1
|
Warfving N, Weber AL, Nolde J, Weber K. Reproduction toxicity study with the synthetic amorphous silica SYLOID® AL-1 FP, HDK® N20, LUDOX® P T-40 F and SYLOID® MX 107 in the earthworm species Eisenia fetida. Toxicol Lett 2024; 399 Suppl 1:117-129. [PMID: 38705261 DOI: 10.1016/j.toxlet.2024.04.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 04/19/2024] [Accepted: 04/25/2024] [Indexed: 05/07/2024]
Abstract
Ecotoxicology studies were performed in the earthworm Eisenia fetida with four different synthetic amorphous silica (SAS) (SYLOID® AL-1 FP, SYLOID® MX 107, LUDOX® P T-40 F, and HDK® N20) mixed into artificial soil to determine a NOEC/LOEC for effects on reproduction (56 days after application), mortality and biomass development (28 days after application) using a standardized artificial soil with 10% peat. The LC50 for test-item effects on adult mortality, and an EC10 and EC50 for reproduction were also determined. Furthermore, earthworms underwent histopathology evaluation, and the amount of silica in different organs from these organisms was evaluated using EDX (Energy Dispersive X-ray Spectroscopy). Histopathology revealed no findings in any organ of the earthworms, except for desiccated dissepiments in evaluated decedents at extremely high SAS doses. To measure SAS uptake into the organs, a fully quantitative method for silica was established and validated using standards containing known concentrations of silica to ensure the accuracy of the analyses undertaken. Results from EDX analysis demonstrated the negligible presence of silicon within the brain ganglia and gonads of adult earthworms comparable to controls. Therefore, any deposition of the test items within these two organs was excluded. In contrast, traces of silicon higher than in controls were found in the intestinal lumina of the earthworms due to ingestion of SAS with soil and feed, but not in other organs.
Collapse
Affiliation(s)
| | | | | | - Klaus Weber
- AnaPath Services GmbH, Liestal, Switzerland.
| |
Collapse
|
2
|
Maria VL, Santos J, Prodana M, Cardoso DN, Morgado RG, Amorim MJB, Barreto A. Toxicity mechanisms of plastic nanoparticles in three terrestrial species: antioxidant system imbalance and neurotoxicity. Nanotoxicology 2024; 18:299-313. [PMID: 38807536 DOI: 10.1080/17435390.2024.2358781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 05/16/2024] [Indexed: 05/30/2024]
Abstract
The detrimental impacts of plastic nanoparticles (PNPs) are a worldwide concern, although knowledge is still limited, in particular for soil mesofauna. This study investigates the biochemical impact of 44 nm polystyrene PNPs on three soil models-Enchytraeus crypticus (Oligochaeta), Folsomia candida (Collembola) and Porcellionides pruinosus (Isopoda). Exposure durations of 3, 7 and 14 days (d) were implemented at two concentrations (1.5 and 300 mg kg-1 PNPs). Results revealed PNPs impact on the activities of the glutathione-dependent antioxidative enzyme, glutathione S-transferase (GST) and on the neurotransmitter acetylcholinesterase (AChE) for all three species. Catalase (CAT) played a minor role, primarily evident in F. candida at 300 mg kg-1 PNPs (CAT and GST response after 14 d), with no lipid peroxidation (LPO) increase. Even with the antioxidant defence, P. pruinosus was the most sensitive species for lipid oxidative damage (LPO levels increased after 7 d exposure to 300 mg kg-1 PNPs). Significant AChE inhibitions were measured already after 3 d to both PNP concentrations in F. candida and E. crypticus, respectively. Significant AChE inhibitions were also found in P. pruinosus but later (7 d). Overall, the toxicity mechanisms of PNPs involved antioxidant imbalance, being (mostly) the glutathione-associated metabolism part of that defence system. Neurotoxicity, linked to AChE activities, was evident across all species. Sensitivity to PNPs varied: P. pruinosus > F. candida ≅ E. crypticus. This pioneering study on PNPs toxicity in soil invertebrates underscores its environmental relevance, shedding light on altered biochemical responses, that may compromise ecological roles and soil ecosystem fitness.
Collapse
Affiliation(s)
- Vera L Maria
- Department of Biology & Centre for Environmental and Marine Studies (CESAM), University of Aveiro, Aveiro, Portugal
| | - Joana Santos
- Department of Biology & Centre for Environmental and Marine Studies (CESAM), University of Aveiro, Aveiro, Portugal
| | - Marija Prodana
- Department of Biology & Centre for Environmental and Marine Studies (CESAM), University of Aveiro, Aveiro, Portugal
| | - Diogo N Cardoso
- Department of Biology & Centre for Environmental and Marine Studies (CESAM), University of Aveiro, Aveiro, Portugal
| | - Rui G Morgado
- Department of Biology & Centre for Environmental and Marine Studies (CESAM), University of Aveiro, Aveiro, Portugal
| | - Mónica J B Amorim
- Department of Biology & Centre for Environmental and Marine Studies (CESAM), University of Aveiro, Aveiro, Portugal
| | - Angela Barreto
- Department of Biology & Centre for Environmental and Marine Studies (CESAM), University of Aveiro, Aveiro, Portugal
| |
Collapse
|
3
|
Ding R, Li Y, Yu Y, Sun Z, Duan J. Prospects and hazards of silica nanoparticles: Biological impacts and implicated mechanisms. Biotechnol Adv 2023; 69:108277. [PMID: 37923235 DOI: 10.1016/j.biotechadv.2023.108277] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 10/20/2023] [Accepted: 10/23/2023] [Indexed: 11/07/2023]
Abstract
With the thrive of nanotechnology, silica nanoparticles (SiNPs) have been extensively adopted in the agriculture, food, cosmetic, and even biomedical industries. Due to the mass production and use, SiNPs inevitably entered the environment, resulting in ecological toxicity and even posing a threat to human health. Although considerable investigations have been conducted to assess the toxicity of SiNPs, the correlation between SiNPs exposure and consequent health risks remains ambiguous. Since the biological impacts of SiNPs can differ from their design and application, the toxicity assessment for SiNPs may be extremely difficult. This review discussed the application of SiNPs in different fields, especially their biomedical use, and documented their potential release pathways into the environment. Meanwhile, the current process of assessing SiNPs-related toxicity on various model organisms and cell lines was also detailed, thus estimating the health threats posed by SiNPs exposure. Finally, the potential toxic mechanisms of SiNPs were also elaborated based on results obtained from both in vivo and in vitro trials. This review generally summarizes the biological effects of SiNPs, which will build up a comprehensive perspective of the application and toxicity of SiNPs.
Collapse
Affiliation(s)
- Ruiyang Ding
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Yang Li
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Yang Yu
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Zhiwei Sun
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China.
| | - Junchao Duan
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China.
| |
Collapse
|
4
|
Barreto A, Santos J, Almeida L, Tavares V, Pinto E, Celeiro M, Garcia-Jares C, Maria VL. First approach to assess the effects of nanoplastics on the soil species Folsomia candida: A mixture design with bisphenol A and diphenhydramine. NANOIMPACT 2023; 29:100450. [PMID: 36610661 DOI: 10.1016/j.impact.2023.100450] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 12/01/2022] [Accepted: 01/01/2023] [Indexed: 06/17/2023]
Abstract
The terrestrial environment is one of the main recipients of plastic waste. However, limited research has been performed on soil contamination by plastics and even less assessing the effects of nanoplastics (NPls). Behind the potential toxicity caused per se, NPls are recognized vectors of other environmental harmful contaminants. Therefore, the main aim of the present study is to understand whether the toxicity of an industrial chemical (bisphenol A - BPA) and a pharmaceutical (diphenhydramine - DPH) changes in the presence of polystyrene NPls to the terrestrial invertebrate Folsomia candida. Assessed endpoints encompassed organismal (reproduction, survival and behavior) and biochemical (neurotransmission and oxidative stress) levels. BPA or DPH, 28 d single exposures (1 to 2000 mg/kg), induce no effect on organisms' survival. In terms of reproduction, the calculated EC50 (concentration that causes 50% of the effect) and determined LOEC (lowest observed effect concentration) were higher than the environmental concentrations, showing that BPA or DPH single exposure may pose no threat to the terrestrial invertebrates. Survival and reproduction effects of BPA or DPH were independent on the presence of NPls. However, for avoidance behavior (48 h exposure), the effects of the tested mixtures (BPA + NPls and DPH + NPls) were dependent on the NPls concentration (at 0.015 mg/kg - interaction: no avoidance; at 600 mg/kg - no interaction: avoidance). Glutathione S-transferase activity increased after 28 d exposure to 100 mg/kg DPH + 0.015 mg/kg NPls (synergism). The increase of lipid peroxidation levels found after the exposure to 0.015 mg/kg NPls (a predicted environmental concentration) was not detected in the mixtures (antagonism). The results showed that the effects of the binary mixtures were dependent on the assessed endpoint and the tested concentrations. The findings of the present study show the ability of NPls to alter the effects of compounds with different natures and mechanisms of toxicity towards soil organisms, showing the importance of environmental risk assessment considering mixtures of contaminants.
Collapse
Affiliation(s)
- Angela Barreto
- Department of Biology & CESAM, University of Aveiro, Aveiro 3810-193, Portugal
| | - Joana Santos
- Department of Biology & CESAM, University of Aveiro, Aveiro 3810-193, Portugal
| | - Lara Almeida
- Department of Biology & CESAM, University of Aveiro, Aveiro 3810-193, Portugal
| | - Vítor Tavares
- Department of Biology & CESAM, University of Aveiro, Aveiro 3810-193, Portugal
| | - Edgar Pinto
- Department of Environmental Health, School of Health, P.Porto (ESS|P.Porto), Rua Dr. António Bernardino de Almeida, 400, Porto 4200-072, Portugal; LAQV/REQUIMTE, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto (FFUP), Rua de Jorge Viterbo Ferreira n° 228, Porto 4050-313, Portugal
| | - Maria Celeiro
- CRETUS, Department of Analytical Chemistry, Nutrition and Food Science, University of Santiago de Compostela, Santiago de Compostela E-15782, Spain
| | - Carmen Garcia-Jares
- CRETUS, Department of Analytical Chemistry, Nutrition and Food Science, University of Santiago de Compostela, Santiago de Compostela E-15782, Spain
| | - Vera L Maria
- Department of Biology & CESAM, University of Aveiro, Aveiro 3810-193, Portugal.
| |
Collapse
|
5
|
Green synthesis and characterization of UKMRC-8 rice husk-derived mesoporous silica nanoparticle for agricultural application. Sci Rep 2022; 12:20162. [PMID: 36424408 PMCID: PMC9691743 DOI: 10.1038/s41598-022-24484-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 11/16/2022] [Indexed: 11/27/2022] Open
Abstract
Agriculture plays a crucial role in safeguarding food security, more so as the world population increases gradually. A productive agricultural system is supported by seed, soil, fertiliser and good management practices. Food productivity directly correlates to the generation of solid wastes and utilization of agrochemicals, both of which negatively impact the environment. The rice and paddy industry significantly adds to the growing menace of waste management. In low and middle-income countries, rice husk (RH) is an underutilized agro-waste discarded in landfills or burned in-situ. RH holds enormous potential in the development of value-added nanomaterials for agricultural applications. In this study, a simple and inexpensive sol-gel method is described to extract mesoporous silica nanoparticles (MSNs) from UKMRC8 RH using the bottom-up approach. RHs treated with hydrochloric acid were calcinated to obtain rice husk ash (RHA) with high silica purity (> 98% wt), as determined by the X-ray fluorescence analysis (XRF). Calcination at 650 °C for four hours in a box furnace yielded RHA that was devoid of metal impurities and organic matter. The X-ray diffraction pattern showed a broad peak at 2θ≈20-22 °C and was free from any other sharp peaks, indicating the amorphous property of the RHA. Scanning electron micrographs (SEM) showed clusters of spherically shaped uniform aggregates of silica nanoparticles (NPs) while transmission electron microscopy analysis indicated an average particle size of < 20 nm. Besides Energy Dispersive X-Ray which validated the chemical constituent of the silica NPs, the Fourier transform infrared (FT-IR) spectra showed peaks at 796.4 cm-1 and 1052 cm-1 corresponding to O-Si-O symmetric stretching vibration and O-Si-O asymmetric stretching, respectively. The Brunauer-Emmet-Teller (BET) analysis indicated an average pore size = 8.5 nm while the specific surface area and the pore volume were 300.2015 m2/g and 0.659078 cm3/g, respectively. In conclusion, agrowaste-derived MSN was synthesized using a simple and economical sol-gel method without the addition of surfactant reagents for controlled formation at the structural level. Owing to the MSNs' excellent physical properties, the method established herein, could be used singly (without any modifications) for the functionalization of a myriad of agrochemicals.
Collapse
|
6
|
Adjusting Some Properties of Poly(methacrylic acid) (Nano)Composite Hydrogels by Means of Silicon-Containing Inorganic Fillers. Int J Mol Sci 2022; 23:ijms231810320. [PMID: 36142243 PMCID: PMC9499409 DOI: 10.3390/ijms231810320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/01/2022] [Accepted: 09/04/2022] [Indexed: 11/16/2022] Open
Abstract
The present work aims to show how the main properties of poly(methacrylic acid) (PMAA) hydrogels can be engineered by means of several silicon-based fillers (Laponite XLS/XLG, montmorillonite (Mt), pyrogenic silica (PS)) employed at 10 wt% concentration based on MAA. Various techniques (FT-IR, XRD, TGA, SEM, TEM, DLS, rheological measurements, UV-VIS) were used to comparatively study the effect of these fillers, in correlation with their characteristics, upon the structure and swelling, viscoelastic, and water decontamination properties of (nano)composite hydrogels. The experiments demonstrated that the nanocomposite hydrogel morphology was dictated by the way the filler particles dispersed in water. The equilibrium swelling degree (SDe) depended on both the pH of the environment and the filler nature. At pH 1.2, a slight crosslinking effect of the fillers was evidenced, increasing in the order Mt < Laponite < PS. At pH > pKaMAA (pH 5.4; 7.4; 9.5), the Laponite/Mt-containing hydrogels displayed a higher SDe as compared to the neat one, while at pH 7.4/9.5 the PS-filled hydrogels surprisingly displayed the highest SDe. Rheological measurements on as-prepared hydrogels showed that the filler addition improved the mechanical properties. After equilibrium swelling at pH 5.4, G’ and G” depended on the filler, the Laponite-reinforced hydrogels proving to be the strongest. The (nano)composite hydrogels synthesized displayed filler-dependent absorption properties of two cationic dyes used as model water pollutants, Laponite XLS-reinforced hydrogel demonstrating both the highest absorption rate and absorption capacity. Besides wastewater purification, the (nano)composite hydrogels described here may also find applications in the pharmaceutical field as devices for the controlled release of drugs.
Collapse
|
7
|
Lindner GG, Drexel CP, Sälzer K, Schuster TB, Krueger N. Comparison of Biogenic Amorphous Silicas Found in Common Horsetail and Oat Husk With Synthetic Amorphous Silicas. Front Public Health 2022; 10:909196. [PMID: 35812489 PMCID: PMC9257020 DOI: 10.3389/fpubh.2022.909196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 05/09/2022] [Indexed: 11/25/2022] Open
Abstract
The present study summarizes the current literature on the presence and the structure of biogenic amorphous silica (BAS) in nature. Based on this review, it is shown that BAS is ubiquitous in nature and exhibits a structure that cannot be differentiated from the structure of synthetic amorphous silica (SAS). The structural similarity of BAS and SAS is further supported by our investigations—in particular, specific surface area (BET) and electron microscope techniques—on oat husk and common horsetail. Many food products containing BAS are considered to be beneficial to health. In the context of the use of SAS in specific applications (e.g., food, feed, and cosmetics), this is of particular interest for discussions of the safety of these uses.
Collapse
Affiliation(s)
| | | | - Katrin Sälzer
- Evonik Operations GmbH, Smart Materials, Hanau, Germany
| | | | - Nils Krueger
- Evonik Operations GmbH, Smart Materials, Hanau, Germany
| |
Collapse
|
8
|
Dolar A, Drobne D, Dolenec M, Marinšek M, Jemec Kokalj A. Time-dependent immune response in Porcellio scaber following exposure to microplastics and natural particles. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 818:151816. [PMID: 34813818 DOI: 10.1016/j.scitotenv.2021.151816] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 11/10/2021] [Accepted: 11/16/2021] [Indexed: 06/13/2023]
Abstract
Microplastics are very common contaminants in the environment. Despite increasing efforts to assess the effects of microplastics on soil organisms, there remains a lack of knowledge on how organisms respond to diverse types of microplastics after different exposure durations. In the present study, we investigated the immune response of the terrestrial crustacean Porcellio scaber exposed to the two most common microplastic particles in the environment: polyester fibres and tyre particles. We also tested two natural particles: wood dust and silica powder, with all treatments performed at 1.5% w/w. The response of P. scaber was evaluated at the level of the immune system, and also the biochemical, organism and population level, after different exposure durations (1, 2, 4, 7, 14, 21 days). These data reveal dynamic changes in the levels of some immune parameters shortly after exposure, with a gradual return to control values. The total number of haemocytes was significantly decreased after 4 days of exposure to tyre particles, while the proportion of different haemocyte types in the haemolymph was altered shortly after exposure to both polyester fibres and tyre particles. Moreover, 7 days of exposure to tyre particles resulted in increased superoxide dismutase activity in the haemolymph, while metabolic activity in whole woodlice (measured as electron transport system activity) was increased after exposure for 7, 14 and 21 days. In contrast, the natural particles did not elicit any significant changes in the measured parameters. Survival and feeding of P. scaber were not altered by exposure to the microplastics and natural particles in soil. Overall, this study defines a time-dependent transient immune response of P. scaber, which indicates that immune parameters represent sensitive biomarkers of exposure to microplastics. We discuss the importance of using natural particles in studies of microplastics exposure and their effects.
Collapse
Affiliation(s)
- Andraž Dolar
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Večna pot 111, 1000 Ljubljana, Slovenia.
| | - Damjana Drobne
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Večna pot 111, 1000 Ljubljana, Slovenia
| | - Matej Dolenec
- Department of Geology, Faculty of Natural Sciences and Engineering, University of Ljubljana, Aškerčeva 12, 1000 Ljubljana, Slovenia
| | - Marjan Marinšek
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, 1000 Ljubljana, Slovenia
| | - Anita Jemec Kokalj
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Večna pot 111, 1000 Ljubljana, Slovenia
| |
Collapse
|
9
|
Adeel M, Shakoor N, Shafiq M, Pavlicek A, Part F, Zafiu C, Raza A, Ahmad MA, Jilani G, White JC, Ehmoser EK, Lynch I, Ming X, Rui Y. A critical review of the environmental impacts of manufactured nano-objects on earthworm species. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 290:118041. [PMID: 34523513 DOI: 10.1016/j.envpol.2021.118041] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 08/07/2021] [Accepted: 08/23/2021] [Indexed: 05/27/2023]
Abstract
The presence of manufactured nano-objects (MNOs) in various consumer or their (future large-scale) use as nanoagrochemical have increased with the rapid development of nanotechnology and therefore, concerns associated with its possible ecotoxicological effects are also arising. MNOs are releasing along the product life cycle, consequently accumulating in soils and other environmental matrices, and potentially leading to adverse effects on soil biota and their associated processes. Earthworms, of the group of Oligochaetes, are an ecologically significant group of organisms and play an important role in soil remediation, as well as acting as a potential vector for trophic transfer of MNOs through the food chain. This review presents a comprehensive and critical overview of toxic effects of MNOs on earthworms in soil system. We reviewed pathways of MNOs in agriculture soil environment with its expected production, release, and bioaccumulation. Furthermore, we thoroughly examined scientific literature from last ten years and critically evaluated the potential ecotoxicity of 16 different metal oxide or carbon-based MNO types. Various adverse effects on the different earthworm life stages have been reported, including reduction in growth rate, changes in biochemical and molecular markers, reproduction and survival rate. Importantly, this literature review reveals the scarcity of long-term toxicological data needed to actually characterize MNOs risks, as well as an understanding of mechanisms causing toxicity to earthworm species. This review sheds light on this knowledge gap as investigating bio-nano interplay in soil environment improves our major understanding for safer applications of MNOs in the agriculture environment.
Collapse
Affiliation(s)
- Muhammad Adeel
- BNU-HKUST Laboratory of Green Innovation, Advanced Institute of Natural Sciences, Beijing Normal University Zhuhai Subcampus, 18 Jinfeng Road, Tangjiawan, Zhuhai, Guangdong, PR China; Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation and College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, PR China
| | - Noman Shakoor
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation and College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, PR China
| | - Muhammad Shafiq
- University of Guadalajara-University Center for Biological and Agricultural Sciences, Camino Ing. Ramón Padilla Sánchez núm. 2100, La Venta del Astillero, Zapopan, Jalisco, CP. 45110, Mexico
| | - Anna Pavlicek
- Department of Water-Atmosphere-Environment, Institute of Waste Management, University of Natural Resources and Life Sciences, Muthgasse 107, 1190, Vienna, Austria; Department of Nanobiotechnology, Institute for Synthetic Bioarchitectures, University of Natural Resources and Life Sciences, Muthgasse 11/II, 1190, Vienna, Austria
| | - Florian Part
- Department of Water-Atmosphere-Environment, Institute of Waste Management, University of Natural Resources and Life Sciences, Muthgasse 107, 1190, Vienna, Austria; Department of Nanobiotechnology, Institute for Synthetic Bioarchitectures, University of Natural Resources and Life Sciences, Muthgasse 11/II, 1190, Vienna, Austria
| | - Christian Zafiu
- Department of Water-Atmosphere-Environment, Institute of Waste Management, University of Natural Resources and Life Sciences, Muthgasse 107, 1190, Vienna, Austria
| | - Ali Raza
- Institute of Soil and Environmental Sciences, University of Agriculture Faisalabad, 38000, Pakistan
| | - Muhammad Arslan Ahmad
- Shenzhen Key Laboratory of Marine Bioresource and Eco-Environmental Science, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, China
| | - Ghulam Jilani
- Institute of Soil Science, PMAS Arid Agriculture University Rawalpindi, Pakistan
| | - Jason C White
- The Connecticut Agricultural Experiment Station, New Haven, CT, 06504, USA
| | - Eva-Kathrin Ehmoser
- Department of Water-Atmosphere-Environment, Institute of Waste Management, University of Natural Resources and Life Sciences, Muthgasse 107, 1190, Vienna, Austria
| | - Iseult Lynch
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, B15 2TT, Birmingham, UK
| | - Xu Ming
- BNU-HKUST Laboratory of Green Innovation, Advanced Institute of Natural Sciences, Beijing Normal University Zhuhai Subcampus, 18 Jinfeng Road, Tangjiawan, Zhuhai, Guangdong, PR China
| | - Yukui Rui
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation and College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, PR China.
| |
Collapse
|
10
|
Environmental Hazards of Boron and Vanadium Nanoparticles in the Terrestrial Ecosystem-A Case Study with Enchytraeus crypticus. NANOMATERIALS 2021; 11:nano11081937. [PMID: 34443769 PMCID: PMC8399937 DOI: 10.3390/nano11081937] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 07/23/2021] [Accepted: 07/25/2021] [Indexed: 12/11/2022]
Abstract
From the start of the 21st century, nanoecotoxicological research has been growing in fast steps due to the need to evaluate the safety of the increasing use of engineered nanomaterials. Boron (B) and vanadium (V) nanoparticles (NPs) generated by anthropogenic activities are subsequently released in the environment; therefore, organisms can be continuously exposed to these NPs for short or long periods. However, the short and long-term effects of BNPs and VNPs on soil organisms are unknown. This work aimed to recognize and describe their potential toxicological effects on the model species Enchytraeus crypticus, assessing survival and reproduction, through a longer-term exposure (56 days (d)-OECD test extension of 28 d), and avoidance behavior, through a short-term exposure (48 hours (h)). After 28 d, BNPs did not induce a significant effect on E. crypticus survival, whereas they decreased the organisms' reproduction at 500 mg/kg. From 10 to 500 mg/kg, VNPs decreased the E. crypticus survival and/or reproduction. After 56 d, 100 to 500 mg/kg BNPs and 50 to 500 mg/kg VNPs, decreased the reproduction output of E. crypticus. The estimated Effect Concentrations (ECx) based on reproduction, for BNPs, were lower at 56 d compared with 28 d; for VNPs, an opposite pattern was found: ECx 28 d < ECx 56 d. BNPs did not induce an avoidance behavior, but organisms avoided the soil contaminated with 10 mg VNPs/kg. The tested NPs showed different E. crypticus apical effects at 28 d from the ones detected at 56 d, dependent on the type of NPs (B vs. V). In general, VNPs showed to be more toxic than BNPs. However, the effects of VNPs were alleviated during the time of exposure, contrarily to BNPs (which became more toxic with extended duration). The present study adds important information about NPs toxicity with ecological significance (at the population level). Including long-term effects, the obtained results contributes to the improvement of NPs risk assessment.
Collapse
|
11
|
Yang JW, Fang W, Williams PN, McGrath JW, Eismann CE, Menegário AA, Elias LP, Luo J, Xu Y. Functionalized Mesoporous Silicon Nanomaterials in Inorganic Soil Pollution Research: Opportunities for Soil Protection and Advanced Chemical Imaging. CURRENT POLLUTION REPORTS 2020; 6:264-280. [PMID: 32879840 PMCID: PMC7446291 DOI: 10.1007/s40726-020-00152-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
"Innovative actions towards a pollution free-planet" is a goal of the United Nations Environment Assembly (UNEA). Aided by both the Food and Agricultural Organisation (FAO) and its Global Soil Partnership under the 3rd UNEA resolution, a consensus from > 170 countries have agreed a need for accelerated action and collaboration to combat soil pollution. This initiative has been tasked to find new and improved solutions to prevent and reduce soil pollution, and it is in this context that this review provides an updated perspective on an emerging technology platform that has already provided demonstrable utility for measurement, mapping, and monitoring of toxic trace elements (TTEs) in soils, in addition to the entrapment, removal, and remediation of pollutant sources. In this article, the development and characteristics of functionalized mesoporous silica nanomaterials (FMSN) will be discussed and compared with other common metal scavenging materials. The chemistries of the common functionalizations will be reviewed, in addition to providing an outlook on some of the future directions/applications of FMSN. The use of FMSN in soil will be considered with some specific case studies focusing on Hg and As. Finally, the advantages and developments of FMSN in the widely used diffusive gradients-in-thin films (DGT) technique will be discussed, in particular, its advantages as a DGT substrate for integration with oxygen planar optodes in multilayer systems that provide 2D mapping of metal pollutant fluxes at submillimeter resolution, which can be used to measure detailed sediment-water fluxes as well as soil-root interactions, to predict plant uptake and bioavailability.
Collapse
Affiliation(s)
- Jia-Wei Yang
- Institute for Global Food Security, School of Biological Sciences, Queen’s University Belfast, Belfast, Northern Ireland BT9 5DL UK
| | - Wen Fang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023 Jiangsu China
| | - Paul N. Williams
- Institute for Global Food Security, School of Biological Sciences, Queen’s University Belfast, Belfast, Northern Ireland BT9 5DL UK
| | - John W. McGrath
- Institute for Global Food Security, School of Biological Sciences, Queen’s University Belfast, Belfast, Northern Ireland BT9 5DL UK
| | - Carlos Eduardo Eismann
- Environmental Studies Center (CEA), São Paulo State University (UNESP), Avenida 24-A, 1515, Rio Claro, SP 13506-900 Brazil
| | - Amauri Antonio Menegário
- Environmental Studies Center (CEA), São Paulo State University (UNESP), Avenida 24-A, 1515, Rio Claro, SP 13506-900 Brazil
| | - Lucas Pellegrini Elias
- Environmental Studies Center (CEA), São Paulo State University (UNESP), Avenida 24-A, 1515, Rio Claro, SP 13506-900 Brazil
| | - Jun Luo
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023 Jiangsu China
| | - Yingjian Xu
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL UK
- GoldenKeys High-Tech Materials Co., Ltd., Building B, Innovation & Entrepreneurship Park, Guian New Area, Guian, 550025 Guizhou China
| |
Collapse
|