1
|
Chava RK, Kang M. Bromine Ion-Intercalated Layered Bi 2WO 6 as an Efficient Catalyst for Advanced Oxidation Processes in Tetracycline Pollutant Degradation Reaction. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2614. [PMID: 37764643 PMCID: PMC10537847 DOI: 10.3390/nano13182614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 09/15/2023] [Accepted: 09/19/2023] [Indexed: 09/29/2023]
Abstract
The visible-light-driven photocatalytic degradation of pharmaceutical pollutants in aquatic environments is a promising strategy for addressing water pollution problems. This work highlights the use of bromine-ion-doped layered Aurivillius oxide, Bi2WO6, to synergistically optimize the morphology and increase the formation of active sites on the photocatalyst's surface. The layered Bi2WO6 nanoplates were synthesized by a facile hydrothermal reaction in which bromine (Br-) ions were introduced by adding cetyltrimethylammonium bromide (CTAB)/tetrabutylammonium bromide (TBAB)/potassium bromide (KBr). The as-synthesized Bi2WO6 nanoplates displayed higher photocatalytic tetracycline degradation activity (~83.5%) than the Bi2WO6 microspheres (~48.2%), which were obtained without the addition of Br precursors in the reaction medium. The presence of Br- was verified experimentally, and the newly formed Bi2WO6 developed as nanoplates where the adsorbed Br- ions restricted the multilayer stacking. Considering the significant morphology change, increased specific surface area, and enhanced photocatalytic performance, using a synthesis approach mediated by Br- ions to design layered photocatalysts is expected to be a promising system for advancing water remediation.
Collapse
Affiliation(s)
- Rama Krishna Chava
- Department of Chemistry, College of Natural Sciences, Yeungnam University, 280 Daehak-ro, Gyeongbuk 38541, Gyeongsan, Republic of Korea
| | - Misook Kang
- Department of Chemistry, College of Natural Sciences, Yeungnam University, 280 Daehak-ro, Gyeongbuk 38541, Gyeongsan, Republic of Korea
| |
Collapse
|
2
|
Chen M, Chang W, Zhang J, Zhao W, Chen Z. Preparation of a Hybrid TiO 2 and 1T/2H-MoS 2 Photocatalyst for the Degradation of Tetracycline Hydrochloride. ACS OMEGA 2023; 8:15458-15466. [PMID: 37151546 PMCID: PMC10157676 DOI: 10.1021/acsomega.3c00730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 04/11/2023] [Indexed: 05/09/2023]
Abstract
Water pollution caused by antibiotics is a growing problem. Semiconductor photocatalysis is an environmentally friendly technology that can effectively degrade organic pollutants in water. Therefore, the development of efficient photocatalysts is of great significance to solve the environmental pollution problem. In this paper, mixed-phase TiO2 and 1T/2H-MoS2 composite (1T/2H-MoS2/TiO2) were synthesized by the in situ growth method. The prepared compounds were characterized and applied to the visible-light degradation of tetracycline hydrochloride. The photocatalytic effect of 1T/2H-MoS2/TiO2 on tetracycline hydrochloride is significantly enhanced under visible light and has good stability. It has potential applications in the treatment of organic pollutants in water.
Collapse
Affiliation(s)
- Miaogen Chen
- Key
Laboratory of Intelligent Manufacturing Quality Big Data Tracing and
Analysis of Zhejiang Province, College of Science, China Jiliang University, Hangzhou 310018, China
| | - Wenya Chang
- Key
Laboratory of Intelligent Manufacturing Quality Big Data Tracing and
Analysis of Zhejiang Province, College of Science, China Jiliang University, Hangzhou 310018, China
| | - Jing Zhang
- Key
Laboratory of Intelligent Manufacturing Quality Big Data Tracing and
Analysis of Zhejiang Province, College of Science, China Jiliang University, Hangzhou 310018, China
| | - Wan Zhao
- College
of Materials and Chemistry, China Jiliang
University, Hangzhou 310018, China
| | - Zhi Chen
- College
of Materials and Chemistry, China Jiliang
University, Hangzhou 310018, China
| |
Collapse
|
3
|
Medeiros AR, Lima FDS, Rosenberger AG, Dragunski DC, Muniz EC, Radovanovic E, Caetano J. Poly(butylene adipate-co-terephthalate)/Poly(lactic acid) Polymeric Blends Electrospun with TiO 2-R/Fe 3O 4 for Pollutant Photodegradation. Polymers (Basel) 2023; 15:polym15030762. [PMID: 36772062 PMCID: PMC9921010 DOI: 10.3390/polym15030762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/12/2023] [Accepted: 01/19/2023] [Indexed: 02/05/2023] Open
Abstract
This work aimed to use the electrospinning technique to obtain PBAT/PLA polymer fibers, with the semiconductors rutile titanium dioxide (TiO2-R) and magnetite iron oxide (Fe3O4), in order to promote the photocatalytic degradation of environmental contaminants. The parameters used in the electrospinning process to obtain the fibers were distance from the needle to the collecting target of 12 cm, flow of 1 mL h-1 and voltage of 14 kV. The best mass ratio of semiconductors in the polymeric fiber was defined from a 22 experimental design, and the values obtained were 10% TiO2-R, 1% Fe3O4 at pH 7.0. Polymer fibers were characterized by Scanning Electron Microscopy (SEM), Differential Scanning Calorimetry (DSC), X-ray Diffraction (XRD), Thermogravimetric Analysis (TGA) and Fourier Transform Infrared (FTIR) techniques. SEM measurements indicated a reduction in fiber diameter after the incorporation of semiconductors; for the PBAT/PLA fiber, the average diameter was 0.9466 ± 0.2490 µm, and for the fiber with TiO2-R and Fe3O4 was 0.6706 ± 0.1447 µm. In the DSC, DRX, TGA and FTIR analyses, it was possible to identify the presence of TiO2-R and Fe3O4 in the fibers, as well as their interactions with polymers, demonstrating changes in the crystallinity and degradation temperature of the material. These fibers were tested against Reactive Red 195 dye, showing an efficiency of 64.0% within 24 h, showing promise for photocatalytic degradation of environmental contaminants.
Collapse
Affiliation(s)
| | | | | | - Douglas Cardoso Dragunski
- Universidade Estadual do Oeste do Paraná—UNIOESTE, Toledo 85903-000, Brazil
- Department of Chemistry, State University of Maringá, 5790 Colombo Avenue, Maringá 87020-900, Brazil
| | - Edvani Curti Muniz
- Department of Chemistry, State University of Maringá, 5790 Colombo Avenue, Maringá 87020-900, Brazil
- Department of Chemistry, Federal University of Piauí, Campus Petronio Portella, Ininga, Teresina 64049-550, Brazil
- Department of Material Science, Federal University of Technology—Parana, Estr. dos Pioneiros, 3131, Jardim Morumbi, Londrina 86036-370, Brazil
| | - Eduardo Radovanovic
- Department of Chemistry, State University of Maringá, 5790 Colombo Avenue, Maringá 87020-900, Brazil
| | - Josiane Caetano
- Universidade Estadual do Oeste do Paraná—UNIOESTE, Toledo 85903-000, Brazil
- Correspondence:
| |
Collapse
|
4
|
Crystal Design and Photoactivity of TiO 2 Nanorod Template Decorated with Nanostructured Bi 2S 3 Visible Light Sensitizer. Int J Mol Sci 2022; 23:ijms231912024. [PMID: 36233326 PMCID: PMC9569727 DOI: 10.3390/ijms231912024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 10/06/2022] [Accepted: 10/06/2022] [Indexed: 11/23/2022] Open
Abstract
In this study, TiO2-Bi2S3 composites with various morphologies were synthesized through hydrothermal vulcanization with sputtering deposited Bi2O3 sacrificial layer method on the TiO2 nanorod templates. The morphologies of decorated Bi2S3 nanostructures on the TiO2 nanorod templates are controlled by the duration of hydrothermal vulcanization treatment. The Bi2S3 crystals in lumpy filament, nanowire, and nanorod feature were decorated on the TiO2 nanorod template after 1, 3, and 5 h hydrothermal vulcanization, respectively. Comparatively, TiO2-Bi2S3 composites with Bi2S3 nanowires exhibit the best photocurrent density, the lowest interfacial resistance value and the highest photodegradation efficiency towards Rhodamine B solution. The possible Z-scheme photoinduced charge separation mechanism and suitable morphology of Bi2S3 nanowires might account for the high photoactivity of TiO2 nanorod-Bi2S3 nanowire composites.
Collapse
|
5
|
Solar-Driven Photocatalytic Films: Synthesis Approaches, Factors Affecting Environmental Activity, and Characterization Features. Top Curr Chem (Cham) 2022; 380:51. [PMID: 36180757 PMCID: PMC9525398 DOI: 10.1007/s41061-022-00409-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 09/12/2022] [Indexed: 11/15/2022]
Abstract
Solar-powered photocatalysis has come a long way since its humble beginnings in the 1990s, producing more than a thousand research papers per year over the past decade. In this review, immobilized photocatalysts operating under sunlight are highlighted. First, a literature review of solar-driven films is presented, along with some fundamental operational differences in relation to reactions involving suspended nanoparticles. Common strategies for achieving sunlight activity from films are then described, including doping, surface grafting, semiconductor coupling, and defect engineering. Synthetic routes to fabricate photocatalytically active films are briefly reviewed, followed by the important factors that determine solar photocatalysis efficiency, such as film thickness and structure. Finally, some important and specific characterization methods for films are described. This review shows that there are two main challenges in the study of photocatalytic materials in the form of (thin) films. First, the production of stable and efficient solar-driven films is still a challenge that requires an integrated approach from synthesis to characterization. The second is the difficulty in properly characterizing films. In any case, the research community needs to address these, as solar-driven photocatalytic films represent a viable option for sustainable air and water purification.
Collapse
|
6
|
Indoor Air Photocatalytic Decontamination by UV–Vis Activated CuS/SnO2/WO3 Heterostructure. Catalysts 2022. [DOI: 10.3390/catal12070728] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
A titania-free heterostructure based on CuS/SnO2/WO3 was obtained by a three-step sol–gel method followed by spray deposition on the glass substrate. The samples exhibit crystalline structures and homogenous composition. The WO3 single-component sample morphology consists of fibers that serve as the substrate for SnO2 development. The CuS/SnO2/WO3 heterostructure is characterized by a dense granular morphology. Photocatalytic activity was evaluated under UV–Vis radiation and indicates that the WO3 single-component sample is able to remove 41.1% of acetaldehyde (64.9 ppm) and 52.5% of formaldehyde (81.4 ppm). However, the CuS/SnO2/WO3 exhibits a superior photocatalytic activity due to a larger light spectrum absorption and lower charge carrier recombination rate, allowing the removal of 69.2% of acetaldehyde and 78.5% of formaldehyde. The reusability tests indicate that the samples have a stable photocatalytic activity after three cycle (12 h/cycle) assessments. During light irradiation, the heterostructure acted as a Z-scheme mechanism using the redox ability of the CuS conduction band electrons and the SnO2/WO3 valence band holes to generate the oxidative species required for VOC removal.
Collapse
|
7
|
Avramescu SM, Fierascu I, Fierascu RC, Brazdis RI, Nica AV, Butean C, Olaru EA, Ulinici S, Verziu MN, Dumitru A. Removal of Paracetamol from Aqueous Solutions by Photocatalytic Ozonation over TiO 2-Me xO y Thin Films. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:613. [PMID: 35214942 PMCID: PMC8875729 DOI: 10.3390/nano12040613] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/01/2022] [Accepted: 02/06/2022] [Indexed: 12/10/2022]
Abstract
Analgesics and nonsteroidal anti-inflammatory drugs (NSAIDs) such as paracetamol, diclofenac, and ibuprofen are frequently encountered in surface and ground water, thereby posing a significant risk to aquatic ecosystems. Our study reports the catalytic performances of nanosystems TiO2-MexOy (Me = Ce, Sn) prepared by the sol-gel method and deposited onto glass slides by a dip-coating approach in the removal of paracetamol from aqueous solutions by catalytic ozonation. The effect of catalyst type and operation parameters on oxidation efficiency was assessed. In addition to improving this process, the present work simplifies it by avoiding the difficult step of catalyst separation. It was found that the thin films were capable of removing all pollutants from target compounds to the oxidation products.
Collapse
Affiliation(s)
- Sorin Marius Avramescu
- Department of Organic Chemistry, Biochemistry and Catalysis, Faculty of Chemistry, University of Bucharest, 050663 Bucharest, Romania;
- PROTMED Research Centre, University of Bucharest, 050107 Bucharest, Romania; (A.V.N.); (E.A.O.)
| | - Irina Fierascu
- Emerging Nanotechnologies Group, National Institute for Research & Development in Chemistry and Petrochemistry—ICECHIM, 060021 Bucharest, Romania;
- Faculty of Horticulture, University of Agronomic Sciences and Veterinary Medicine of Bucharest, 011464 Bucharest, Romania
| | - Radu Claudiu Fierascu
- Emerging Nanotechnologies Group, National Institute for Research & Development in Chemistry and Petrochemistry—ICECHIM, 060021 Bucharest, Romania;
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, 011061 Bucharest, Romania
| | - Roxana Ioana Brazdis
- Emerging Nanotechnologies Group, National Institute for Research & Development in Chemistry and Petrochemistry—ICECHIM, 060021 Bucharest, Romania;
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, 011061 Bucharest, Romania
| | - Angel Vasile Nica
- PROTMED Research Centre, University of Bucharest, 050107 Bucharest, Romania; (A.V.N.); (E.A.O.)
| | - Claudia Butean
- Department of Chemistry and Biology, North University Centre of Baia Mare, Technical University of Cluj-Napoca, 430122 Baia Mare, Romania;
| | - Elena Alina Olaru
- PROTMED Research Centre, University of Bucharest, 050107 Bucharest, Romania; (A.V.N.); (E.A.O.)
| | | | - Marian Nicolae Verziu
- Department of Bioresources and Polymer Science, Advanced Polymer Materials Group, Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, 1-7 Gh Polizu Street, 011061 Bucharest, Romania;
| | - Anca Dumitru
- Faculty of Physics, University of Bucharest, 077125 Magurele, Romania
| |
Collapse
|
8
|
Alaghmandfard A, Ghandi K. A Comprehensive Review of Graphitic Carbon Nitride (g-C 3N 4)-Metal Oxide-Based Nanocomposites: Potential for Photocatalysis and Sensing. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:294. [PMID: 35055311 PMCID: PMC8779993 DOI: 10.3390/nano12020294] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 12/27/2021] [Accepted: 01/05/2022] [Indexed: 02/06/2023]
Abstract
g-C3N4 has drawn lots of attention due to its photocatalytic activity, low-cost and facile synthesis, and interesting layered structure. However, to improve some of the properties of g-C3N4, such as photochemical stability, electrical band structure, and to decrease charge recombination rate, and towards effective light-harvesting, g-C3N4-metal oxide-based heterojunctions have been introduced. In this review, we initially discussed the preparation, modification, and physical properties of the g-C3N4 and then, we discussed the combination of g-C3N4 with various metal oxides such as TiO2, ZnO, FeO, Fe2O3, Fe3O4, WO3, SnO, SnO2, etc. We summarized some of their characteristic properties of these heterojunctions, their optical features, photocatalytic performance, and electrical band edge positions. This review covers recent advances, including applications in water splitting, CO2 reduction, and photodegradation of organic pollutants, sensors, bacterial disinfection, and supercapacitors. We show that metal oxides can improve the efficiency of the bare g-C3N4 to make the composites suitable for a wide range of applications. Finally, this review provides some perspectives, limitations, and challenges in investigation of g-C3N4-metal-oxide-based heterojunctions.
Collapse
Affiliation(s)
| | - Khashayar Ghandi
- Department of Chemistry, University of Guelph, Guelph, ON N1G 2W1, Canada;
| |
Collapse
|
9
|
Li X, Huang G, Chen X, Huang J, Li M, Yin J, Liang Y, Yao Y, Li Y. A review on graphitic carbon nitride (g-C 3N 4) based hybrid membranes for water and wastewater treatment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 792:148462. [PMID: 34465053 DOI: 10.1016/j.scitotenv.2021.148462] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 05/27/2021] [Accepted: 06/10/2021] [Indexed: 05/15/2023]
Abstract
Graphitic carbon nitride (g-C3N4) has gained enormous attention for water and wastewater treatment. Compared with g-C3N4 nanopowders, g-C3N4 based hybrid membranes have demonstrated great potential for its superior practicability. This review outlines the preparation and characterization of g-C3N4 based hybrid membranes and presents their representative applications in water and wastewater treatment (e.g., removal of organic dyes, phenolic compounds, pharmaceuticals, salt ions, heavy metals, and oils). Meanwhile, g-C3N4 based films for the removal of contaminants through photocatalytic degradation is also summarized. In addition, the corresponding mechanisms and relevant findings are discussed. Finally, the challenges and research needs in the future and application of g-C3N4 based hybrid membranes are highlighted.
Collapse
Affiliation(s)
- Xiang Li
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Guohe Huang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, China-Canada Center for Energy, Environment and Ecology Research, UR-BNU, School of Environment, Beijing Normal University, Beijing 100875, China.
| | - Xiujuan Chen
- Institute for Energy, Environment and Sustainable Communities, University of Regina, Regina, SK S4S 0A2, Canada
| | - Jing Huang
- Faculty of Engineering and Applied Science, University of Regina, Regina, Saskatchewan S4S 0A2, Canada
| | - Mengna Li
- Faculty of Engineering and Applied Science, University of Regina, Regina, Saskatchewan S4S 0A2, Canada
| | - Jianan Yin
- Faculty of Engineering and Applied Science, University of Regina, Regina, Saskatchewan S4S 0A2, Canada
| | - Ying Liang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Yao Yao
- Faculty of Engineering and Applied Science, University of Regina, Regina, Saskatchewan S4S 0A2, Canada
| | - Yongping Li
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, China-Canada Center for Energy, Environment and Ecology Research, UR-BNU, School of Environment, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
10
|
Lisovski O, Piskunov S, Bocharov D, Kenmoe S. 2D Slab Models of Nanotubes Based on Tetragonal TiO 2 Structures: Validation over a Diameter Range. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:1925. [PMID: 34443757 PMCID: PMC8401929 DOI: 10.3390/nano11081925] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/20/2021] [Accepted: 07/21/2021] [Indexed: 12/03/2022]
Abstract
One-dimensional nanomaterials receive much attention thanks to their advantageous properties compared to simple, bulk materials. A particular application of 1D nanomaterials is photocatalytic hydrogen generation from water. Such materials are studied not only experimentally, but also computationally. The bottleneck in computations is insufficient computational power to access realistic systems, especially with water or another adsorbed species, using computationally expensive methods, such as ab initio MD. Still, such calculations are necessary for an in-depth understanding of many processes, while the available approximations and simplifications are either not precise or system-dependent. Two-dimensional models as an approximation for TiO2 nanotubes with (101) and (001) structures were proposed by our group for the first time in Comput. Condens. Matter journal in 2018. They were developed at the inexpensive DFT theory level. The principle was to adopt lattice constants from an NT with a specific diameter and keep them fixed in the 2D model optimization, with geometry modifications for one of the models. Our previous work was limited to studying one configuration of a nanotube per 2D model. In this article one of the models was chosen and tested for four different configurations of TiO2 nanotubes: (101) (n,0), (101) (0,n), (001) (n,0), and (001) (0,n). All of them are 6-layered and have rectangular unit cells of tetragonal anatase form. Results of the current study show that the proposed 2D model is indeed universally applicable for different nanotube configurations so that it can be useful in facilitating computationally costly calculations of large systems with adsorbates.
Collapse
Affiliation(s)
- Oleg Lisovski
- Institute of Solid State Physics, University of Latvia, LV-1063 Riga, Latvia; (O.L.); (D.B.)
| | - Sergei Piskunov
- Institute of Solid State Physics, University of Latvia, LV-1063 Riga, Latvia; (O.L.); (D.B.)
| | - Dmitry Bocharov
- Institute of Solid State Physics, University of Latvia, LV-1063 Riga, Latvia; (O.L.); (D.B.)
- Transport and Telecommunication Institute, LV-1019 Riga, Latvia
| | - Stephane Kenmoe
- Department of Theoretical Chemistry, University of Duisburg-Essen, D-45141 Essen, Germany;
| |
Collapse
|
11
|
Effect of Poly(Titanium Oxide) on the Viscoelastic and Thermophysical Properties of Interpenetrating Polymer Networks. CRYSTALS 2021. [DOI: 10.3390/cryst11070794] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The influence of poly(titanium oxide) obtained using the sol-gel method in 2-hydroxyethyl methacrylate medium on the viscoelastic and thermophysical properties of interpenetrating polymer networks (IPNs) based on cross-linked polyurethane (PU) and poly(hydroxyethyl methacrylate) (PHEMA) was studied. It was found that both the initial (IPNs) and organo-inorganic interpenetrating polymer networks (OI IPNs) have a two-phase structure by using methods of dynamic mechanical analysis (DMA) and differential scanning calorimetry (DSC). The differential scanning calorimetry methods and scanning electron microscopy (SEM) showed that the presence of poly(titanium oxide) increases the compatibility of the components of IPNs. It was found that an increase in poly(titanium oxide) content leads to a decrease in the intensity of the relaxation maximum for PHEMA phase and an increase in the effective crosslinking density due to the partial grafting of the inorganic component to acrylate. It was shown that the topology of poly(titanium oxide) structure has a significant effect on the relaxation behavior of OI IPNs samples. According to SEM, a uniform distribution of the inorganic component in the polymer matrix is observed without significant aggregation.
Collapse
|
12
|
The Influence of Photocatalytic Reactors Design and Operating Parameters on the Wastewater Organic Pollutants Removal—A Mini-Review. Catalysts 2021. [DOI: 10.3390/catal11050556] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The organic pollutants removal by conventional methods (adsorption, coagulation, filtration, microorganism and enzymes) showed important limitation due to the reluctance of these molecules. An alternative to this issue is represented by the photocatalytic technology considered as an advanced oxidation process (AOP). The photoreactors design and concepts vary based on the working regime (static or dynamic), photocatalyst morphology (powders or bulk) and volume. This mini-review aims to provide specific guidelines on the correlations between the photoreactor concept characteristics (working regime, volume and flow rate), irradiation scenarios (light spectra, irradiation period and intensity) and the photocatalytic process parameters (photocatalyst materials and dosage, pollutant type and concentration, pollutant removal efficiency and constant rate). The paper considers two main photoreactor geometries (cylindrical and rectangular) and analyses the influence of parameters optimization on the overall photocatalytic efficiency. Based on the systematic evaluation of the input data reported in the scientific papers, several perspectives regarding the photocatalytic reactors’ optimization were included.
Collapse
|
13
|
Luo Y, Wang L, Hwang Y, Yu J, Lee J, Liu Y, Wang H, Kim J, Song HY, Lee H. Binder-free TiO 2 hydrophilic film covalently coated by microwave treatment. MATERIALS CHEMISTRY AND PHYSICS 2021; 258:123884. [PMID: 33041414 PMCID: PMC7538130 DOI: 10.1016/j.matchemphys.2020.123884] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 09/27/2020] [Accepted: 09/30/2020] [Indexed: 06/11/2023]
Abstract
A binder-free attachment method for TiO2 on a substrate has been sought to retain high active photocatalysis. Here, we report a binder-free covalent coating of phase-selectively disordered TiO2 on a hydroxylated silicon oxide (SiO2) substrate through rapid microwave treatment. We found that Ti-O-Si and Ti-O-Ti bonds were formed through a condensation reaction between the hydroxyl groups of the disordered TiO2 and Si substrate, and the disordered TiO2 nanoparticles themselves, respectively. This covalent coating approach can steadily hold the active photocatalytic materials on the substrates and provide long-term stability. The binder-free disordered TiO2 coating film can have a thickness (above 38 μm) with high surface integrity with a strong adhesion force (15.2 N) against the SiO2 substrate, which leads to the production of a rigid and stable TiO2 film. This microwave treated TiO2 coating film showed significant volatile organic compounds degradation abilities under visible light irradiation. The microwave coated selectively reduced TiO2 realized around 75% acetaldehyde degradation within 12 h and almost 90% toluene degradation after 9 h, also retains stable photodegradation performance during the cycling test. Thus, the microwave coating approach allowed the preparation of the binder-free TiO2 film as a scalable and cost-effective method to manufacture the TiO2 film that shows an excellent coating quality and strengthens the application as a photocatalyst under severe conditions.
Collapse
Affiliation(s)
- Yongguang Luo
- Center for Integrated Nanostructure Physics (CINAP), Institute for Basic Science (IBS), 2066 Seoburo, Jangan-gu, Suwon, 16419, Republic of Korea
- Department of Chemistry, Sungkyunkwan University, 2066 Seoburo, Jangan-gu, Suwon, 16419, Republic of Korea
| | - Lingling Wang
- Department of Chemistry, Sungkyunkwan University, 2066 Seoburo, Jangan-gu, Suwon, 16419, Republic of Korea
| | - Yosep Hwang
- Center for Integrated Nanostructure Physics (CINAP), Institute for Basic Science (IBS), 2066 Seoburo, Jangan-gu, Suwon, 16419, Republic of Korea
- Department of Chemistry, Sungkyunkwan University, 2066 Seoburo, Jangan-gu, Suwon, 16419, Republic of Korea
| | - Jianmin Yu
- Department of Chemistry, Sungkyunkwan University, 2066 Seoburo, Jangan-gu, Suwon, 16419, Republic of Korea
| | - Jinsun Lee
- Center for Integrated Nanostructure Physics (CINAP), Institute for Basic Science (IBS), 2066 Seoburo, Jangan-gu, Suwon, 16419, Republic of Korea
- Department of Biophysics, Sungkyunkwan University, 2066 Seoburo, Jangan-gu, Suwon, 16419, Republic of Korea
| | - Yang Liu
- Center for Integrated Nanostructure Physics (CINAP), Institute for Basic Science (IBS), 2066 Seoburo, Jangan-gu, Suwon, 16419, Republic of Korea
- Department of Chemistry, Sungkyunkwan University, 2066 Seoburo, Jangan-gu, Suwon, 16419, Republic of Korea
| | - Hongdan Wang
- Center for Integrated Nanostructure Physics (CINAP), Institute for Basic Science (IBS), 2066 Seoburo, Jangan-gu, Suwon, 16419, Republic of Korea
- Department of Chemistry, Sungkyunkwan University, 2066 Seoburo, Jangan-gu, Suwon, 16419, Republic of Korea
| | - Joosung Kim
- Department of Energy Science, Sungkyunkwan University, 2066 Seoburo, Jangan-gu, Suwon, 16419, Republic of Korea
| | - Hyun Yong Song
- Department of Energy Science, Sungkyunkwan University, 2066 Seoburo, Jangan-gu, Suwon, 16419, Republic of Korea
| | - Hyoyoung Lee
- Center for Integrated Nanostructure Physics (CINAP), Institute for Basic Science (IBS), 2066 Seoburo, Jangan-gu, Suwon, 16419, Republic of Korea
- Department of Chemistry, Sungkyunkwan University, 2066 Seoburo, Jangan-gu, Suwon, 16419, Republic of Korea
- Department of Biophysics, Sungkyunkwan University, 2066 Seoburo, Jangan-gu, Suwon, 16419, Republic of Korea
| |
Collapse
|
14
|
Gao Y, Duan J, Zhai X, Guan F, Wang X, Zhang J, Hou B. Photocatalytic Degradation and Antibacterial Properties of Fe 3+-Doped Alkalized Carbon Nitride. NANOMATERIALS 2020; 10:nano10091751. [PMID: 32899800 PMCID: PMC7558592 DOI: 10.3390/nano10091751] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 08/24/2020] [Accepted: 08/24/2020] [Indexed: 02/06/2023]
Abstract
Discovering novel materials and improving the properties of existing materials are the main goals in the field of photocatalysis to increase the potential application of the materials. In this paper, a modified graphitic carbon nitride (g-C3N4) photocatalyst named Fe3+-doped alkalized carbon nitride, which couples the photocatalytic reaction with the Fenton reaction, is introduced to demonstrate its Rhodamine B (RhB) degradation and antibacterial properties. Under visible-light irradiation, the degradation rate of RhB was 99.9% after 200 min, while the antibacterial rates of Pseudomonas aeruginosa (P. aeruginosa), Escherichia coli (E. coli), and Staphylococcus aureus (S. aureus) after 300 min were 99.9986%, 99.9974%, and 99.9876%, respectively. Moreover, the repetitive experiments of RhB degradation demonstrate that the proposed photocatalysts have excellent stability and reusability. The active free radical trapping experiments reveal that the superoxide radical (·O2−) is the dominant reactive oxygen species. In addition, the Fenton reaction is introduced into the photocatalytic system due to the doping of Fe3+, and the hydroxyl radical (·OH) produced from the Fenton reaction further enhances the photocatalytic performance. The remarkable improvement in photocatalytic performance of the proposed photocatalyst can be attributed to its broader UV–visible absorption characteristic and the occurrence of the Fenton reaction.
Collapse
Affiliation(s)
- Ying Gao
- Key Laboratory of Marine Environmental Corrosion and Bio-Fouling, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (Y.G.); (F.G.); (X.W.); (J.Z.); (B.H.)
- University of Chinese Academy of Sciences, Beijing 100049, China
- Open Studio for Marine Corrosion and Protection, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266071, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Jizhou Duan
- Key Laboratory of Marine Environmental Corrosion and Bio-Fouling, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (Y.G.); (F.G.); (X.W.); (J.Z.); (B.H.)
- Open Studio for Marine Corrosion and Protection, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266071, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
- Correspondence: (J.D.); (X.Z.)
| | - Xiaofan Zhai
- Key Laboratory of Marine Environmental Corrosion and Bio-Fouling, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (Y.G.); (F.G.); (X.W.); (J.Z.); (B.H.)
- Open Studio for Marine Corrosion and Protection, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266071, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
- Correspondence: (J.D.); (X.Z.)
| | - Fang Guan
- Key Laboratory of Marine Environmental Corrosion and Bio-Fouling, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (Y.G.); (F.G.); (X.W.); (J.Z.); (B.H.)
- Open Studio for Marine Corrosion and Protection, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266071, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Xiutong Wang
- Key Laboratory of Marine Environmental Corrosion and Bio-Fouling, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (Y.G.); (F.G.); (X.W.); (J.Z.); (B.H.)
- Open Studio for Marine Corrosion and Protection, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266071, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Jie Zhang
- Key Laboratory of Marine Environmental Corrosion and Bio-Fouling, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (Y.G.); (F.G.); (X.W.); (J.Z.); (B.H.)
- Open Studio for Marine Corrosion and Protection, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266071, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Baorong Hou
- Key Laboratory of Marine Environmental Corrosion and Bio-Fouling, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (Y.G.); (F.G.); (X.W.); (J.Z.); (B.H.)
- Open Studio for Marine Corrosion and Protection, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266071, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| |
Collapse
|
15
|
Zhang J, Wang J, Zhu Q, Zhang B, Xu H, Duan J, Hou B. Fabrication of a Novel AgBr/Ag 2MoO 4@InVO 4 Composite with Excellent Visible Light Photocatalytic Property for Antibacterial Use. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E1541. [PMID: 32781592 PMCID: PMC7466578 DOI: 10.3390/nano10081541] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 07/26/2020] [Accepted: 07/30/2020] [Indexed: 01/10/2023]
Abstract
A novel AgBr/Ag2MoO4@InVO4 composite photocatalyst with different heterojunction structures was successfully constructed by compounding InVO4 with Ag2MoO4 and AgBr. According to the degradation, antibacterial and free radical trapping data, the photocatalytic antibacterial and antifouling activities of AgBr/Ag2MoO4@InVO4 composite were evaluated, and the corresponding photocatalytic reaction mechanism was proposed. Adding AgBr/Ag2MoO4@InVO4 composite, the degradation rate of ciprofloxacin (CIP) achieved 95.5% within 120 min. At the same time, the antibacterial rates of Escherichia coli (E. coli), Staphylococcus aureus (S. aureus) and Pseudomonas aeruginosa (P. aeruginosa) achieved 99.99%. The AgBr/Ag2MoO4@InVO4 composite photocatalyst showed promising usage in photocatalytic antibacterial and purification areas.
Collapse
Affiliation(s)
- Jie Zhang
- CAS Key Laboratory of Marine Environmental Corrosion and Bio-fouling, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (J.W.); (Q.Z.); (H.X.); (J.D.); (B.H.)
- Open Studio for Marine Corrosion and Protection, Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China
| | - Jia Wang
- CAS Key Laboratory of Marine Environmental Corrosion and Bio-fouling, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (J.W.); (Q.Z.); (H.X.); (J.D.); (B.H.)
- Open Studio for Marine Corrosion and Protection, Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China
| | - Qingjun Zhu
- CAS Key Laboratory of Marine Environmental Corrosion and Bio-fouling, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (J.W.); (Q.Z.); (H.X.); (J.D.); (B.H.)
- Open Studio for Marine Corrosion and Protection, Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China
| | - Binbin Zhang
- CAS Key Laboratory of Marine Environmental Corrosion and Bio-fouling, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (J.W.); (Q.Z.); (H.X.); (J.D.); (B.H.)
- Open Studio for Marine Corrosion and Protection, Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China
| | - Huihui Xu
- CAS Key Laboratory of Marine Environmental Corrosion and Bio-fouling, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (J.W.); (Q.Z.); (H.X.); (J.D.); (B.H.)
- Open Studio for Marine Corrosion and Protection, Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China
| | - Jizhou Duan
- CAS Key Laboratory of Marine Environmental Corrosion and Bio-fouling, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (J.W.); (Q.Z.); (H.X.); (J.D.); (B.H.)
- Open Studio for Marine Corrosion and Protection, Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China
| | - Baorong Hou
- CAS Key Laboratory of Marine Environmental Corrosion and Bio-fouling, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (J.W.); (Q.Z.); (H.X.); (J.D.); (B.H.)
- Open Studio for Marine Corrosion and Protection, Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China
| |
Collapse
|
16
|
Zhao W, Liu X, Yang X, Liu C, Qian X, Sun T, Chang W, Zhang J, Chen Z. Synthesis of Novel 1T/2H-MoS 2 from MoO 3 Nanowires with Enhanced Photocatalytic Performance. NANOMATERIALS 2020; 10:nano10061124. [PMID: 32517258 PMCID: PMC7353267 DOI: 10.3390/nano10061124] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 05/29/2020] [Accepted: 06/03/2020] [Indexed: 01/09/2023]
Abstract
Metallic 1T-phase MoS2 is a newly emerging and attractive catalyst since it has more available active sites and high carrier mobility in comparison with its widely used counterpart of semiconducting 2H-MoS2. Herein, 1T/2H-MoS2(N) (N: MoO3 nanowires were used to prepare 1T/2H-MoS2) was synthesized by using molybdenum trioxide (MoO3) nanowires as the starting material and applied in the photodegradation of antibiotic residue in water. Enhanced photocatalytic performance was observed on the obtained 1T/2H-MoS2(N), which was 2.8 and 1.3 times higher than those on 1T/2H-MoS2(P) (P: commercial MoO3 powder was used to prepare 1T/2H-MoS2) and 2H-MoS2, respectively. The active component responsible for the photodegradation was detected and a reaction mechanism is proposed.
Collapse
Affiliation(s)
- Wan Zhao
- College of Materials and Chemistry, China Jiliang University, 258 Xueyuan Street, Xiasha Higher Education Zone, Hangzhou 310018, China; (W.Z.); (X.Y.); (C.L.); (X.Q.); (T.S.); (W.C.); (J.Z.)
| | - Xin Liu
- College of Standardization, China Jiliang University, 258 Xueyuan Street, Xiasha Higher Education Zone, Hangzhou 310018, China
- Correspondence: (X.L.); (Z.C.)
| | - Xiuru Yang
- College of Materials and Chemistry, China Jiliang University, 258 Xueyuan Street, Xiasha Higher Education Zone, Hangzhou 310018, China; (W.Z.); (X.Y.); (C.L.); (X.Q.); (T.S.); (W.C.); (J.Z.)
| | - Chunxi Liu
- College of Materials and Chemistry, China Jiliang University, 258 Xueyuan Street, Xiasha Higher Education Zone, Hangzhou 310018, China; (W.Z.); (X.Y.); (C.L.); (X.Q.); (T.S.); (W.C.); (J.Z.)
| | - Xiaoxiao Qian
- College of Materials and Chemistry, China Jiliang University, 258 Xueyuan Street, Xiasha Higher Education Zone, Hangzhou 310018, China; (W.Z.); (X.Y.); (C.L.); (X.Q.); (T.S.); (W.C.); (J.Z.)
| | - Tao Sun
- College of Materials and Chemistry, China Jiliang University, 258 Xueyuan Street, Xiasha Higher Education Zone, Hangzhou 310018, China; (W.Z.); (X.Y.); (C.L.); (X.Q.); (T.S.); (W.C.); (J.Z.)
| | - Wenya Chang
- College of Materials and Chemistry, China Jiliang University, 258 Xueyuan Street, Xiasha Higher Education Zone, Hangzhou 310018, China; (W.Z.); (X.Y.); (C.L.); (X.Q.); (T.S.); (W.C.); (J.Z.)
| | - Jingjing Zhang
- College of Materials and Chemistry, China Jiliang University, 258 Xueyuan Street, Xiasha Higher Education Zone, Hangzhou 310018, China; (W.Z.); (X.Y.); (C.L.); (X.Q.); (T.S.); (W.C.); (J.Z.)
| | - Zhi Chen
- College of Materials and Chemistry, China Jiliang University, 258 Xueyuan Street, Xiasha Higher Education Zone, Hangzhou 310018, China; (W.Z.); (X.Y.); (C.L.); (X.Q.); (T.S.); (W.C.); (J.Z.)
- Correspondence: (X.L.); (Z.C.)
| |
Collapse
|
17
|
Zhang B, Peng X, Wang Z. Noble Metal-Free TiO 2-Coated Carbon Nitride Layers for Enhanced Visible Light-Driven Photocatalysis. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E805. [PMID: 32340144 PMCID: PMC7221541 DOI: 10.3390/nano10040805] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 04/21/2020] [Accepted: 04/21/2020] [Indexed: 11/16/2022]
Abstract
Composites of g-C3N4/TiO2 were one-step prepared using electron impact with dielectric barrier discharge (DBD) plasma as the electron source. Due to the low operation temperature, TiO2 by the plasma method shows higher specific surface area and smaller particle size than that prepared via conventional calcination. Most interestingly, electron impact produces more oxygen vacancy on TiO2, which facilitates the recombination and formation of heterostructure of g-C3N4/TiO2. The composites have higher light absorption capacity and lower charge recombination efficiency. g-C3N4/TiO2 by plasma can produce hydrogen at a rate of 219.9 μmol·g-1·h-1 and completely degrade Rhodamine B (20mg·L-1) in two hours. Its hydrogen production rates were 3 and 1.5 times higher than that by calcination and pure g-C3N4, respectively. Electron impact, ozone and oxygen radical also play key roles in plasma preparation. Plasma has unique advantages in metal oxides defect engineering and the preparation of heterostructured composites with prospective applications as photocatalysts for pollutant degradation and water splitting.
Collapse
Affiliation(s)
| | | | - Zhao Wang
- National Engineering Research Center of Industry Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; (B.Z.); (X.P.)
| |
Collapse
|