1
|
Li Y, Song L, Yan X, Chi Y, Hu Y, Wang J, Robeldo D, Mukiibi R, Chen S. Orchestrated immune responses to Mycobacterium marinum natural infection in tongue sole (Cynoglossus semilaevis). FISH & SHELLFISH IMMUNOLOGY 2025; 158:110145. [PMID: 39837399 DOI: 10.1016/j.fsi.2025.110145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Revised: 01/15/2025] [Accepted: 01/18/2025] [Indexed: 01/23/2025]
Abstract
Mycobacterium marinum is a major pathogen in aquaculture, posing a substantial threat to the health and sustainability of tongue sole (Cynoglossus semilaevis) farming. This study investigated the genetic basis of immune response in tongue sole by comparing transcriptome profiles of liver and spleen tissues from symptomatic (susceptible) and healthy (resistant) individuals during a natural M. marinum outbreak. Transcriptomic analyses identified differentially expressed genes and enriched pathways related to immune responses. Key genes, including atp6ap1, gpi, and idh3a, were found to be crucial in immune response to M. marinum infection, involved in immune processes such as signal transduction, antigen processing, and metabolic pathways. Protein-protein interaction networks highlighted central hub genes such as nedd8, jun and junb, which play pivotal roles in immune regulation. These findings provide insights into the orchestrated immune responses to mycobacteriosis, which can inform selective breeding strategies for disease-resistant tongue sole strains. This is the first comprehensive transcriptome analysis of M. marinum natural infection in tongue sole, offering valuable data for future research and disease management in aquaculture.
Collapse
Affiliation(s)
- Yangzhen Li
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao, Shandong, 266237, China
| | - Limin Song
- Tianjin Fisheries Research Institute, Tianjin, 300221, China
| | - Xu Yan
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China
| | - Yong Chi
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China
| | - Yuanri Hu
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China
| | - Jialin Wang
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China
| | - Diego Robeldo
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Midlothian, EH25 9RG, United Kingdom; Department of Genetics, Universidade de Santiago de Compostela, Santiago de Compostela, 15706, Spain
| | - Robert Mukiibi
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Midlothian, EH25 9RG, United Kingdom; Department of Animal Health, Behaviour and Welfare, Harper Adams University, Newport, Shropshire, TF10 8NB, United Kingdom.
| | - Songlin Chen
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao, Shandong, 266237, China.
| |
Collapse
|
2
|
Rojas-Pirela M, Andrade-Alviárez D, Rojas V, Marcos M, Salete-Granado D, Chacón-Arnaude M, Pérez-Nieto MÁ, Kemmerling U, Concepción JL, Michels PAM, Quiñones W. Exploring glycolytic enzymes in disease: potential biomarkers and therapeutic targets in neurodegeneration, cancer and parasitic infections. Open Biol 2025; 15:240239. [PMID: 39904372 PMCID: PMC11793985 DOI: 10.1098/rsob.240239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 12/11/2024] [Accepted: 12/16/2024] [Indexed: 02/06/2025] Open
Abstract
Glycolysis, present in most organisms, is evolutionarily one of the oldest metabolic pathways. It has great relevance at a physiological level because it is responsible for generating ATP in the cell through the conversion of glucose into pyruvate and reducing nicotinamide adenine dinucleotide (NADH) (that may be fed into the electron chain in the mitochondria to produce additional ATP by oxidative phosphorylation), as well as for producing intermediates that can serve as substrates for other metabolic processes. Glycolysis takes place through 10 consecutive chemical reactions, each of which is catalysed by a specific enzyme. Although energy transduction by glucose metabolism is the main function of this pathway, involvement in virulence, growth, pathogen-host interactions, immunomodulation and adaptation to environmental conditions are other functions attributed to this metabolic pathway. In humans, where glycolysis occurs mainly in the cytosol, the mislocalization of some glycolytic enzymes in various other subcellular locations, as well as alterations in their expression and regulation, has been associated with the development and progression of various diseases. In this review, we describe the role of glycolytic enzymes in the pathogenesis of diseases of clinical interest. In addition, the potential role of these enzymes as targets for drug development and their potential for use as diagnostic and prognostic markers of some pathologies are also discussed.
Collapse
Affiliation(s)
- Maura Rojas-Pirela
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca37007, Spain
- Unidad de Medicina Molecular, Departamento de Medicina, Universidad de Salamanca, Salamanca37007, Spain
- Servicio de Medicina Interna, Hospital Universitario de Salamanca, Salamanca37007, Spain
| | - Diego Andrade-Alviárez
- Laboratorio de Enzimología de Parásitos, Departamento de Biología, Facultad de Ciencias, Universidad de Los Andes, Mérida5101, Venezuela
| | - Verónica Rojas
- Instituto de Biología, Facultad de Ciencias, Pontificia Universidad Católica de Valparaíso, Valparaíso2373223, Chile
| | - Miguel Marcos
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca37007, Spain
- Unidad de Medicina Molecular, Departamento de Medicina, Universidad de Salamanca, Salamanca37007, Spain
- Servicio de Medicina Interna, Hospital Universitario de Salamanca, Salamanca37007, Spain
| | - Daniel Salete-Granado
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca37007, Spain
- Unidad de Medicina Molecular, Departamento de Medicina, Universidad de Salamanca, Salamanca37007, Spain
| | - Marirene Chacón-Arnaude
- Laboratorio de Enzimología de Parásitos, Departamento de Biología, Facultad de Ciencias, Universidad de Los Andes, Mérida5101, Venezuela
| | - María Á. Pérez-Nieto
- Unidad de Medicina Molecular, Departamento de Medicina, Universidad de Salamanca, Salamanca37007, Spain
- Fundación Instituto de Estudios de Ciencias de la Salud de Castilla y León, Soria42002, Spain
| | - Ulrike Kemmerling
- Instituto de Ciencias Biomédicas, Universidad de Chile, Facultad de Medicina, Santiago de Chile8380453, Chile
| | - Juan Luis Concepción
- Laboratorio de Enzimología de Parásitos, Departamento de Biología, Facultad de Ciencias, Universidad de Los Andes, Mérida5101, Venezuela
| | - Paul A. M. Michels
- School of Biological Sciences, University of Edinburgh, The King’s Buildings, EdinburghEH9 3FL, UK
| | - Wilfredo Quiñones
- Laboratorio de Enzimología de Parásitos, Departamento de Biología, Facultad de Ciencias, Universidad de Los Andes, Mérida5101, Venezuela
| |
Collapse
|
3
|
Ivanova D, Semkova S, Grigorov B, Tzanova M, Georgieva A, Danchev D, Nikolova B, Yaneva Z. The General Principle of the Warburg Effect as a Possible Approach for Cancer Immunotherapy: The Regulatory Effect of Plant Extracts Could Change the Game. Molecules 2025; 30:393. [PMID: 39860262 PMCID: PMC11767411 DOI: 10.3390/molecules30020393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 12/19/2024] [Accepted: 12/20/2024] [Indexed: 01/27/2025] Open
Abstract
The interpretation of the biochemistry of immune metabolism could be considered an attractive scientific field of biomedicine research. In this review, the role of glycolysis in macrophage polarization is discussed together with mitochondrial metabolism in cancer cells. In the first part, the focus is on the Warburg effect and redox metabolism during macrophage polarization, cancer development, and management of the immune response by the cancer cells. The second part addresses the possibility of impacts on the Warburg effect through targeting peroxisome proliferator-activated receptors (PPARs). This could be an activator of native immune responses. Because of the reported serious adverse effects of using synthetic ligands for PPARs in combination with chemotherapeutics, searches for less toxic and more active PPAR inhibitors, as well as blocking undesirable cellular PPAR-dependent processes, are in progress. On the other hand, recent research in modern immunotherapy has focused on the search for gentle immune-modulating natural compounds with harmless synergistic chemotherapeutic efficacy that can be used as an adjuvant. It is a well-known fact that the plant kingdom is a source of important therapeutic agents with multifaceted effectiveness. One of these is the known association with PPAR activities. In this regard, the secondary metabolites extracted from plants could change the game.
Collapse
Affiliation(s)
- Donika Ivanova
- Department of Pharmacology, Animal Physiology Biochemistry and Chemistry, Faculty of Veterinary Medicine, Trakia University, 6000 Stara Zagora, Bulgaria;
- Department of Chemistry and Biochemistry, Faculty of Medicine, Trakia University, 6000 Stara Zagora, Bulgaria
| | - Severina Semkova
- Department of Electroinduced and Adhesive Properties, Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria;
| | - Boncho Grigorov
- Department of Molecular Biology, Immunology and Medical Genetics, Faculty of Medicine, Trakia University, 6000 Stara Zagora, Bulgaria;
| | - Milena Tzanova
- Department of Biological Sciences, Faculty of Agriculture, Trakia University, 6000 Stara Zagora, Bulgaria;
| | | | | | - Biliana Nikolova
- Department of Electroinduced and Adhesive Properties, Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria;
| | - Zvezdelina Yaneva
- Department of Pharmacology, Animal Physiology Biochemistry and Chemistry, Faculty of Veterinary Medicine, Trakia University, 6000 Stara Zagora, Bulgaria;
| |
Collapse
|
4
|
Jacob A, He J, Peck A, Jamil A, Bunya V, Alexander JJ, Ambrus JL. Metabolic changes during evolution of Sjögren's in both an animal model and human patients. Heliyon 2025; 11:e41082. [PMID: 39801970 PMCID: PMC11720936 DOI: 10.1016/j.heliyon.2024.e41082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 12/06/2024] [Accepted: 12/06/2024] [Indexed: 01/16/2025] Open
Abstract
Sjögren's (SS) involves salivary and lacrimal gland dysfunction. These studies examined metabolic profiles in the B6. Il14α transgene mouse model of SS and a cohort of human SS patients at different stages of disease. In B6. Il14α mice, products of glucose and fatty acid were common at 6 months of age, while products of amino acid metabolism were common at 12 months of age. Treating B6. Il14α mice with the glycolysis inhibitor 2-deoxyglucose from 6 to 10 months of age normalized salivary gland secretions, dacryoadenitis, hypergammaglobulinemia and physical performance, while treatment from 10 to 14 months of age failed to improve any of the clinical manifestations. Similarly, SS patients at an early stage of disease showed high glycolysis. SS patients with long-standing disease utilized predominantly amino acid metabolism, like B6. Il14α mice at 10-12 months of age. Additional studies are suggested to further define metabolic activities at the various disease stages.
Collapse
Affiliation(s)
- Alexander Jacob
- Department of Medicine, SUNY at Buffalo School of Medicine, Buffalo, NY, USA
| | - Jing He
- Department of Rheumatology and Immunology, Peking University People's Hospital Beijing China, Beijing, China
| | - Ammon Peck
- Department of Infectious Diseases and Immunology, University of Florida College of Veterinary Medicine, Gainesville, Florida, USA
| | - Ali Jamil
- Department of Medicine, SUNY at Buffalo School of Medicine, Buffalo, NY, USA
| | - Vatinee Bunya
- Department of Ophthalmology, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - Jessy J. Alexander
- Department of Medicine, SUNY at Buffalo School of Medicine, Buffalo, NY, USA
| | - Julian L. Ambrus
- Department of Medicine, SUNY at Buffalo School of Medicine, Buffalo, NY, USA
| |
Collapse
|
5
|
Mapuskar KA, London B, Zacharias ZR, Houtman JC, Allen BG. Immunometabolism in the Aging Heart. J Am Heart Assoc 2025; 14:e039216. [PMID: 39719411 PMCID: PMC12054428 DOI: 10.1161/jaha.124.039216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Accepted: 11/19/2024] [Indexed: 12/26/2024]
Abstract
Structural, functional, and molecular-level changes in the aging heart are influenced by a dynamic interplay between immune signaling and cellular metabolism that is referred to as immunometabolism. This review explores the crosstalk between cellular metabolic pathways including glycolysis, oxidative phosphorylation, fatty acid metabolism, and the immune processes that govern cardiac aging. With a rapidly aging population that coincides with increased cardiovascular risk and cancer incidence rates, understanding the immunometabolic underpinnings of cardiac aging provides a foundation for identifying therapeutic targets to mitigate cardiac dysfunction. Aging alters the immune environment of the heart by concomitantly driving the changes in immune cell metabolism, mitochondrial dysfunction, and redox signaling. Shifts in these metabolic pathways exacerbate inflammation and impair tissue repair, creating a vicious cycle that accelerates cardiac functional decline. Treatment with cancer therapy further complicates this landscape, as aging-associated immunometabolic disruptions augment the susceptibility to cardiotoxicity. The current review highlights therapeutic strategies that target the immunometabolic axis to alleviate cardiac aging pathologies. Interventions include modulating metabolic intermediates, improving mitochondrial function, and leveraging immune signaling pathways to restore cardiac health. Advances in immunometabolism thus hold significant potential for translating preclinical findings into therapies that improve the quality of life for the aging population and underscore the need for approaches that address the immunometabolic mechanisms of cardiac aging, providing a framework for future research.
Collapse
Affiliation(s)
- Kranti A. Mapuskar
- Department of Radiation OncologyUniversity of Iowa Hospitals and Clinic, University of Iowa HealthcareIowa CityIAUSA
- Holden Comprehensive Cancer Center, Carver College of MedicineUniversity of Iowa Hospitals and Clinic, University of Iowa HealthcareIowa CityIAUSA
| | - Barry London
- Holden Comprehensive Cancer Center, Carver College of MedicineUniversity of Iowa Hospitals and Clinic, University of Iowa HealthcareIowa CityIAUSA
- Department of Internal MedicineUniversity of Iowa Hospitals and Clinic, University of Iowa HealthcareIowa CityIAUSA
| | - Zeb R. Zacharias
- Holden Comprehensive Cancer Center, Carver College of MedicineUniversity of Iowa Hospitals and Clinic, University of Iowa HealthcareIowa CityIAUSA
- Human Immunology CoreUniversity of Iowa Hospitals and Clinic, University of Iowa HealthcareIowa CityIAUSA
| | - Jon C.D. Houtman
- Holden Comprehensive Cancer Center, Carver College of MedicineUniversity of Iowa Hospitals and Clinic, University of Iowa HealthcareIowa CityIAUSA
- Human Immunology CoreUniversity of Iowa Hospitals and Clinic, University of Iowa HealthcareIowa CityIAUSA
- Department of Microbiology and ImmunologyUniversity of Iowa Hospitals and Clinic, University of Iowa HealthcareIowa CityIAUSA
| | - Bryan G. Allen
- Department of Radiation OncologyUniversity of Iowa Hospitals and Clinic, University of Iowa HealthcareIowa CityIAUSA
- Holden Comprehensive Cancer Center, Carver College of MedicineUniversity of Iowa Hospitals and Clinic, University of Iowa HealthcareIowa CityIAUSA
| |
Collapse
|
6
|
Bibi M, Baboo I, Majeed H, Kumar S, Lackner M. Molecular Docking of Key Compounds from Acacia Honey and Nigella sativa Oil and Experimental Validation for Colitis Treatment in Albino Mice. BIOLOGY 2024; 13:1035. [PMID: 39765702 PMCID: PMC11673436 DOI: 10.3390/biology13121035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Revised: 12/04/2024] [Accepted: 12/09/2024] [Indexed: 01/11/2025]
Abstract
Colitis, an inflammatory condition of the colon that encompasses ulcerative colitis (UC) and Crohn's disease, presents significant challenges due to the limitations and side effects of current treatments. This study investigates the potential of natural products, specifically AH and NSO, as organic therapeutic agents for colitis. Molecular docking studies were conducted to identify the binding affinities and interaction mechanisms between the bioactive compounds in AH and NSO and proteins implicated in colitis, such as those involved in inflammation and oxidative stress pathways. An in vivo experiment was performed using an albino mouse model of colitis, with clinical symptoms, histopathological assessments, and biochemical analyses conducted to evaluate the therapeutic effects of the compounds both individually and in combination. Results from the molecular docking studies revealed promising binding interactions between fructose and Prostaglandin G/H synthase 2 (Ptgs2) and between fructose and cellular tumor antigen p53, with docking energy measured at -6.0 kcal/mol and -5.1 kcal/mol, respectively. Meanwhile, the presence of glucose molecule glucokinase chain A (-6.3 kcal/mol) and chain B (-5.8 kcal/mol) indicated potential efficacy in modulating inflammatory pathways. Experimental data demonstrated that treatment with AH and NSO significantly reduced inflammation, improved gut health, and ameliorated colitis symptoms. Histopathological evaluations confirmed reduced mucosal damage and immune cell infiltration, while biochemical analyses showed normalization of inflammatory markers and oxidative stress levels. This study provides compelling evidence for the potential of AH and NSO as natural, complementary treatments for colitis, suggesting their future role in integrative therapeutic strategies. However, further research into long-term safety, optimal dosing, and mechanisms of action is warranted to translate these findings into clinical applications.
Collapse
Affiliation(s)
- Mehwish Bibi
- Department of Zoology, Cholistan University of Veterinary and Animal Sciences (CUVAS), Bahawalpur 63100, Pakistan; (M.B.); (S.K.)
| | - Irfan Baboo
- Department of Zoology, Cholistan University of Veterinary and Animal Sciences (CUVAS), Bahawalpur 63100, Pakistan; (M.B.); (S.K.)
| | - Hamid Majeed
- Department of Food Science and Technology, Cholistan University of Veterinary and Animal Sciences (CUVAS), Bahawalpur 63100, Pakistan;
| | - Santosh Kumar
- Department of Zoology, Cholistan University of Veterinary and Animal Sciences (CUVAS), Bahawalpur 63100, Pakistan; (M.B.); (S.K.)
| | - Maximilian Lackner
- Department of Industrial Engineering, University of Applied Sciences Technikum Wien, 17 Hoechstaedtplatz 6, 1200 Vienna, Austria
| |
Collapse
|
7
|
Liu Y, Li W, Lei L, Zhou Y, Huang M, Li Y, Zhang X, Jiang Y, Wu H, Zheng Z, Ma K, Tang C. Effects of PGK1 on immunoinfiltration by integrated single-cell and bulk RNA-sequencing analysis in sepsis. Front Immunol 2024; 15:1449975. [PMID: 39712033 PMCID: PMC11659135 DOI: 10.3389/fimmu.2024.1449975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Accepted: 11/20/2024] [Indexed: 12/24/2024] Open
Abstract
Background Sepsis, a life-threatening organ dysfunction caused by a dysregulated immune response to infection, remains a significant global health challenge. Phosphoglycerate kinase 1 (PGK1) has been implicated in regulating inflammation and immune cell infiltration in inflammatory conditions. However, the role of PGK1 in sepsis remains largely unexplored. Methods Four microarray datasets and a high throughput sequencing dataset were acquired from GEO database to reveal the PGK1 expression in patients of sepsis. Quantitative real-time PCR and western blotting was then used to validate the PGK1 level. Additionally, microarray and single-cell RNA sequencing data integration, including gene set enrichment analysis (GSEA), KEGG and GO functional enrichment analysis, immune infiltration analysis, and single-cell sequencing analysis, were performed to elucidate the role of PGK1 in sepsis. Results Our results revealed a significant upregulation of PGK1 in sepsis patients, with the area under the ROC curve (AUC) exceeding 0.9 across multiple datasets, indicating PGK1's strong potential as a diagnostic biomarker. Notably, PGK1 was enriched in key immune-related pathways, including the TNF signaling pathways, and leukocyte transendothelial migration, suggesting its involvement in immune regulation. Furthermore, PGK1 expression showed a positive correlation with the levels of inflammatory mediators CXCL1, CXCL16, and the chemokine receptor CCR1. In terms of immune cell infiltration, PGK1 was positively correlated with naive B cells, resting memory CD4 T cell, gamma delta T cells, M0 macrophages, eosinophils and negatively correlated with plasma cells, CD8 T cells, activated memory CD4 T cell, Tregs, activated dendritic cells. Conclusions This study concluded that PGK1 served as a novel diagnostic biomarker for sepsis, with potential implications for prognosis and immune regulation. The significant upregulation of PGK1 in sepsis patients and its association with immune-related pathways and cell types highlight its potential role in the pathogenesis of sepsis.
Collapse
Affiliation(s)
- Yu Liu
- Department of Nephrology, Center of Kidney and Urology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Weijie Li
- Centre for Infection and Immunity Studies, School of Medicine, The Sun Yat-sen University, Shenzhen, China
| | - Lei Lei
- Department of Nephrology, Center of Kidney and Urology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Yaoliang Zhou
- Emergency and Disaster Medical Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Mingcheng Huang
- Department of Nephrology, Center of Kidney and Urology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Yide Li
- Department of Critical Care Medicine, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Xiaoying Zhang
- Health Management Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Yingyu Jiang
- Department of Renal Rheumatology and Immunology, The People’s Hospital of Hezhou, Hezhou, China
| | - Haiqi Wu
- Centre for Infection and Immunity Studies, School of Medicine, The Sun Yat-sen University, Shenzhen, China
| | - Zhihua Zheng
- Department of Nephrology, Center of Kidney and Urology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Kongyang Ma
- Centre for Infection and Immunity Studies, School of Medicine, The Sun Yat-sen University, Shenzhen, China
| | - Chun Tang
- Department of Nephrology, Center of Kidney and Urology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| |
Collapse
|
8
|
Madsen HB, Navarro C, Gasparini E, Park JH, Li Z, Croteau DL, Bohr VA. Urolithin A and nicotinamide riboside differentially regulate innate immune defenses and metabolism in human microglial cells. Front Aging Neurosci 2024; 16:1503336. [PMID: 39665042 PMCID: PMC11631940 DOI: 10.3389/fnagi.2024.1503336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Accepted: 11/04/2024] [Indexed: 12/13/2024] Open
Abstract
Introduction During aging, many cellular processes, such as autophagic clearance, DNA repair, mitochondrial health, metabolism, nicotinamide adenine dinucleotide (NAD+) levels, and immunological responses, become compromised. Urolithin A (UA) and Nicotinamide Riboside (NR) are two naturally occurring compounds known for their anti-inflammatory and mitochondrial protective properties, yet the effects of these natural substances on microglia cells have not been thoroughly investigated. As both UA and NR are considered safe dietary supplements, it is equally important to understand their function in normal cells and in disease states. Methods This study investigates the effects of UA and NR on immune signaling, mitochondrial function, and microglial activity in a human microglial cell line (HMC3). Results Both UA and NR were shown to reduce DNA damage-induced cellular senescence. However, they differentially regulated gene expression related to neuroinflammation, with UA enhancing cGAS-STING pathway activation and NR displaying broader anti-inflammatory effects. Furthermore, UA and NR differently influenced mitochondrial dynamics, with both compounds improving mitochondrial respiration but exhibiting distinct effects on production of reactive oxygen species and glycolytic function. Discussion These findings underscore the potential of UA and NR as therapeutic agents in managing neuroinflammation and mitochondrial dysfunction in neurodegenerative diseases.
Collapse
Affiliation(s)
- Helena Borland Madsen
- Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Claudia Navarro
- Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Emilie Gasparini
- Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Jae-Hyeon Park
- Section on DNA Repair, National Institute on Aging, Baltimore, MD, United States
| | - Zhiquan Li
- Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Deborah L. Croteau
- Section on DNA Repair, National Institute on Aging, Baltimore, MD, United States
- Computational Biology and Genomics Core, Laboratory of Genetics and Genomics, National Institute on Aging, Baltimore, MD, United States
| | - Vilhelm A. Bohr
- Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
- Section on DNA Repair, National Institute on Aging, Baltimore, MD, United States
| |
Collapse
|
9
|
Mosalmanzadeh N, Pence BD. Oxidized Low-Density Lipoprotein and Its Role in Immunometabolism. Int J Mol Sci 2024; 25:11386. [PMID: 39518939 PMCID: PMC11545486 DOI: 10.3390/ijms252111386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 10/04/2024] [Accepted: 10/17/2024] [Indexed: 11/16/2024] Open
Abstract
Modified cholesterols such as oxidized low-density lipoprotein (OxLDL) contribute to atherosclerosis and other disorders through the promotion of foam cell formation and inflammation. In recent years, it has become evident that immune cell responses to inflammatory molecules such as OxLDLs depend on cellular metabolic functions. This review examines the known effects of OxLDL on immunometabolism and immune cell responses in atherosclerosis and several other diseases. We additionally provide context on the relationship between OxLDL and aging/senescence and identify gaps in the literature and our current understanding in these areas.
Collapse
Affiliation(s)
| | - Brandt D. Pence
- College of Health Sciences and Center for Nutraceutical and Dietary Supplement Research, University of Memphis, Memphis, TN 38111, USA
| |
Collapse
|
10
|
Li X, Li Y, Hao Q, Jin J, Wang Y. Metabolic mechanisms orchestrated by Sirtuin family to modulate inflammatory responses. Front Immunol 2024; 15:1448535. [PMID: 39372420 PMCID: PMC11449768 DOI: 10.3389/fimmu.2024.1448535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 09/03/2024] [Indexed: 10/08/2024] Open
Abstract
Maintaining metabolic homeostasis is crucial for cellular and organismal health throughout their lifespans. The intricate link between metabolism and inflammation through immunometabolism is pivotal in maintaining overall health and disease progression. The multifactorial nature of metabolic and inflammatory processes makes study of the relationship between them challenging. Homologs of Saccharomyces cerevisiae silent information regulator 2 protein, known as Sirtuins (SIRTs), have been demonstrated to promote longevity in various organisms. As nicotinamide adenine dinucleotide-dependent deacetylases, members of the Sirtuin family (SIRT1-7) regulate energy metabolism and inflammation. In this review, we provide an extensive analysis of SIRTs involved in regulating key metabolic pathways, including glucose, lipid, and amino acid metabolism. Furthermore, we systematically describe how the SIRTs influence inflammatory responses by modulating metabolic pathways, as well as inflammatory cells, mediators, and pathways. Current research findings on the preferential roles of different SIRTs in metabolic disorders and inflammation underscore the potential of SIRTs as viable pharmacological and therapeutic targets. Future research should focus on the development of promising compounds that target SIRTs, with the aim of enhancing their anti-inflammatory activity by influencing metabolic pathways within inflammatory cells.
Collapse
Affiliation(s)
- Xiaoqing Li
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
- Key Laboratory of Immune Response and Immunotherapy, University of Science and Technology of China, Hefei, Anhui, China
| | - Yunjia Li
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
- Key Laboratory of Immune Response and Immunotherapy, University of Science and Technology of China, Hefei, Anhui, China
| | - Quan Hao
- China Spallation Neutron Source, Dongguan, Guangdong, China
| | - Jing Jin
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
- Key Laboratory of Immune Response and Immunotherapy, University of Science and Technology of China, Hefei, Anhui, China
| | - Yi Wang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
- Key Laboratory of Immune Response and Immunotherapy, University of Science and Technology of China, Hefei, Anhui, China
| |
Collapse
|
11
|
Frasca D, Romero M, Padula L, Fisher E, Strbo N. Immunometabolic Regulation of Vaccine-Induced Antibody Responses in Aging Mice. Vaccines (Basel) 2024; 12:960. [PMID: 39339992 PMCID: PMC11436058 DOI: 10.3390/vaccines12090960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/15/2024] [Accepted: 08/21/2024] [Indexed: 09/30/2024] Open
Abstract
Immune cells undergo metabolic reprogramming to meet the demands associated with immune responses. The effects of aging on these pathways and on the metabolic phenotype of the immune cells participating in antibody responses to vaccines are still largely unknown. Here we used a vaccine for SARS-CoV-2 that utilizes the cellular heat shock chaperone glycoprotein 96 (gp96), engineered to co-express SARS-CoV-2 Spike (spike) protein (gp96-Ig-S). Results show that this vaccine induces comparable B cell primary responses in young and old mice at later time points, but a significantly lesser secondary response in old as compared to young mice, with the antibodies generated in the secondary response being also of lower avidity. This occurs because aging changes the B cell metabolic phenotype and induces hyper-metabolic B cells that are associated with higher intrinsic inflammation and decreased protective antibody responses. However, the gp96-Ig-S vaccine was found to be effective in significantly reducing the metabolic/inflammatory status of B cells from old mice, suggesting the possibility that targeting metabolic pathways may improve immune function in old mice that do not respond adequately to the vaccine.
Collapse
Affiliation(s)
- Daniela Frasca
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Maria Romero
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Laura Padula
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Eva Fisher
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Natasa Strbo
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| |
Collapse
|