1
|
Shang H, Liu X, Bai M, Li X, Lan Y, Bai B, Yang S, Wu X, Li G. Causal Relationship Between Circulating Inflammatory Cytokines and the Risk of Trigeminal Neuralgia: A Mendelian Randomization Study. Brain Behav 2025; 15:e70463. [PMID: 40195053 PMCID: PMC11975542 DOI: 10.1002/brb3.70463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 03/10/2025] [Accepted: 03/17/2025] [Indexed: 04/09/2025] Open
Abstract
BACKGROUND Inflammatory regulators play a fundamental role in the development of trigeminal neuralgia (TN). However, the precise mechanisms and causal relationship with the risk of TN remain poorly understood. METHODS This study aimed to assess the causal relationship between 41 inflammatory cytokines and TN using Mendelian randomization (MR) analysis. A two-sample MR approach was utilized, employing genetic variation data on TN from a large publicly available genome-wide association study (GWAS) comprising 1777 cases of European ancestry and 360,538 controls. Additionally, summary data from a GWAS on inflammatory cytokines, comprising 8293 healthy participants, were utilized. The causal relationship between exposure and outcome was primarily assessed using the inverse variance weighted (IVW) method, accompanied by sensitivity analyses. RESULTS The study revealed an association between increased risk of TN and cutaneous T cell-attracting chemokine(CTACK) (odds ratio [OR] = 1.187; 95% confidence interval [CI], 1.041-1.35; p = 0.01) and interferon (IFN)-gamma(MIG) (OR = 1.232; 95% CI, 1.080-1.449; p = 0.01), while interleukin (IL)-16 (OR = 0.823; 95% CI, 0.685-0.989; p = 0.03) and interferon (IFN)-G (OR = 0.779; 95% CI, 0.612-0.992; p = 0.04) were associated with decreased risk of TN. Notably, no potential effect of TN on inflammatory factors was observed. CONCLUSION This study provides novel insights into the pathogenesis of TN, highlighting the crucial role of inflammatory cytokines in TN risk. SIGNIFICANCE This study advances our understanding of TN by using MR to identify the causal roles of specific inflammatory cytokines. These results underscore the importance of inflammation in TN development and suggest potential targets for new treatments.
Collapse
Affiliation(s)
- Hui Shang
- Department of AnesthesiologyShenzhen Hospital (Fu Tian) of Guangzhou University of Chinese MedicineShenzhenPeople's Republic of China
| | - Xianqiang Liu
- Graduate SchoolMedical School of Chinese PLABeijingPeople's Republic of China
| | - Mengying Bai
- Reproductive Health Department, Shenzhen Traditional Chinese Medicine Hospitalthe Fourth Clinical Medical College of Guangzhou University of Chinese MedicineShenzhenPeople's Republic of China
| | - Xiao Li
- Department of AnesthesiologyThe First Affiliated Hospital of Guangzhou University of Chinese MedicineGuangzhouPeople's Republic of China
| | - Yuhang Lan
- Department of AnesthesiologyShenzhen Hospital (Fu Tian) of Guangzhou University of Chinese MedicineShenzhenPeople's Republic of China
| | - Bingbing Bai
- Department of AnesthesiologyShenzhen Hospital (Fu Tian) of Guangzhou University of Chinese MedicineShenzhenPeople's Republic of China
| | - Shuyun Yang
- Department of AnesthesiologyShenzhen Hospital (Fu Tian) of Guangzhou University of Chinese MedicineShenzhenPeople's Republic of China
| | - Xianlin Wu
- Cancer CenterShenzhen Hospital (Fu Tian) of Guangzhou University of Chinese MedicineShenzhenPeople's Republic of China
| | - Guocai Li
- Department of AnesthesiologyShenzhen Hospital (Fu Tian) of Guangzhou University of Chinese MedicineShenzhenPeople's Republic of China
| |
Collapse
|
2
|
de Souza S, Laumet S, Hua H, Inyang KE, Sim J, Folger JK, Moeser AJ, Laumet G. Mast cell-derived chymases are essential for the resolution of inflammatory pain in mice. Pain 2025:00006396-990000000-00843. [PMID: 40035664 DOI: 10.1097/j.pain.0000000000003565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 12/02/2024] [Indexed: 03/06/2025]
Abstract
ABSTRACT Immune cells play a critical role in the transition from acute to chronic pain. However, the role of mast cells in pain remains underinvestigated. Here, we demonstrated that the resolution of inflammatory pain is markedly delayed in mast cell-deficient mice. In response to complete Freund adjuvant, mast cell-deficient mice showed greater levels of nitric oxide, leukocyte infiltration, and altered cytokine/chemokine profile in inflamed skin in both sexes. In wild-type mice, the number of mast cell and mast cell-derived chymases, chymase 1 (CMA1) and mast cell protease 4 (MCPT4), increased in the inflamed skin. Inhibiting chymase enzymatic activity delayed the resolution of inflammatory pain. Consistently, local pharmacological administration of recombinant CMA1 and MCPT4 promoted the resolution of pain hypersensitivity and attenuated the upregulation of cytokines and chemokines under inflammation. We identified CCL9 as a target of MCPT4. Inhibition of CCL9 promoted recruitment of CD206+ myeloid cells and alleviated inflammatory pain. Our work reveals a new role of mast cell-derived chymases in preventing the transition from acute to chronic pain and suggests new therapeutic avenues for the treatment of inflammatory pain.
Collapse
Affiliation(s)
- Sabrina de Souza
- Department of Physiology, Michigan State University, East Lansing, MI, United States
| | - Sophie Laumet
- Department of Physiology, Michigan State University, East Lansing, MI, United States
| | - Hannah Hua
- Department of Physiology, Michigan State University, East Lansing, MI, United States
| | - Kufreobong E Inyang
- Department of Physiology, Michigan State University, East Lansing, MI, United States
| | - Jaewon Sim
- Department of Physiology, Michigan State University, East Lansing, MI, United States
| | - Joseph K Folger
- Department of Physiology, Michigan State University, East Lansing, MI, United States
| | - Adam J Moeser
- Department of Large Animal Clinical Sciences, Michigan State University, East Lansing, Mi, United States
| | - Geoffroy Laumet
- Department of Physiology, Michigan State University, East Lansing, MI, United States
| |
Collapse
|
3
|
Sha J, Yang M, Lei Y, Sun L, Meng C, Zhu D. Interaction between nasal epithelial cells and Tregs in allergic rhinitis responses to allergen via CCL1/CCR8. Front Immunol 2025; 16:1526081. [PMID: 40051629 PMCID: PMC11882574 DOI: 10.3389/fimmu.2025.1526081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Accepted: 01/21/2025] [Indexed: 03/09/2025] Open
Abstract
Background The airway epithelial barrier is the first defence against aeroallergens. Nasal epithelial cells (NECs) are vital in regulating innate and adaptive mucosal immunity in allergic rhinitis (AR). Tregs produce cytokines essential for the immunomodulatory activities in allergen immunotherapy. Understanding the relationship between NECs and Tregs in the airway hyperresponsiveness network is essential for developing novel treatments. Methods Using an in vitro human Treg-NEC co-culture system of AR and health control group, the chemokine expression profiles of NECs were examined using immunohistochemistry, RT-PCR, and ELISA, and functional surface markers of Tregs were detected using flow cytometric analysis. Correlation analysis was performed between cytokines derived from NECs and surface markers of CD4+CD8+Foxp3+ Tregs in the AR group after co-culture, including TSLP/CTLA4, CCL1/CTLA4, TSLP/CTLA4, TSLP/CCR8, and CCL1/CCR8. Results CCR8 and CTLA-4 expressions after co-culturing were higher than single culture. Following Derp1 stimulation, TSLP, IL-25 and TGF-β expressions in the AR + Derp1 group were increased. CCL1 mRNA was lower in the AR + Derp1 group than control group. In the AR + Derp1 group, TSLP was higher, and CCL1 protein levels were decreased. There were no significant differences in IL-25, TGF-β and IL-10. When Treg co-culture group added, changes were similar to that observed in pNECs. After co-culture, CCL1/CCR8 was positively correlated in AR. Conclusion Human pNECs can communicate with Tregs directly, CCL1/CCR8 may be the pathway between NECs and Tregs in vitro and may play a key role in the immune network of AR.
Collapse
Affiliation(s)
| | | | | | | | | | - Dongdong Zhu
- Department of Otorhinolaryngology Head and Neck Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| |
Collapse
|
4
|
Lane TR, Puhl AC, Vignaux PA, Pennypacker KR, Ekins S. Repurposing lapatinib as a triple antagonist of chemokine receptors 3, 4, and 5. Mol Pharmacol 2025; 107:100010. [PMID: 39919162 DOI: 10.1016/j.molpha.2024.100010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 11/18/2024] [Indexed: 02/09/2025] Open
Abstract
Chemokine receptors CCR3, CCR4, and CCR5 are G protein-coupled receptors implicated in diseases like cancer, Alzheimer's, asthma, human immunodeficiency virus (HIV), and macular degeneration. Recently, CCR3 and CCR4 have emerged as potential stroke targets. Although only the CCR5 antagonist maraviroc is US Food and Drug Administration-approved (for HIV), we curated data on CCR3, CCR4, and CCR5 antagonists from ChEMBL to develop and validate machine learning models. The top 5-fold cross-validation statistics for these models were high for both classification and regression models for CCR3 (receiver operating characteristic [ROC], 0.94; R2 = 0.8), CCR4 (ROC, 0.98; R2 = 0.57), and CCR5 (ROC, 0.96; R2 = 0.78). The models for CCR3/4 were used to screen a small library of US Food and Drug Administration-approved drugs and 17 were initially tested in vitro against both CCR3/4 receptors. A promising compound lapatinib, a dual tyrosine kinase inhibitor, was identified as an antagonist for CCR3 (IC50, 0.7 μM) and CCR4 (IC50, 1.8 μM). Additional testing also identified it as an CCR5 antagonist (IC50, 0.9 μM), and it showed moderate in vitro HIV I inhibition. We demonstrated how machine learning can be used to identify molecules for repurposing as antagonists for G protein-coupled receptors such as CCR3, CCR4, and CCR5. Lapatinib may represent a new orally available chemical probe for these 3 receptors, and it provides a starting point for further chemical optimization for multiple diseases impacting human health. SIGNIFICANCE STATEMENT: We describe the building of machine learning models for the chemokine receptors CCR3, CCR4, and CCR5 trained on data from the ChEMBL database. Using these models, we identified lapatinib as a potent inhibitor of CCR3, CCR4, and CCR5. Our study illustrates the potential of machine learning in identifying molecules for repurposing as antagonists for G protein-coupled receptors, including CCR3, CCR4, and CCR5, which have various therapeutic applications.
Collapse
Affiliation(s)
- Thomas R Lane
- Collaborations Pharmaceuticals, Inc, Raleigh, North Carolina.
| | - Ana C Puhl
- Collaborations Pharmaceuticals, Inc, Raleigh, North Carolina
| | | | - Keith R Pennypacker
- Departments of Neurology and Neuroscience, Center for Advanced Translational Stroke Science, University of Kentucky, Lexington, Kentucky
| | - Sean Ekins
- Collaborations Pharmaceuticals, Inc, Raleigh, North Carolina.
| |
Collapse
|
5
|
Dubový P, Hradilová-Svíženská I, Brázda V, Jambrichová A, Svobodová V, Joukal M. The Intrinsic Neuronal Activation of the CXCR4 Signaling Axis Is Associated with a Pro-Regenerative State in Cervical Primary Sensory Neurons Conditioned by a Sciatic Nerve Lesion. Int J Mol Sci 2024; 26:193. [PMID: 39796050 PMCID: PMC11720091 DOI: 10.3390/ijms26010193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 12/04/2024] [Accepted: 12/24/2024] [Indexed: 01/30/2025] Open
Abstract
CXCL12 and CXCR4 proteins and mRNAs were monitored in the dorsal root ganglia (DRGs) of lumbar (L4-L5) and cervical (C7-C8) spinal segments of naïve rats, rats subjected to sham operation, and those undergoing unilateral complete sciatic nerve transection (CSNT) on post-operation day 7 (POD7). Immunohistochemical, Western blot, and RT-PCR analyses revealed bilaterally increased levels of CXCR4 protein and mRNA in both lumbar and cervical DRG neurons after CSNT. Similarly, CXCL12 protein levels increased, and CXCL12 mRNA was upregulated primarily in lumbar DRGs ipsilateral to the nerve lesion. Intrathecal application of the CXCR4 inhibitor AMD3100 following CSNT reduced CXCL12 and CXCR4 protein levels in cervical DRG neurons, as well as the length of afferent axons regenerated distal to the ulnar nerve crush. Furthermore, treatment with the CXCR4 inhibitor decreased levels of activated Signal Transducer and Activator of Transcription 3 (STAT3), a critical transforming factor in the neuronal regeneration program. Administration of IL-6 increased CXCR4 levels, whereas the JAK2-dependent STAT3 phosphorylation inhibitor (AG490) conversely decreased CXCR4 levels. This indicates a link between the CXCL12/CXCR4 signaling axis and IL-6-induced activation of STAT3 in the sciatic nerve injury-induced pro-regenerative state of cervical DRG neurons. The role of CXCR4 signaling in the axon-promoting state of DRG neurons was confirmed through in vitro cultivation of primary sensory neurons in a medium supplemented with CXCL12, with or without AMD3100. The potential involvement of conditioned cervical DRG neurons in the induction of neuropathic pain is discussed.
Collapse
Affiliation(s)
- Petr Dubový
- Department of Anatomy, Cellular and Molecular Research Group, Faculty of Medicine, Masaryk University, Kamenice 3, CZ-625 00 Brno, Czech Republic
| | - Ivana Hradilová-Svíženská
- Department of Anatomy, Cellular and Molecular Research Group, Faculty of Medicine, Masaryk University, Kamenice 3, CZ-625 00 Brno, Czech Republic
| | - Václav Brázda
- Department of Anatomy, Cellular and Molecular Research Group, Faculty of Medicine, Masaryk University, Kamenice 3, CZ-625 00 Brno, Czech Republic
- Institute of Biophysics, Czech Academy of Sciences, Královopolská 135, CZ-612 65 Brno, Czech Republic
| | - Anna Jambrichová
- Department of Anatomy, Cellular and Molecular Research Group, Faculty of Medicine, Masaryk University, Kamenice 3, CZ-625 00 Brno, Czech Republic
| | - Viktorie Svobodová
- Department of Anatomy, Cellular and Molecular Research Group, Faculty of Medicine, Masaryk University, Kamenice 3, CZ-625 00 Brno, Czech Republic
| | - Marek Joukal
- Department of Anatomy, Cellular and Molecular Research Group, Faculty of Medicine, Masaryk University, Kamenice 3, CZ-625 00 Brno, Czech Republic
| |
Collapse
|
6
|
Fu C, Lin Y, Lin Q, Lan S, Huang Y, Tu H, Li C, Lu S, Li X, Zhong W, Ma D. Protective mechanism of Prim-O-glucosylcimifugin in the treatment of osteoarthritis: Based on lncRNA XIST regulation of Nav1.7. Biomed Pharmacother 2024; 181:117597. [PMID: 39509948 DOI: 10.1016/j.biopha.2024.117597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 10/16/2024] [Accepted: 10/21/2024] [Indexed: 11/15/2024] Open
Abstract
LncRNA XIST and Nav1.7 have been identified to be significantly associated with the onset of osteoarthritis. Prim-O-glucosylcimifugin (POG) has antiinflammatory and analgesic effects in treating osteoarthritis (OA). However, its molecular mechanism of action remains unclear. This research investigated whether POG inhibits OA cartilage degeneration by regulating Nav1.7 through lncRNA XIST. We observed the relationship between lncRNA XIST and Nav1.7 through in vivo and in vitro experiments, and utilized lentiviral plasmids for XIST overexpression to further validate the protective effect of POG against OA. In vivo experiments revealed the close association of improving OA cartilage morphological changes by POG with lncRNA XIST and Nav1.7 downregulation and related proteins expression. In vitro experiments demonstrated significantly up-regulated lncRNA XIST and Nav1.7 expression in IL1β-induced chondrocytes, and their levels and related protein expression decreased after POG intervention. FISH indicated that POG attenuated the fluorescence intensity of lncRNA XIST in chondrocytes. RT-PCR and Western blot assays revealed the positive correlation of lncRNA XIST and Nav1.7 expression in chondrocytes. Additionally, flow cytometry results revealed that POG intervention reduced OA chondrocyte apoptosis. Therefore, we conclude that POG can mediate lncRNA XIST to regulate Nav1.7 to delay cartilage degeneration, which is an effective way to treat OA. However, lncRNA XIST is not the only target for regulation, and further discussion is needed.
Collapse
Affiliation(s)
- Changlong Fu
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, 1 Qiuyang Road, Fuzhou, Fujian 350122, China; Fujian Provincial Key Laboratory of Integrative Medicine on Geriatrics, Fuzhou, Fujian 350122, China
| | - Yanming Lin
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, 1 Qiuyang Road, Fuzhou, Fujian 350122, China; Fujian Provincial Key Laboratory of Integrative Medicine on Geriatrics, Fuzhou, Fujian 350122, China
| | - Qing Lin
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, 1 Qiuyang Road, Fuzhou, Fujian 350122, China; Fujian Provincial Key Laboratory of Integrative Medicine on Geriatrics, Fuzhou, Fujian 350122, China
| | - Shujie Lan
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, 1 Qiuyang Road, Fuzhou, Fujian 350122, China; Fujian Provincial Key Laboratory of Integrative Medicine on Geriatrics, Fuzhou, Fujian 350122, China
| | - Yanfeng Huang
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, 1 Qiuyang Road, Fuzhou, Fujian 350122, China; Fujian Provincial Key Laboratory of Integrative Medicine on Geriatrics, Fuzhou, Fujian 350122, China
| | - Haishui Tu
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, 1 Qiuyang Road, Fuzhou, Fujian 350122, China; Fujian Provincial Key Laboratory of Integrative Medicine on Geriatrics, Fuzhou, Fujian 350122, China
| | - Chao Li
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, 1 Qiuyang Road, Fuzhou, Fujian 350122, China; Fujian Provincial Key Laboratory of Integrative Medicine on Geriatrics, Fuzhou, Fujian 350122, China
| | - Shiyu Lu
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, 1 Qiuyang Road, Fuzhou, Fujian 350122, China; Fujian Provincial Key Laboratory of Integrative Medicine on Geriatrics, Fuzhou, Fujian 350122, China
| | - Xihai Li
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, 1 Qiuyang Road, Fuzhou, Fujian 350122, China; Fujian Provincial Key Laboratory of Integrative Medicine on Geriatrics, Fuzhou, Fujian 350122, China.
| | - Weihong Zhong
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, 1 Qiuyang Road, Fuzhou, Fujian 350122, China; Fujian Provincial Key Laboratory of Integrative Medicine on Geriatrics, Fuzhou, Fujian 350122, China.
| | - Dezun Ma
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, 1 Qiuyang Road, Fuzhou, Fujian 350122, China; Fujian Provincial Key Laboratory of Integrative Medicine on Geriatrics, Fuzhou, Fujian 350122, China.
| |
Collapse
|
7
|
Babu N, Gadepalli A, Akhilesh, Sharma D, Singh AK, Chouhan D, Agrawal S, Tiwari V. TLR-4: a promising target for chemotherapy-induced peripheral neuropathy. Mol Biol Rep 2024; 51:1099. [PMID: 39466456 DOI: 10.1007/s11033-024-10038-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 10/18/2024] [Indexed: 10/30/2024]
Abstract
Chemotherapy-induced peripheral neuropathy (CIPN) affects a significant majority of cancer patients, with up to 80% experiencing this severe and dose-limiting side effect while undergoing anti-cancer treatment. CIPN can be induced by a variety of drugs commonly employed in the management of both solid tumors and hematologic cancers. The inadequacies in comprehending the pharmacological interventions associated with CIPN and the subsequent signaling pathways have significantly contributed to the disappointing outcomes of several drugs in clinical trials. Recent investigations in pain research have demonstrated a growing inclination toward addressing neuro-inflammation as a strategy for managing chronic pain conditions. Notably, toll-like receptor-4 (TLR-4) has emerged as a key player in immune system activation and is undergoing extensive research. In this review, we emphasize the potential role of TLR-4 in neuropathic pain, highlighting its promise as a target for CIPN treatment. Furthermore, we explore and analyse the intricate interplay between TLR-4, diverse immune cells, downstream pathways, and receptors within the context of CIPN. A comprehensive exploration of these interactions provides valuable insights into the central role of TLR-4 in CIPN development, paving the way for potential ground-breaking therapeutic approaches to alleviate this debilitating condition.
Collapse
Affiliation(s)
- Nagendra Babu
- Neuroscience and Pain Research Laboratory, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, Uttar Pradesh, India
| | - Anagha Gadepalli
- Neuroscience and Pain Research Laboratory, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, Uttar Pradesh, India
| | - Akhilesh
- Neuroscience and Pain Research Laboratory, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, Uttar Pradesh, India
| | - Dilip Sharma
- Amity Institute of Pharmacy, Amity University of Haryana, Gurgaon, India
| | - Anurag Kumar Singh
- Neuroscience and Pain Research Laboratory, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, Uttar Pradesh, India
| | - Deepak Chouhan
- Neuroscience and Pain Research Laboratory, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, Uttar Pradesh, India
| | - Somesh Agrawal
- Neuroscience and Pain Research Laboratory, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, Uttar Pradesh, India
| | - Vinod Tiwari
- Neuroscience and Pain Research Laboratory, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, Uttar Pradesh, India.
| |
Collapse
|
8
|
Bober A, Mika J, Piotrowska A. A Missing Puzzle in Preclinical Studies-Are CCR2, CCR5, and Their Ligands' Roles Similar in Obesity-Induced Hypersensitivity and Diabetic Neuropathy?-Evidence from Rodent Models and Clinical Studies. Int J Mol Sci 2024; 25:11323. [PMID: 39457105 PMCID: PMC11508617 DOI: 10.3390/ijms252011323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 10/16/2024] [Accepted: 10/19/2024] [Indexed: 10/28/2024] Open
Abstract
Research has shown that obesity is a low-grade inflammatory disease that is often associated with comorbidities, such as diabetes and chronic pain. Recent data have indicated that chemokines may play a role in these conditions due to their pronociceptive and chemotactic properties, which promote hypersensitivity and inflammation. Accumulating evidence suggests that CCR2, CCR5, and their ligands (CCL2, CCL3, CCL4, CCL5, CCL7, CCL8, CCL11 CCL12, and/or CCL13) play a role in rodent models of pain and obesity, as well as in patients with diabetes and obesity. It was proven that the blockade of CCR2 and CCR5, including the simultaneous blockade of both receptors by dual antagonists, effectively reduces hypersensitivity to thermal and mechanical stimuli in chronic pain states, including diabetic neuropathy. The present review discusses these chemokine receptors and the role of their ligands in diabetes and obesity, as well as their involvement in diabetic neuropathy and obesity-induced hypersensitivity.
Collapse
Affiliation(s)
| | - Joanna Mika
- Department of Pain Pharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, 31-343 Krakow, Poland;
| | - Anna Piotrowska
- Department of Pain Pharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, 31-343 Krakow, Poland;
| |
Collapse
|
9
|
Ding T, Guseinov AA, Milligan G, Plouffe B, Tikhonova IG. Exploring an Intracellular Allosteric Site of CC-Chemokine Receptor 4 from 3D Models, Probe Simulations, and Mutagenesis. ACS Pharmacol Transl Sci 2024; 7:2516-2526. [PMID: 39144548 PMCID: PMC11320731 DOI: 10.1021/acsptsci.4c00330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 07/04/2024] [Accepted: 07/08/2024] [Indexed: 08/16/2024]
Abstract
We applied our previously developed probe confined dynamic mapping protocol, which combines enhanced sampling molecular dynamics (MD) simulations and fragment-based approaches, to identify the binding site of GSK2239633A (N-[[3-[[3-[(5-chlorothiophen-2-yl)sulfonylamino]-4-methoxyindazol-1-yl]methyl]phenyl]methyl]-2-hydroxy-2-methylpropanamide), a selective CC-chemokine receptor type 4 (CCR4) negative allosteric modulator, using CCR4 homology and AlphaFold models. By comparing the performance across five computational models, we identified conserved (K3108.49 and Y3047.53) and non-conserved (M2436.36) residue hotspots for GSK2239633A binding, which were validated by mutagenesis and bioluminescence resonance energy transfer assay. Further analysis of 3D models and MD simulations highlighted the pair of residues 6.36 and 7.56 that might account for antagonist selectivity among chemokine receptors. Our in silico protocol provides a promising approach for characterizing ligand binding sites in membrane proteins, considering receptor dynamics and adaptability and guiding protein template selection for ligand design.
Collapse
Affiliation(s)
- Tianyi Ding
- School
of Pharmacy, Queen’s University Belfast, Belfast Bt9 7BL, Northern Ireland, U.K.
| | - Abdul-Akim Guseinov
- School
of Pharmacy, Queen’s University Belfast, Belfast Bt9 7BL, Northern Ireland, U.K.
| | - Graeme Milligan
- Centre
for Translational Pharmacology, School of Molecular Biosciences, College
of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, Scotland G12 8QQ, U.K.
| | - Bianca Plouffe
- Wellcome-Wolfson
Institute for Experimental Medicine, School of Medicine, Dentistry
and Biomedical Sciences, Queen’s
University Belfast, Belfast Bt9 7BL, Northern Ireland, U.K.
| | - Irina G. Tikhonova
- School
of Pharmacy, Queen’s University Belfast, Belfast Bt9 7BL, Northern Ireland, U.K.
| |
Collapse
|
10
|
de Souza S, Laumet S, Inyang KE, Hua H, Sim J, Folger JK, Moeser AJ, Laumet G. Mast cell-derived chymases are essential for the resolution of inflammatory pain in mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.05.606617. [PMID: 39211156 PMCID: PMC11361099 DOI: 10.1101/2024.08.05.606617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Immune cells play a critical role in the transition from acute to chronic pain. However, the role of mast cells in pain remains under-investigated. Here, we demonstrated that the resolution of inflammatory pain is markedly delayed in mast-cell-deficient mice. In response to Complete Freund Adjuvant (CFA), mast-cell-deficient mice showed greater levels of nitric oxide and altered cytokine/chemokine profile in inflamed skin in both sexes. In Wild-Type (WT) mice, the number of mast cell and mast cell-derived chymases; chymase 1 (CMA1) and mast cell protease 4 (MCPT4) increased in the inflamed skin. Inhibiting chymase enzymatic activity delayed the resolution of inflammatory pain. Consistently, local pharmacological administration of recombinant CMA1 and MCPT4 promoted the resolution of pain hypersensitivity and attenuated the upregulation of cytokines and chemokines under inflammation. We identified CCL9 as a target of MCPT4. Inhibition of CCL9 promoted recruitment of CD206 + myeloid cells and alleviated inflammatory pain. Our work reveals a new role of mast cell-derived chymases in preventing the transition from acute to chronic pain and suggests new therapeutic avenues for the treatment of inflammatory pain. Summary Mast cell-derived chymases play an unexpected role in the resolution of inflammatory pain and regulate the immune response. Graphical abstract
Collapse
|
11
|
Bober A, Piotrowska A, Pawlik K, Ciapała K, Maciuszek M, Makuch W, Mika J. A New Application for Cenicriviroc, a Dual CCR2/CCR5 Antagonist, in the Treatment of Painful Diabetic Neuropathy in a Mouse Model. Int J Mol Sci 2024; 25:7410. [PMID: 39000516 PMCID: PMC11242565 DOI: 10.3390/ijms25137410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/02/2024] [Accepted: 07/03/2024] [Indexed: 07/16/2024] Open
Abstract
The ligands of chemokine receptors 2 and 5 (CCR2 and CCR5, respectively) are associated with the pathomechanism of neuropathic pain development, but their role in painful diabetic neuropathy remains unclear. Therefore, the aim of our study was to examine the function of these factors in the hypersensitivity accompanying diabetes. Additionally, we analyzed the analgesic effect of cenicriviroc (CVC), a dual CCR2/CCR5 antagonist, and its influence on the effectiveness of morphine. An increasing number of experimental studies have shown that targeting more than one molecular target is advantageous compared with the coadministration of individual pharmacophores in terms of their analgesic effect. The advantage of using bifunctional compounds is that they gain simultaneous access to two receptors at the same dose, positively affecting their pharmacokinetics and pharmacodynamics and consequently leading to improved analgesia. Experiments were performed on male and female Swiss albino mice with a streptozotocin (STZ, 200 mg/kg, i.p.) model of diabetic neuropathy. We found that the blood glucose level increased, and the mechanical and thermal hypersensitivity developed on the 7th day after STZ administration. In male mice, we observed increased mRNA levels of Ccl2, Ccl5, and Ccl7, while in female mice, we observed additional increases in Ccl8 and Ccl12 levels. We have demonstrated for the first time that a single administration of cenicriviroc relieves pain to a similar extent in male and female mice. Moreover, repeated coadministration of cenicriviroc with morphine delays the development of opioid tolerance, while the best and longest-lasting analgesic effect is achieved by repeated administration of cenicriviroc alone, which reduces pain hypersensitivity in STZ-exposed mice, and unlike morphine, no tolerance to the analgesic effects of CVC is observed until Day 15 of treatment. Based on these results, we suggest that targeting CCR2 and CCR5 with CVC is a potent therapeutic option for novel pain treatments in diabetic neuropathy patients.
Collapse
Affiliation(s)
| | - Anna Piotrowska
- Department of Pain Pharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, 31-343 Krakow, Poland; (A.B.); (K.P.); (K.C.); (M.M.); (W.M.)
| | | | | | | | | | - Joanna Mika
- Department of Pain Pharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, 31-343 Krakow, Poland; (A.B.); (K.P.); (K.C.); (M.M.); (W.M.)
| |
Collapse
|
12
|
Ciechanowska A, Mika J. CC Chemokine Family Members' Modulation as a Novel Approach for Treating Central Nervous System and Peripheral Nervous System Injury-A Review of Clinical and Experimental Findings. Int J Mol Sci 2024; 25:3788. [PMID: 38612597 PMCID: PMC11011591 DOI: 10.3390/ijms25073788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 03/18/2024] [Accepted: 03/27/2024] [Indexed: 04/14/2024] Open
Abstract
Despite significant progress in modern medicine and pharmacology, damage to the nervous system with various etiologies still poses a challenge to doctors and scientists. Injuries lead to neuroimmunological changes in the central nervous system (CNS), which may result in both secondary damage and the development of tactile and thermal hypersensitivity. In our review, based on the analysis of many experimental and clinical studies, we indicate that the mechanisms occurring both at the level of the brain after direct damage and at the level of the spinal cord after peripheral nerve damage have a common immunological basis. This suggests that there are opportunities for similar pharmacological therapeutic interventions in the damage of various etiologies. Experimental data indicate that after CNS/PNS damage, the levels of 16 among the 28 CC-family chemokines, i.e., CCL1, CCL2, CCL3, CCL4, CCL5, CCL6, CCL7, CCL8, CCL9, CCL11, CCL12, CCL17, CCL19, CCL20, CCL21, and CCL22, increase in the brain and/or spinal cord and have strong proinflammatory and/or pronociceptive effects. According to the available literature data, further investigation is still needed for understanding the role of the remaining chemokines, especially six of them which were found in humans but not in mice/rats, i.e., CCL13, CCL14, CCL15, CCL16, CCL18, and CCL23. Over the past several years, the results of studies in which available pharmacological tools were used indicated that blocking individual receptors, e.g., CCR1 (J113863 and BX513), CCR2 (RS504393, CCX872, INCB3344, and AZ889), CCR3 (SB328437), CCR4 (C021 and AZD-2098), and CCR5 (maraviroc, AZD-5672, and TAK-220), has beneficial effects after damage to both the CNS and PNS. Recently, experimental data have proved that blockades exerted by double antagonists CCR1/3 (UCB 35625) and CCR2/5 (cenicriviroc) have very good anti-inflammatory and antinociceptive effects. In addition, both single (J113863, RS504393, SB328437, C021, and maraviroc) and dual (cenicriviroc) chemokine receptor antagonists enhanced the analgesic effect of opioid drugs. This review will display the evidence that a multidirectional strategy based on the modulation of neuronal-glial-immune interactions can significantly improve the health of patients after CNS and PNS damage by changing the activity of chemokines belonging to the CC family. Moreover, in the case of pain, the combined administration of such antagonists with opioid drugs could reduce therapeutic doses and minimize the risk of complications.
Collapse
Affiliation(s)
| | - Joanna Mika
- Department of Pain Pharmacology, Maj Institute of Pharmacology Polish Academy of Sciences, 12 Smetna Str., 31-343 Kraków, Poland;
| |
Collapse
|
13
|
Deng J, Liang J, Cao Y, Tong X, Li H. CCL2- and Notch2-mediated Central Sensitization in a Rat Chronic Pelvic Pain Model. In Vivo 2024; 38:205-212. [PMID: 38148075 PMCID: PMC10756441 DOI: 10.21873/invivo.13427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/19/2023] [Accepted: 09/25/2023] [Indexed: 12/28/2023]
Abstract
BACKGROUND/AIM Chronic pelvic pain (CPP) is a common gynecological condition in women with multifactorial etiology. Some studies have revealed that patients with CPP have the same structural and functional changes in the pain matrix in the brain to patients with other types of chronic pain. However, the relationship between localized pelvic pain and changes in the structure and function of the central nervous system is still unclear. MATERIALS AND METHODS In this study, a rat model of CPP was established by pelvic nerve ligation and behavioral tests were used to validate the model. Afterwards, we compared the expression of CCL2 in CPP and control rats and observed the changes in their behavioral patterns by blocking the expression of CCL2 in the former group. In addition, we upregulated the expression of CCL2 in human microglia cells (HMC3) to further observe the effect of CCL2 on the Notch2 pathway. RESULTS Our results showed that the expression of chemokine ligand 2 (CCL2) in the serum exosomes, pelvic vascular endothelial cells, and cerebrospinal fluid was higher in the CPP group than the control group (p<0.05). In HMC3 treated with recombinant CCL2 protein, a significant increase in the mRNA and protein expression of Notch2 was observed. CONCLUSION CCL2 can activate the Notch2 signaling pathway and plays an important role in the central sensitization of chronic pelvic pain.
Collapse
Affiliation(s)
- Juan Deng
- Institute of Gynecology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, P.R. China
| | - Junhua Liang
- Institute of Gynecology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, P.R. China
| | - Yungui Cao
- Institute of Gynecology, Maternal and Child Health Hospital of Jiading district, Shanghai, P.R. China
| | - Xiaowen Tong
- Institute of Gynecology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, P.R. China;
| | - Huaifang Li
- Institute of Gynecology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, P.R. China;
| |
Collapse
|