted drug delivery system is a promising candidate for tumor-targeted delivery because its elevated expression specifically on tumor cells enables the selective delivery of cytotoxic cargo to cancerous tissue, thereby minimizing toxic side effects and increasing the therapeutic index. Pyridine bisfolate-chitosan (PyBFA@CS NPs) and folate-chitosan nanocomposite (FA@CS NPs) were synthesized with suitable particle size (256.0 ± 15.0 and 161.0 ± 5.0 nm), high stability (ζ = -27.0 ± 0.1 and -30.0 ± 0.2 mV), respectively, and satisfactory biocompatibility to target cells expressing folate receptors and try to answer the question: Is the metal center always important for activity? Since almost all pharmaceuticals work by binding to specific proteins or DNA, the in vitro binding of human serum albumin (HSA) to PyBFA@CS NPs and FA@CS NPs has been investigated and compared with PyBFA. Strong affinity to HSA is shown by quenching and binding constants in the range of 105 and 104 M-1, respectively with PyBFA@CS NPs showing the strongest. The compounds-HSA kinetic stability, affinity, and association constants were investigated using a stopped-flow method. The findings showed that all formulations bind by a static quenching mechanism that consists of two reversible steps: rapid second-order binding and a more slowly first-order isomerization reaction. The overall coordination affinity of HSA to PyBFA@CS NPs (6.6 × 106 M-1), PyBFA (4.4 × 106 M-1), and FA@CS NPs (1.3 × 106 M-1) was measured and The relative reactivity is roughly (PyBFA@CS NPs)/(PyBFA)/(FA@CS NPs) = 5/3/1. Additionally, in vitro cytotoxicity revealed that, consistent with the binding constants and coordination affinity, active-targeting formulations greatly inhibited FR-positive MCF-7 cells in compared to FRs-negative A549 cells in the following trend: PyBFA@CS NPs > PyBFA > FA@CS NPs. Furthermore, in vitro drug release of PyBFA@CS NPs was found to be stable in PBS at pH 7.4, however, the in pH 5.4 and in pH 5.4 containing 10 mM glutathione (GSH) (mimicking the tumor microenvironment) reached 43 % and 73 %, respectively indicating that the PyBFA@CS NPs system is sensitive to GSH. Folate-modified nanoparticles, PyBFA@CS NPs, are a promising therapeutic for MCF-7 therapy because they not only showed a greater affinity for HSA, but also showed higher cleavage efficiency toward the minor groove of pBR322 DNA via the hydrolytic way, as well as effective antibacterial activity that avoids the usage of extra antibiotics. .
Collapse
Affiliation(s)
- Fawzya I Elshami
- Chemistry Department, Faculty of Science, Kafrelsheikh University, Kafrelsheikh, 33516, Egypt
| | - Gehad Elrefaei
- Chemistry Department, Faculty of Science, Kafrelsheikh University, Kafrelsheikh, 33516, Egypt
| | - Mohamed M Ibrahim
- Department of Chemistry, College of Science, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia
| | - Ibrahim Elmehasseb
- Chemistry Department, Faculty of Science, Kafrelsheikh University, Kafrelsheikh, 33516, Egypt
| | - Shaban Y Shaban
- Chemistry Department, Faculty of Science, Kafrelsheikh University, Kafrelsheikh, 33516, Egypt.
| |
Collapse
|
8
|
Mariana Kustiawan P, Siregar KAAK, Syaifie PH, Zein Muttaqin F, Ibadillah D, Miftah Jauhar M, Djamas N, Mardliyati E, Taufiqu Rochman N. Uncovering the anti-breast cancer activity potential of east Kalimantan propolis by In vitro and bioinformatics analysis. Heliyon 2024; 10:e33636. [PMID: 39071605 PMCID: PMC11283153 DOI: 10.1016/j.heliyon.2024.e33636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 06/25/2024] [Indexed: 07/30/2024] Open
Abstract
Numerous side effects of breast cancer drugs have prompted researchers to explore more into new therapeutic approaches derived from natural substances. In this context, our study focused on uncovering the potential of East Kalimantan propolis from Trigona apicalis for breast cancer treatment including the underlying mechanisms through bioinformatics approached. We conducted integrated in vitro and bioinformatics analysis of network pharmacology, molecular docking, molecular dynamics and MM-GBSA analysis. Initially, in vitro cytotoxic assay demonstrated the anti-breast cancer activity potential of ethanol extract of East Kalimantan propolis, particularly its ethyl acetate fraction, which exhibited similar activity to doxorubicin, as indicated by their IC50 value. This study revealed eight propolis compounds, consisting of flavonoids and phenolic acids, in East Kalimantan propolis. By integrating microarray datasets (GSE29431, GSE36295, and GSE42568) analysis with potential targets derived from propolis compounds, 39 shared target genes were identified. Subsequently, GO and KEGG pathway, protein-protein interaction (PPI) network, core hub genes and gene expression analysis revealed three major targets, namely, PTGS2, CXCL2, and MMP9. Among them, only MMP9 was highly expressed in breast cancer than normal. Moreover, molecular docking revealed the six of propolis compounds which exhibited pronounced binding affinity towards MMP-9, better than marimastat as control drug. Dynamic simulation confirmed the stability of chrysin and quercetin as best compounds. Additionally, MM-GBSA analysis revealed a relative binding energy for chrysin (-25.6403 kcal/mol) that was comparable to marimastat (-27.3827 kcal/mol). In conclusion, this study reveals how East Kalimantan Propolis affect breast cancer and emphasizes MMP9 as a key target for future therapeutics.
Collapse
Affiliation(s)
- Paula Mariana Kustiawan
- Faculty of Pharmacy, Universitas Muhammadiyah Kalimantan Timur, Samarinda, East Kalimantan, 75124, Indonesia
| | - Khalish Arsy Al Khairy Siregar
- Faculty of Pharmacy, Universitas Muhammadiyah Kalimantan Timur, Samarinda, East Kalimantan, 75124, Indonesia
- Center of Excellence Life Sciences, Nano Center Indonesia, South Tangerang, Indonesia
| | - Putri Hawa Syaifie
- Center of Excellence Life Sciences, Nano Center Indonesia, South Tangerang, Indonesia
| | - Fauzan Zein Muttaqin
- Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Universitas Bhakti Kencana, Bandung, Indonesia
| | - Delfritama Ibadillah
- Center of Excellence Life Sciences, Nano Center Indonesia, South Tangerang, Indonesia
| | | | - Nailulkamal Djamas
- Research Center for Horticultural and Estate Crops, National Research and Innovation Agency (BRIN), Bogor, 16915, Indonesia
| | - Etik Mardliyati
- Research Center for Vaccine and Drugs, National Research and Innovation Agency (BRIN), Bogor, 16911, Indonesia
| | - Nurul Taufiqu Rochman
- Research Center for Advanced Material, National Research and Innovation Agency (BRIN), PUSPIPTEK, South Tangerang, Banten, 15314, Indonesia
| |
Collapse
|
9
|
Sargolzaei J, Jalali E, Rajabi P. Insights into the binding of buspirone to human serum albumin using multi-spectroscopic and molecular docking techniques. Heliyon 2024; 10:e29430. [PMID: 38638949 PMCID: PMC11024617 DOI: 10.1016/j.heliyon.2024.e29430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 04/04/2024] [Accepted: 04/08/2024] [Indexed: 04/20/2024] Open
Abstract
Buspirone is an anxiolytic drug that plays a significant role in managing anxiety disorders and alleviating their symptoms as well. Several techniques were utilized to study the interaction between buspirone and human serum albumin under physiological conditions, including UV-vis absorption spectroscopy, fluorescence emission spectroscopy, circular dichroism, Fourier transform infrared spectroscopy (FT-IR), equilibrium dialysis, and molecular docking. The results of this study demonstrated that buspirone quenched the intrinsic fluorescence of human serum albumin through a mixed mechanism. Moreover, the binding constants (Kb), the quenching constants (Ksv), and thermodynamic parameters were calculated at various temperatures. The binding process of buspirone to human serum albumin showed a cooperative binding pattern, confirmed by the Scatchard diagram and Hill coefficient. Molecular docking results showed that buspirone interacted with the IIA, IIIA, and IIB subdomains of human serum albumin and slightly changed its conformation. It was also found that hydrophobic forces played a major role in this interaction. This study consequently proves that BSH as a drug can be transported by blood albumin. Additionally, due to its ratiometric response in absorbance upon binding to a biological target, HSA can be used as a molecular probe to follow biomolecular interactions.
Collapse
Affiliation(s)
- Javad Sargolzaei
- Department of Biology, Faculty of Science, Arak University, Arak, 38156-8-8349, Iran
| | - Elaheh Jalali
- Department of Biology, Faculty of Science, Arak University, Arak, 38156-8-8349, Iran
| | - Parisa Rajabi
- Department of Psychiatry, Arak University of Medical Sciences, Arak, Iran
| |
Collapse
|
10
|
Mukai R, Okuyama H, Uchimura M, Sakao K, Matsuhiro M, Ikeda-Imafuku M, Ishima Y, Nishikawa M, Ikushiro S, Tai A. The binding selectivity of quercetin and its structure-related polyphenols to human serum albumin using a fluorescent dye cocktail for multiplex drug-site mapping. Bioorg Chem 2024; 145:107184. [PMID: 38364549 DOI: 10.1016/j.bioorg.2024.107184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/25/2024] [Accepted: 02/04/2024] [Indexed: 02/18/2024]
Abstract
Human serum albumin (HSA) is a serum protein that carries flavonoids in blood circulation. In this report, the binding selectivity and strength of interactions to HSA-binding sites (sites I or II) by flavonoids were evaluated using competition experiments and the specific fluorescent dyes, dansylamide and BD140. Most tested flavonoids bound site I preferentially, with the binding strength dependent on the mother structure in the order flavonol > flavone > flavanone > flavan 3-ols. Glycosylation or glucuronidation reduced the binding of quercetin to site I of HSA, whereas sulfation increased binding. Quercetin 7-sulfate showed the strongest binding and molecular docking simulations supported this observation. Prenylation at any position or glucuronidation and sulfation at the C-4' or C-7 position of quercetin facilitated stronger binding to site II. The binding affinity of flavonoids toward site I correlated with the partition coefficient value (logP), whereas no corresponding correlation was observed for site II.
Collapse
Affiliation(s)
- Rie Mukai
- Department of Food Science, Graduate School of Technology, Industrial and Social Sciences, Tokushima University, 2-1, Minamijosan-jima, Tokushima 770-8513, Japan.
| | - Hitomi Okuyama
- Department of Food Science, Graduate School of Technology, Industrial and Social Sciences, Tokushima University, 2-1, Minamijosan-jima, Tokushima 770-8513, Japan
| | - Miku Uchimura
- Department of Food Science and Technology, Graduate School of Agriculture, Kagoshima University, 1-21-24, Korimoto, Kagoshima 890-0065, Japan.
| | - Kozue Sakao
- Department of Food Science and Technology, Graduate School of Agriculture, Kagoshima University, 1-21-24, Korimoto, Kagoshima 890-0065, Japan.
| | - Miyu Matsuhiro
- Department of Food Science, Graduate School of Technology, Industrial and Social Sciences, Tokushima University, 2-1, Minamijosan-jima, Tokushima 770-8513, Japan.
| | - Mayumi Ikeda-Imafuku
- Department of Physical Pharmaceutics, School of Pharmaceutical Sciences, Wakayama Medical University, 25-1 Shichiban-cho, Wakayama 640-8156, Japan.
| | - Yu Ishima
- Laboratory of Biopharmaceutics, Kyoto Pharmaceutical University, 5 Nakauchi-cho, Misasagi, Yamashina-ku, Kyoto 607-8414, Japan.
| | - Miyu Nishikawa
- Department of Biotechnology, Faculty of Engineering, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan.
| | - Shinichi Ikushiro
- Department of Biotechnology, Faculty of Engineering, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan.
| | - Akihiro Tai
- Department of Food Science, Graduate School of Technology, Industrial and Social Sciences, Tokushima University, 2-1, Minamijosan-jima, Tokushima 770-8513, Japan.
| |
Collapse
|
11
|
Li Y, Ma Y, Mu C, Gu J, Li Z. Simultaneous binding characterization of different chromium speciation to serum albumin. Biometals 2024; 37:101-113. [PMID: 37610601 DOI: 10.1007/s10534-023-00531-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 08/11/2023] [Indexed: 08/24/2023]
Abstract
The binding process between three species of chromium and serum albumin (SA) was investigated, as well as the interaction between K2Cr2O7 and bovine serum albumin (BSA) under coexistence of different chromium forms. CrCl3, K2Cr2O7 and Crpic bound to SA spontaneously through Van der Waals force, and their binding constants were 103-104 M-1 at 298 K, respectively. K2Cr2O7 and Crpic both had strong binding affinity for BSA, and significantly affected the secondary structure of BSA and the microenvironment surrounding amino acid residues. Chromium exhibited a greater fluorescence quenching constant towards HSA than toward BSA, and K2Cr2O7 induced greater conformational changes in human serum albumin (HSA) than in BSA. A weak binding of CrCl3 to BSA had no significant effect on the binding affinity of K2Cr2O7 to BSA. K2Cr2O7 and BSA have a greater binding affinity when coexisting with Crpic, and K2Cr2O7 induces a greater conformational change in BSA.
Collapse
Affiliation(s)
- Ye Li
- College of Chemistry and Chemical Engineering, Bohai University, 19, Keji Rd., New Songshan District, Jinzhou, 121013, Liaoning, People's Republic of China
| | - Yanxuan Ma
- College of Chemistry and Chemical Engineering, Bohai University, 19, Keji Rd., New Songshan District, Jinzhou, 121013, Liaoning, People's Republic of China
| | - Chunyu Mu
- College of Chemistry and Chemical Engineering, Bohai University, 19, Keji Rd., New Songshan District, Jinzhou, 121013, Liaoning, People's Republic of China
| | - Jiali Gu
- College of Chemistry and Chemical Engineering, Bohai University, 19, Keji Rd., New Songshan District, Jinzhou, 121013, Liaoning, People's Republic of China.
| | - Zimu Li
- College of Chemistry and Chemical Engineering, Bohai University, 19, Keji Rd., New Songshan District, Jinzhou, 121013, Liaoning, People's Republic of China
| |
Collapse
|
12
|
Lavanya K, Saranya J, Bodapati ATS, Reddy RS, Madku SR, Sahoo BK. Biophysical insights on the interaction of anticoagulant drug dicoumarol with calf thymus-DNA: deciphering the binding mode and binding force with thermodynamics. J Biomol Struct Dyn 2024; 42:1392-1403. [PMID: 37038635 DOI: 10.1080/07391102.2023.2199872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 03/31/2023] [Indexed: 04/12/2023]
Abstract
The biological activity of drugs is exhibited due to their interactions with bio-receptors. Dicoumarol (DIC) is a natural hydroxycoumarin and a well-known anticoagulant. DNA is the genetic material and one of the targets of numerous drugs. The interaction of DIC with calf-thymus DNA (ct-DNA) has been studied using different biophysical techniques and docking studies. The binding constant in the order of 103 to 104 M-1 was observed from spectroscopic studies. Thermodynamic studies at 4 different temperatures revealed the spontaneity of the interaction with the entropy-driven process. Marker displacement studies with competitive markers of intercalators (ethidium bromide) and groove binders (Hoechst 33258) confirmed the groove-binding nature of DIC in DNA. The groove-binding mode of DIC was complemented by different studies like viscosity measurements, DNA melting, and the effect of KI on the binding. A minor perturbation in the DNA viscosity and no significant change in the DNA melting temperature (Tm) after binding with DIC further confirms the groove binding mode. The effect of KI on the DIC and DIC-DNA system suggested the absence of DIC intercalation. The absence of significant electrostatic force was revealed from the ionic-strength effect study. Binding-induced conformational variation in ct-DNA was absent in circular dichroism studies. Molecular docking studies suggested the position of DIC within the minor groove of ct-DNA, covering three base pairs long. The outcome of this report may help in understanding the pharmacodynamics and pharmacokinetics of dicoumarol analogs and related molecules.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- K Lavanya
- Department of H&S (Chemistry), Gokaraju Rangaraju Institute of Engineering and Technology, Hyderabad, India
- Department of Chemistry, GITAM School of Science, GITAM Deemed to be University Hyderabad Campus, Hyderabad, India
| | - Jagadeesan Saranya
- Department of H&S (Chemistry), Gokaraju Rangaraju Institute of Engineering and Technology, Hyderabad, India
| | - Anna Tanuja Safala Bodapati
- Department of Chemistry, GITAM School of Science, GITAM Deemed to be University Hyderabad Campus, Hyderabad, India
- Chemistry Division, BS&H Department, BVRIT College of Engineering for Women, Hyderabad, India
| | - Ragaiahgari Srinivas Reddy
- Department of Chemistry, GITAM School of Science, GITAM Deemed to be University Hyderabad Campus, Hyderabad, India
- Department of Chemistry, B. V. Raju Institute of Technology (BVRIT), Narsapur, India
| | - Shravya Rao Madku
- Department of Chemistry, GITAM School of Science, GITAM Deemed to be University Hyderabad Campus, Hyderabad, India
- Department of Chemistry, St. Francis College for Women, Hyderabad, India
| | - Bijaya Ketan Sahoo
- Department of Chemistry, GITAM School of Science, GITAM Deemed to be University Hyderabad Campus, Hyderabad, India
| |
Collapse
|
13
|
Daksh S, Gond C, Kumar N, Kaur L, Ojha H, Deep S, Datta A. Binding studies of potential amyloid-β inhibiting chalcone derivative with bovine serum albumin. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 305:123362. [PMID: 37774582 DOI: 10.1016/j.saa.2023.123362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 08/23/2023] [Accepted: 09/04/2023] [Indexed: 10/01/2023]
Abstract
Chalcones (α-phenyl-β-benzoylethylene) and their natural-source derivatives have been investigated for their remarkable biological activities, like neuroprotective, anti-inflammatory, and anti-tumor properties. A triazole chalcone ligand (E)-3-(4-(dimethylamino)phenyl)-1-(4-((1-(2-(4-((E)-3-(4(dimethylamino)phenyl)acryloyl)phenoxy)ethyl)-1H-1,2,3-triazol-4-yl)methoxy)phenyl)prop-2-en-1-one (L1) was synthesized by Cu(I)- catalysed click reaction. The mechanistic properties of L1 for therapy were evaluated by analyzing the binding interactions between L1 and bovine serum albumin (BSA) through photophysical and computational studies. The structural elucidation of ligand L1 was carried out by NMR and mass spectrometry. The Aβ inhibitory activity of L1 was studied by thioflavin T assay and transmission electron microscopy. The biomolecular interaction of L1 with bovine serum albumin was examined through multi-spectroscopic techniques in combination with in silico studies. UV-Visible absorption, fluorescence spectroscopy, circular dichroism, Förster resonance energy transfer, and three-dimensional fluorescence studies confirmed the formation of a BSA-L1 complex. The potential binding sites, mechanism of interactions, and variations in the environment of tyrosine and tryptophan amino acid residues of BSA were assessed at different temperatures. The binding constant for the Static quenching mechanism of intrinsic fluorescence of BSA was of the order of 105 M-1. The esterase enzyme activity assay in the presence of L1 revealed an increase in the protein enzyme activity. Molecular docking studies suggested L1 was predominantly bound to BSA by hydrogen bonds and Van der Waals forces.
Collapse
Affiliation(s)
- Shivani Daksh
- Institute of Nuclear Medicine and Allied Sciences, Defence Research and Development Organization, Brig S. K. Mazumdar Marg, Delhi 110054, India; Department of Chemistry, Indian Institute of Technology, Delhi, Hauz-Khas, New Delhi 110016, India
| | - Chandraprakash Gond
- Department of Chemistry, Babasaheb Bhimrao Ambedkar University, Lucknow 226025, Uttar Pradesh, India
| | - Nikhil Kumar
- Institute of Nuclear Medicine and Allied Sciences, Defence Research and Development Organization, Brig S. K. Mazumdar Marg, Delhi 110054, India; Department of Chemistry, Indian Institute of Technology, Delhi, Hauz-Khas, New Delhi 110016, India
| | - Lajpreet Kaur
- Institute of Nuclear Medicine and Allied Sciences, Defence Research and Development Organization, Brig S. K. Mazumdar Marg, Delhi 110054, India
| | - Himanshu Ojha
- Institute of Nuclear Medicine and Allied Sciences, Defence Research and Development Organization, Brig S. K. Mazumdar Marg, Delhi 110054, India
| | - Shashank Deep
- Department of Chemistry, Indian Institute of Technology, Delhi, Hauz-Khas, New Delhi 110016, India.
| | - Anupama Datta
- Institute of Nuclear Medicine and Allied Sciences, Defence Research and Development Organization, Brig S. K. Mazumdar Marg, Delhi 110054, India.
| |
Collapse
|
14
|
Li Y, Liu H, Mu C, Gu J, Li C. Probing the interaction between encapsulated ethoxyquin and its β-cyclodextrin inclusion complex with bovine serum albumin. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 304:123259. [PMID: 37634329 DOI: 10.1016/j.saa.2023.123259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 08/10/2023] [Accepted: 08/11/2023] [Indexed: 08/29/2023]
Abstract
Ethoxyquin (EQ) is a synthetic antioxidant that is derived from quinolines and found in many meat products. EQ is strictly regulated in feed due to its potential health implications. An investigation of the interaction mechanism between EQ and transporter protein before and after β-cyclodextrin (β-CD) encapsulation was conducted with the use of multi-spectroscopy, cyclic voltammetry, and molecular docking. EQ formed complexes with bovine serum albumin (BSA), and affected secondary structure and microenvironment polarity of BSA. However, at 298 K, EQ's fluorescence quenching constants decreased from (9.81 ± 0.05) × 103 L mol-1 to (4.94 ± 0.09) × 103 L mol-1, binding constants decreased from (10.28 ± 0.02) × 103 L mol-1 to (2.08 ± 0.07) × 103 L mol-1, after encapsulation in β-CD as well as the binding distance increased. β-CD contains part of EQ in its hydrophobic cavity, inhibiting its binding to BSA. β-CD inclusion complex prevented adverse effects of EQ on BSA conformation. However, β-CD encapsulation had no effect on EQ's antioxidant activity.
Collapse
Affiliation(s)
- Ye Li
- College of Chemistry and Chemical Engineering, Bohai University, Jinzhou 121013, PR China
| | - Hongrui Liu
- College of Chemistry and Chemical Engineering, Bohai University, Jinzhou 121013, PR China
| | - Chunyu Mu
- College of Chemistry and Chemical Engineering, Bohai University, Jinzhou 121013, PR China
| | - Jiali Gu
- College of Chemistry and Chemical Engineering, Bohai University, Jinzhou 121013, PR China.
| | - Chun Li
- College of Chemistry and Chemical Engineering, Bohai University, Jinzhou 121013, PR China
| |
Collapse
|
15
|
Šoša I. Quetiapine-Related Deaths: In Search of a Surrogate Endpoint. TOXICS 2024; 12:37. [PMID: 38250993 PMCID: PMC10819769 DOI: 10.3390/toxics12010037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/30/2023] [Accepted: 01/01/2024] [Indexed: 01/23/2024]
Abstract
Quetiapine is a second-generation antipsychotic drug available for two and half decades. Due to increased misuse, prescription outside the approved indications, and availability on the black market, it is being encountered in medicolegal autopsies more frequently. For instance, it has been linked to increased mortality rates, most likely due to its adverse effects on the cardiovascular system. Its pharmacokinetic features and significant postmortem redistribution challenge traditional sampling in forensic toxicology. Therefore, a systematic literature review was performed, inclusive of PubMed, the Web of Science-core collection, and the Scopus databases; articles were screened for the terms "quetiapine", "death", and "autopsy" to reevaluate each matrix used as a surrogate endpoint in the forensic toxicology of quetiapine-related deaths. Ultimately, this review considers the results of five studies that were well presented (more than two matrices, data available for all analyses, for instance). The highest quetiapine concentrations were usually measured in the liver tissue. As interpreted by their authors, the results of the considered studies showed a strong correlation between some matrices, but, unfortunately, the studies presented models with poor goodness of fit. The distribution of quetiapine in distinct body compartments/tissues showed no statistically significant relationship with the length of the postmortem interval. Furthermore, this study did not confirm the anecdotal correlation of peripheral blood concentrations with skeletal muscle concentrations. Otherwise, there was no consistency regarding selecting an endpoint for analysis.
Collapse
Affiliation(s)
- Ivan Šoša
- Department of Anatomy, Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia
| |
Collapse
|
16
|
Fang X, Li J, Zhang M, Yang L, Wang Y, Liu X, Zhang J. Pharmacokinetic investigation on the mechanism of interaction of anti-breast cancer calycosin with albumin: In vitro. ARAB J CHEM 2023; 16:105175. [DOI: 10.1016/j.arabjc.2023.105175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025] Open
|
17
|
Cavalieri G, Cilurzo G, Pettorosso L, Mansueto A, Laurini E, Pricl S. Biophysical and docking study on the interaction of anticancer drugs encorafenib and binimetinib with human serum albumin. Eur J Pharm Sci 2023; 189:106550. [PMID: 37527692 DOI: 10.1016/j.ejps.2023.106550] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/21/2023] [Accepted: 07/28/2023] [Indexed: 08/03/2023]
Abstract
The utilization of BRAF and MEK inhibitors in combination therapy has demonstrated superior outcomes in the treatment of melanoma as compared to monotherapy. In the present scenario, the combination therapy of Encorafenib (ENC), a BRAF inhibitor, and Binimetinib (BINI), a MEK inhibitor, has been identified as one of the most efficacious treatment modalities for this malignancy. Investigations of protein binding, particularly with human serum albumin (HSA), are essential to understand drug performance and enhance therapeutic outcomes. The investigation of the interplay between small molecule drugs and HSA is of paramount importance, given that such interactions can exert a substantial influence on the pharmacokinetics of these therapeutic agents. The present study aims to bridge these lacunae by implementing a comprehensive approach that integrates fluorescence spectroscopy (FS), isothermal titration calorimetry (ITC), far-ultraviolet circular dichroism (far-UV CD), and molecular simulations. Through analysis of the fluorescence quenching of HSA at three distinct temperatures, it was ascertained that the association constants for the complexes formed between drugs and HSA were of the magnitude of 104 M-1. This suggests that the interactions between the compounds and albumin were moderate and comparable. Simultaneously, the investigation of fluorescence indicated a contrasting binding mechanism for the two inhibitors: ENC predominantly binds to HSA through enthalpic interaction, while BINI/HSA is stabilized by entropic contributions. The data obtained was confirmed through experimental procedures conducted using the ITC method. The results of ligand-competitive displacement experiments indicate that ENC and BINI can bind to HSA within subdomain IIA, specifically Sudlow site I. However, far-UV CD studies show that there are no notable alterations in the structure of HSA upon binding with either of the two inhibitors. Ultimately, the results were supported by computational molecular analysis, which identified the key interactions that contribute to the stabilization of the two ligand/HSA complexes.
Collapse
Affiliation(s)
- Gabriele Cavalieri
- Molecular Biology and Nanotechnology Laboratory (MolBNL@UniTS), DEA, University of Trieste, Piazzale Europa 1, 34127 Trieste, Italy
| | - Giulia Cilurzo
- Molecular Biology and Nanotechnology Laboratory (MolBNL@UniTS), DEA, University of Trieste, Piazzale Europa 1, 34127 Trieste, Italy
| | - Lorenzo Pettorosso
- Molecular Biology and Nanotechnology Laboratory (MolBNL@UniTS), DEA, University of Trieste, Piazzale Europa 1, 34127 Trieste, Italy
| | - Andrea Mansueto
- Molecular Biology and Nanotechnology Laboratory (MolBNL@UniTS), DEA, University of Trieste, Piazzale Europa 1, 34127 Trieste, Italy
| | - Erik Laurini
- Molecular Biology and Nanotechnology Laboratory (MolBNL@UniTS), DEA, University of Trieste, Piazzale Europa 1, 34127 Trieste, Italy.
| | - Sabrina Pricl
- Molecular Biology and Nanotechnology Laboratory (MolBNL@UniTS), DEA, University of Trieste, Piazzale Europa 1, 34127 Trieste, Italy; Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, ul. Pomorska 141/143, 90-236 Łódź, Poland
| |
Collapse
|
18
|
Jiang SL, Hu L, Wu M, Li L, Shi JH. Assessment on binding characteristics of ethiprole and a model protein bovine serum albumin (BSA) through various spectroscopic techniques integrated with computer simulation. J Biomol Struct Dyn 2023; 41:7862-7873. [PMID: 36152999 DOI: 10.1080/07391102.2022.2126398] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 09/14/2022] [Indexed: 10/14/2022]
Abstract
To investigate the binding characteristics of pesticide ethiprole (ETP) with serum albumin is of great significance for pathological analysis of pesticide poisoning, gene mutation, and clinical detection. In present work, the binding characteristics of ETP with a model protein BSA has been estimated by means of multi-spectroscopic approaches integrated with computer simulation. The outcomes testified that the intrinsic fluorescence of BSA was mainly quenched by ETP in a static quenching mode and the stable ETP-BSA complex with the stoichiometry of 1:1 and the binding constant of 6.81 × 103 M-1 (298 K) was produced. The outcomes revealed that ETP combined preferentially to the subdomain IIA (Site I) of BSA and caused the decline in the content of α-helix of BSA and the enhancement in the hydrophobicity of environment centered on Trp residues. The outcomes of experimental and theoretical studies provide the sufficient evidence about the driving forces for the complexation of ETP with BSA, which included van der Waals forces (vdW), hydrogen bonding (H-bonding) interaction, and hydrophobicity. Simultaneously, the theoretical calculation results also confirmed the existence of the significant changes in the physicochemical natures of ETP including molecular conformation, dipole moment, frontier orbital energy, and the atomic charge distribution, which was a responsible for the complexation with BSA.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Shao-Liang Jiang
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China
| | - Lu Hu
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China
| | - Meng Wu
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China
| | - Li Li
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China
| | - Jie-Hua Shi
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China
| |
Collapse
|
19
|
Zhang H, Cai R, Chen C, Gao L, Ding P, Dai L, Chi B. Impacts of Halogen Substitutions on Bisphenol A Compounds Interaction with Human Serum Albumin: Exploring from Spectroscopic Techniques and Computer Simulations. Int J Mol Sci 2023; 24:13281. [PMID: 37686087 PMCID: PMC10487517 DOI: 10.3390/ijms241713281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/19/2023] [Accepted: 08/24/2023] [Indexed: 09/10/2023] Open
Abstract
Bisphenol A (BPA) is an endocrine-disrupting compound, and the binding mechanism of BPA with carrier proteins has drawn widespread attention. Halogen substitutions can significantly impact the properties of BPA, resulting in various effects for human health. Here, we selected tetrabromobisphenol A (TBBPA) and tetrachlorobisphenol A (TCBPA) to investigate the interaction between different halogen-substituted BPAs and human serum albumin (HSA). TBBPA/TCBPA spontaneously occupied site I and formed stable binary complexes with HSA. Compared to TCBPA, TBBPA has higher binding affinity to HSA. The effect of different halogen substituents on the negatively charged surface area of BPA was an important reason for the higher binding affinity of TBBPA to HSA compared to TCBPA. Hydrogen bonds and van der Waals forces were crucial in the TCBPA-HSA complex, while the main driving factor for the formation of the TBBPA-HSA complex was hydrophobic interactions. Moreover, the presence of TBBPA/TCBPA changed the secondary structure of HSA. Amino acid residues such as Lys199, Lys195, Phe211, Arg218, His242, Leu481, and Trp214 were found to play crucial roles in the binding process between BPA compounds and HSA. Furthermore, the presence of halogen substituents facilitated the binding of BPA compounds with HSA.
Collapse
Affiliation(s)
- Huan Zhang
- School of Life Sciences, Nanchang University, Nanchang 330031, China;
| | - Ruirui Cai
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, China; (R.C.); (C.C.); (L.G.); (L.D.)
| | - Chaolan Chen
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, China; (R.C.); (C.C.); (L.G.); (L.D.)
| | - Linna Gao
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, China; (R.C.); (C.C.); (L.G.); (L.D.)
| | - Pei Ding
- School of Pharmacy, Nanchang University, Nanchang 330031, China;
| | - Lulu Dai
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, China; (R.C.); (C.C.); (L.G.); (L.D.)
| | - Baozhu Chi
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, China; (R.C.); (C.C.); (L.G.); (L.D.)
| |
Collapse
|
20
|
Lavanya K, Babu PV, Bodapati ATS, Reddy RS, Madku SR, Sahoo BK. Binding of dicoumarol analog with DNA and its antioxidant studies: A biophysical insight by in-vitro and in-silico approaches. Int J Biol Macromol 2023:125301. [PMID: 37315662 DOI: 10.1016/j.ijbiomac.2023.125301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 05/24/2023] [Accepted: 05/25/2023] [Indexed: 06/16/2023]
Abstract
DNA is the major target for a number of pharmaceutical drugs. The interaction of drug molecules with DNA plays a major role in pharmacokinetics and pharmacodynamics. Bis-coumarin derivatives have diverse biological properties. Here, we have explored the antioxidant activity of 3,3'-Carbonylbis (7-diethylamino coumarin) (CDC) using DPPH, H2O2, and superoxide scavenging studies followed by its binding mode in calf thymus-DNA (CT-DNA) using several biophysical methods including molecular docking. CDC exhibited comparable antioxidant activity to standard ascorbic acid. The UV-Visible and fluorescence spectral variations indicate the CDC-DNA complex formation. The binding constant in the range of 104 M-1 was obtained from spectroscopic studies at room temperature. The fluorescence quenching of CDC by CT-DNA suggested a quenching constant (KSV) of 103 to 104 M-1 order. Thermodynamic studies at 303, 308, and 318 K revealed the observed quenching as a dynamic process besides the spontaneity of the interaction with negative free energy change. Competitive binding studies with site markers like ethidium bromide, methylene blue, and Hoechst 33258 reflect CDC's groove mode of interaction. The result was complemented by DNA melting study, viscosity measurement, and KI quenching studies. The ionic strength effect was studied to interpret the electrostatic interaction and found its insignificant role in the binding. Molecular docking studies suggested the binding location of CDC within the minor groove of CT-DNA, complementing the experimental result.
Collapse
Affiliation(s)
- K Lavanya
- Department of Chemistry, GITAM School of Science, GITAM Deemed to be University Hyderabad Campus, 502329, India
| | - Pratap Veeresh Babu
- Department of Pharmacology, Gokaraju Rangaraju College of Pharmacy, Bachupally, Hyderabad, Telangana 500090, India
| | - Anna Tanuja Safala Bodapati
- Department of Chemistry, GITAM School of Science, GITAM Deemed to be University Hyderabad Campus, 502329, India; Chemistry Division, BS&H Department, BVRIT College of Engineering for Women, Hyderabad 500090, India
| | - Ragaiahgari Srinivas Reddy
- Department of Chemistry, GITAM School of Science, GITAM Deemed to be University Hyderabad Campus, 502329, India; Department of Chemistry, B V Raju Institute of Technology (BVRIT), Narsapur 502313, India
| | - Shravya Rao Madku
- Department of Chemistry, GITAM School of Science, GITAM Deemed to be University Hyderabad Campus, 502329, India; Department of Chemistry, St. Francis College for Women, Hyderabad 500016, India
| | - Bijaya Ketan Sahoo
- Department of Chemistry, GITAM School of Science, GITAM Deemed to be University Hyderabad Campus, 502329, India.
| |
Collapse
|
21
|
Wani TA, Zargar S. Molecular Spectroscopy Evidence of 1,3,5-Tris(4-carboxyphenyl)benzene Binding to DNA: Anticancer Potential along with the Comparative Binding Profile of Intercalation via Modeling Studies. Cells 2023; 12:cells12081120. [PMID: 37190029 DOI: 10.3390/cells12081120] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/05/2023] [Accepted: 04/07/2023] [Indexed: 05/17/2023] Open
Abstract
One of medicinal chemistry's top priorities is the discovery of new molecules with anticancer potential. Compounds that interact with DNA are an intriguing family of chemotherapeutic medications used to treat cancer. Studies in this area have uncovered a plethora of potential anticancer medicines, such as groove binding, alkylating, and intercalator compounds. The anticancer activity of DNA intercalators (molecules that intercalate between DNA base pairs) has drawn special interest. The current study investigated the promising anticancer drug 1,3,5-Tris(4-carboxyphenyl)benzene (H3BTB) against breast and cervical cancer cell lines. In addition, 1,3,5-Tris(4-carboxyphenyl)benzene binds to DNA by groove binding. The binding of H3BTB to DNA was found to be significant which unwinds the DNA helix. Considerable electrostatic and non-electrostatic contributions were present in the binding's free energy. The cytotoxic potential of H3BTB is effectively demonstrated by the computational study outcomes, which include molecular docking and molecular dynamics (MD) simulations. The minor groove binding for the H3BTB-DNA complex is supported by molecular docking research. This study will promote empirical investigation into the synthesis of metallic and non-metallic H3BTB derivatives and their potential use as bioactive molecules for the treatment of cancer.
Collapse
Affiliation(s)
- Tanveer A Wani
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Seema Zargar
- Department of Biochemistry, College of Science, King Saud University, P.O. Box 22452, Riyadh 11451, Saudi Arabia
| |
Collapse
|
22
|
Tanuja Safala Bodapati A, Srinivas Reddy R, Lavanya K, Rao Madku S, Ketan Sahoo B. A comprehensive biophysical and theoretical study on the binding of dexlansoprazole with human serum albumin. J Mol Liq 2023. [DOI: 10.1016/j.molliq.2023.121777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
|
23
|
Xia H, Sun Q, Gan N, Ai P, Li H, Li Y. Unveiling the binding details and esterase-like activity effect of methyl yellow on human serum albumin: spectroscopic and simulation study. RSC Adv 2023; 13:8281-8290. [PMID: 36926008 PMCID: PMC10011880 DOI: 10.1039/d2ra07377c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 03/04/2023] [Indexed: 03/17/2023] Open
Abstract
The food sector uses methyl yellow (MY) extensively as a colorant. The primary transporter in vivo that influences MY absorption, metabolism, distribution, and excretion is human serum albumin (HSA). Exploring the binding process and looking at how HSA and MY work physiologically at the molecular level is therefore very important. Experiments using steady-state fluorescence and fluorescence lifetimes proved that HSA and MY's quenching mechanisms were static. The HSA-MY complex's binding constant was estimated using thermodynamic parameters to be around 104 M-1. The hydrophobic forces were a major factor in the binding process, as evidenced by the negative ΔG, positive ΔH, and ΔS, which suggested that this contact was spontaneous. Site tests showed that MY linked to HSA's site I. Circular dichroism and three-dimensional fluorescence analysis revealed that the 1.33% α-helix content dropped and the amino acid microenvironment altered. While HSA's protein surface hydrophobicity decreased when engaging MY, the binding of MY to HSA reduced in the presence of urea. The stability of the system was assessed using molecular modeling. Additionally, HSA's esterase-like activity decreased when MY was present, and Ibf/Phz affected the inhibition mechanism of MY on HSA. These findings offer a distinctive perspective for comprehending the structure and functioning of HSA and evaluating the safety of MY.
Collapse
Affiliation(s)
- Haobin Xia
- School of Chemical Engineering, Sichuan University Chengdu 610065 China
| | - Qiaomei Sun
- School of Chemical Engineering, Sichuan University Chengdu 610065 China
| | - Na Gan
- School of Chemical Engineering, Sichuan University Chengdu 610065 China
| | - Pu Ai
- School of Chemical Engineering, Sichuan University Chengdu 610065 China
| | - Hui Li
- School of Chemical Engineering, Sichuan University Chengdu 610065 China
| | - Yanfang Li
- School of Chemical Engineering, Sichuan University Chengdu 610065 China
| |
Collapse
|
24
|
Toxicity Study and Binding Analysis of Newly Synthesized Antifungal N-(4-aryl/cyclohexyl)-2-(pyridine-4-yl carbonyl) hydrazinecarbothioamide Derivative with Bovine Serum Albumin. Int J Mol Sci 2023; 24:ijms24054942. [PMID: 36902371 PMCID: PMC10002925 DOI: 10.3390/ijms24054942] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 02/28/2023] [Accepted: 03/01/2023] [Indexed: 03/08/2023] Open
Abstract
The presence of the p-aryl/cyclohexyl ring in the N-(4-aryl/cyclohexyl)-2-(pyridine-4-yl carbonyl) hydrazine carbothioamide derivative (2C) is reported to enhance the antifungal properties when compared to those of itraconazole. Serum albumins present in plasma bind and transport ligands, including pharmaceuticals. This study explored 2C interactions with BSA using spectroscopic methods such as fluorescence and UV-visible spectroscopy. In order to acquire a deeper comprehension of how BSA interacts with binding pockets, a molecular docking study was carried out. The fluorescence of BSA was quenched by 2C via a static quenching mechanism since a decrease in quenching constants was observed from 1.27 × 105 to 1.14 × 105. Thermodynamic parameters indicated hydrogen and van der Waals forces responsible for the BSA-2C complex formation with binding constants ranging between 2.91 × 105 and 1.29 × 105, which suggest a strong binding interaction. Site marker studies displayed that 2C binds to BSA's subdomains IIA and IIIA. Molecular docking studies were conducted to further comprehend the molecular mechanism of the BSA-2C interaction. The toxicity of 2C was predicted by Derek Nexus software. Human and mammalian carcinogenicity and skin sensitivity predictions were associated with a reasoning level of equivocal, inferring 2C to be a potential drug candidate.
Collapse
|
25
|
Triptolide and methotrexate binding competitively to bovine serum albumin: A study of spectroscopic experiments, molecular docking, and molecular dynamic simulation. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
26
|
Wani TA, Zargar S, Hussain A. Spectroscopic, Thermodynamic and Molecular Docking Studies on Molecular Mechanisms of Drug Binding to Proteins. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27238405. [PMID: 36500497 PMCID: PMC9738057 DOI: 10.3390/molecules27238405] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 11/29/2022] [Indexed: 12/04/2022]
Abstract
Molecular recognition, which is the process of biological macromolecules interacting with each other or various small molecules with a high specificity and affinity to form a specific complex, constitutes the basis of all processes in living organisms [...].
Collapse
Affiliation(s)
- Tanveer A. Wani
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
- Correspondence:
| | - Seema Zargar
- Department of Biochemistry, College of Science, King Saud University, P.O. Box 22452, Riyadh 11451, Saudi Arabia
| | - Afzal Hussain
- Department of Pharmacognosy, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| |
Collapse
|
27
|
Exploring the HSA/DNA/lung cancer cells binding behavior of p-Synephrine, a naturally occurring phenyl ethanol amine with anti-adipogenic activity: multi spectroscopic, molecular dynamic and cellular approaches. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
28
|
Singh D, Kaur L, Singh P, Datta A, Pathak M, Tiwari AK, Ojha H, Singhal R. Luminescence and in-silico studies of binding interactions of arylpiperazinyl-butylbenzoxazolone based synthetic compounds with bovine serum albumin. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2022.114429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
29
|
Zhu M, Pang X, Wan J, Xu X, Wei X, Hua R, Zhang X, Wang Y, Yang X. Potential toxic effects of sulfonamides antibiotics: Molecular modeling, multiple-spectroscopy techniques and density functional theory calculations. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 243:113979. [PMID: 35987082 DOI: 10.1016/j.ecoenv.2022.113979] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 07/25/2022] [Accepted: 08/13/2022] [Indexed: 06/15/2023]
Abstract
Sulfonamide antibiotics (SAs) are widely used in medicine, animal husbandry and aquaculture, and excessive intake of SAs may pose potential toxicity to organisms. The toxicological mechanisms of two classical SAs, sulfamerazine (SMR) and sulfamethoxazole (SMT), were investigated by molecular docking, DFT and multi-spectroscopic techniques using HSA and BSA as model proteins. The quenching of HSA/BSA endogenous fluorescence by SMR was higher than that by SMT due to the stronger binding effect of the pyrimidine ring on HSA/BSA compared to the oxazole ring, and that result was consistent with that predicted by DFT calculations. Thermodynamic parameters show that the binding of SAs to HSA/BSA is an exothermic process that proceeds spontaneously (ΔG < 0). Marker competition experiments illustrate that the binding site of SMR/SMT on serum albumin is located in subdomain IIIA. The combination of SAs and HSA/BSA is mainly realized by hydrogen bond and hydrophobic interaction, and the concept is also supported by molecular modeling. The reduced α-helix content of HSA/BSA induced by SMR/SMT indicates a greater stretching of the protein α-helix structure of the SMR/SMT-HSA/BSA. The results could provide useful toxicological information on the hazards of SAs in response to growing concern that SAs may pose a toxic threat to organisms.
Collapse
Affiliation(s)
- Meiqing Zhu
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, China; Key Laboratory of Agri-Food Safety of Anhui Province, School of Resources and Environment, Anhui Agricultural University, No. 130 Changjiang West Road, Hefei 230036, China.
| | - Xiaohui Pang
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, China
| | - Jie Wan
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, China
| | - Xiaoping Xu
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, China
| | - Xueyu Wei
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, China
| | - Rimao Hua
- Key Laboratory of Agri-Food Safety of Anhui Province, School of Resources and Environment, Anhui Agricultural University, No. 130 Changjiang West Road, Hefei 230036, China
| | - Xiaoying Zhang
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, China
| | - Yi Wang
- Key Laboratory of Agri-Food Safety of Anhui Province, School of Resources and Environment, Anhui Agricultural University, No. 130 Changjiang West Road, Hefei 230036, China; Department of Entomology and Nematology and UCD Comprehensive Cancer Center, University of California, Davis, CA 95616, USA
| | - Xiaofan Yang
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, China.
| |
Collapse
|
30
|
Rahman N, Khalil N. Effect of glycation of bovine serum albumin on the interaction with xanthine oxidase inhibitor allopurinol: Spectroscopic studies and molecular modeling. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
31
|
Sehrawat H, Kumar N, Panchal S, Kumar L, Chandra R. Imperative persistent interaction analysis of anticancer noscapine-ionic liquid with calf thymus DNA. Int J Biol Macromol 2022; 220:415-425. [PMID: 35985396 DOI: 10.1016/j.ijbiomac.2022.08.106] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 08/10/2022] [Accepted: 08/15/2022] [Indexed: 11/25/2022]
Abstract
In this study, we have shown the interaction between opium poppy alkaloid noscapine-based ionic liquid [Pip-Nos]OTf and ct-DNA using UV-visible absorption spectroscopy, fluorescence spectroscopy, CD, and computational studies. The absorption spectra showed a hypochromic shift with no shift in the absorption maxima suggesting groove or electrostatic binding. Fluorescence spectra showed an enhancement in fluorescence emission suggesting that the probable mode of binding should be groove binding. Ethidium bromide (EB) competitive and Ionic strength study showed the absence of intercalative and electrostatic modes of interaction. Further, CD analysis of ct-DNA suggested a groove binding mode of interaction of [Pip-Nos]OTf with ct-DNA. [Pip-Nos]OTf displayed a strong binding with the target ct-DNA with a molecular docking score of -41.47 kJ/mol with all 3D coordinates and full conformation. Also, molecular binding contact analyses depicted the stable binding of drug and ct-DNA with potential hydrogen bonds and hydrophobic interactions. The structural superimposition dynamics analysis showed the stable binding of [Pip-Nos]OTf with the ct-DNA model through RMSD statistics. Moreover, the ligand interaction calculations revealed the involvement of large binding energy along with a high static number of molecular forces including the hydrogen bonds and hydrophobic interactions in their complexation. These significant results report the potency of [Pip-Nos]OTf and its important futuristic role in cancer therapeutics.
Collapse
Affiliation(s)
- Hitesh Sehrawat
- Drug Discovery & Development Laboratory, Department of Chemistry, University of Delhi, Delhi 110007, India.
| | - Neeraj Kumar
- Drug Discovery & Development Laboratory, Department of Chemistry, University of Delhi, Delhi 110007, India; Northwestern University, Feinberg School of Medicine, Department of Neurology, Chicago, IL 60611, USA
| | - Sagar Panchal
- Drug Discovery & Development Laboratory, Department of Chemistry, University of Delhi, Delhi 110007, India
| | - Loveneesh Kumar
- Drug Discovery & Development Laboratory, Department of Chemistry, University of Delhi, Delhi 110007, India
| | - Ramesh Chandra
- Drug Discovery & Development Laboratory, Department of Chemistry, University of Delhi, Delhi 110007, India; Dr. B. R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi 110007, India; Institute of Nano Medical Sciences (INMS), University of Delhi, Delhi 110007, India.
| |
Collapse
|
32
|
Bodapati ATS, Sahoo BK, Reddy RS, Lavanya K, Madku SR. Deciphering the nature of binding of dexlansoprazole with DNA: Biophysical and docking approaches. Int J Biol Macromol 2022; 217:1027-1036. [PMID: 35907469 DOI: 10.1016/j.ijbiomac.2022.07.177] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 07/21/2022] [Accepted: 07/22/2022] [Indexed: 11/30/2022]
Abstract
Drugs, in general, exhibit their pharmacological activity in binding with intracellular targets. Numerous anticancer and antibacterial drugs target DNA as one of their primary intracellular targets. Dexlansoprazole (DLP) is a heterocyclic compound containing benzimidazole moiety and a proton pump inhibitor used to treat gastroesophageal reflux disease. The interaction of dexlansoprazole with calf thymus DNA (ct-DNA) has been studied using biophysical methods. The UV-Visible studies revealed a binding constant of 2.15 ± 0.3 × 104 M-1 which is close to the value of 2.44 ± 0.3 × 104 M-1 obtained from the fluorescence studies. Competitive displacement studies using the fluorescence spectroscopic method with ethidium bromide and Hoechst as DNA markers suggested the groove binding mode of DLP in ct-DNA. The groove binding mode of DLP in ct-DNA was complemented by the results of viscosity and DNA melting studies. Further studies on the effect of ionic strength and potassium iodide on DLP binding with ct-DNA supported the observed binding mode. Circular dichroism studies reflected no significant conformational variation in ct-DNA after the interaction. The binding mode obtained from the experimental studies was corroborated by the molecular docking studies that showed the position of DLP in the minor groove of ct-DNA along with the receptor interface restudies involved in the interaction.
Collapse
Affiliation(s)
- Anna Tanuja Safala Bodapati
- Chemistry Division, BS&H Department, BVRIT Hyderabad, College of Engineering for Women, Hyderabad 500090, India; Department of Chemistry, GITAM Deemed to be University, Hyderabad Campus 502329, India
| | - Bijaya Ketan Sahoo
- Department of Chemistry, GITAM Deemed to be University, Hyderabad Campus 502329, India.
| | - Ragaiahgari Srinivas Reddy
- Department of Chemistry, GITAM Deemed to be University, Hyderabad Campus 502329, India; Department of Chemistry, B V Raju Institute of Technology (BVRIT), Narsapur 502313, India
| | - Kandikonda Lavanya
- Department of Chemistry, GITAM Deemed to be University, Hyderabad Campus 502329, India; Department of Chemistry, Gokaraju Rangaraju Institute of Engineering and Technology, Hyderabad 500090, India
| | - Shravya Rao Madku
- Department of Chemistry, GITAM Deemed to be University, Hyderabad Campus 502329, India; Department of Chemistry, St. Francis College for Women, Hyderabad 500016, India
| |
Collapse
|
33
|
An insight into the interaction between Indisulam and human serum albumin: Spectroscopic method, computer simulation and in vitro cytotoxicity assay. Bioorg Chem 2022; 127:106017. [PMID: 35841666 DOI: 10.1016/j.bioorg.2022.106017] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/24/2022] [Accepted: 07/07/2022] [Indexed: 11/24/2022]
Abstract
Indisulam (IDM) is a sulfanilamide anticancer agent and has been identified as a molecular glue recently. It shows potential for novel therapies development and brings more hope for curing human diseases. The affinity between molecular glues and plasma protein makes it significant to understand the characteristics of such substances. Therefore, the interaction between IDM and human serum albumin (HSA) was explored through solvent experiments, computer simulation experiments, enzyme kinetics experiments, and cell viability assay. The results revealed that IDM and HSA spontaneously formed stable binary complex with the binding constant of the order 105 M-1. IDM inserted in the site I of HSA, resulting the change in HSA secondary structure. And π electrons in IDM's benzene rings, as well as van der Waals forces and the H-bond, all helped to stabilize the HSA-IDM complex. The results of molecular dynamic simulation (MD) corresponded with the results from solvent experiment well. For instance, there were approximately 1-5 H-bonds between IDM and HSA. Lys199 and Arg218 were crucial energy contributors in the binding process. The esterase-like activity experiment confirmed that IDM inhibited the catalytic activity of HSA. In addition, cell experiment revealed that serum albumin can significantly reduce the cytotoxicity of IDM towards human embryonic kidney 293T (HEK293T) cells.
Collapse
|
34
|
Khayyat AIA, Zargar S, Wani TA, Rehman MU, Khan AA. Association Mechanism and Conformational Changes in Trypsin on Its Interaction with Atrazine: A Multi- Spectroscopic and Biochemical Study with Computational Approach. Int J Mol Sci 2022; 23:ijms23105636. [PMID: 35628445 PMCID: PMC9146720 DOI: 10.3390/ijms23105636] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/15/2022] [Accepted: 05/16/2022] [Indexed: 02/01/2023] Open
Abstract
Atrazine (ATR) is a herbicide globally used to eliminate undesired weeds. Herbicide usage leads to various adverse effects on human health and the environment. The primary source of herbicides in humans is the food laced with the herbicides. The ATR binding to trypsin (TYP) was investigated in this study to explore its binding potential and toxicity. In vitro interaction of ATR with TYP was studied using multi-spectroscopic methods, molecular docking, and enzyme kinetics to explore the mechanism of binding for the TYP-ATR system. The TYP-ATR complex revealed binding constants (103 M-1), suggesting a moderate binding. The free energy for the TYP-ATR complexes was negative, suggesting a spontaneous interaction. Thermodynamic parameters enthalpy (ΔH) and entropy (ΔS) obtained positive values for the TYP-ATR system suggesting hydrophobic interactions in the binding process. Micro-environmental and conformational changes in TYP molecules were induced on interaction with ATR. Reduced catalytic activity of TYP was observed after interaction with ATR owing to the changes in the secondary structure of the TYP.
Collapse
Affiliation(s)
- Arwa Ishaq A. Khayyat
- Department of Biochemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Seema Zargar
- Department of Biochemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia;
- Correspondence: (S.Z.); (T.A.W.)
| | - Tanveer A. Wani
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia;
- Correspondence: (S.Z.); (T.A.W.)
| | - Muneeb U. Rehman
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Azmat Ali Khan
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia;
| |
Collapse
|