1
|
Fleyfel LM, Matta J, Sayegh NF, El Najjar NH. Olive mill wastewater treatment using coagulation/flocculation and filtration processes. Heliyon 2024; 10:e40348. [PMID: 39641042 PMCID: PMC11617752 DOI: 10.1016/j.heliyon.2024.e40348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 11/09/2024] [Accepted: 11/11/2024] [Indexed: 12/07/2024] Open
Abstract
Olive mill wastewater (OMWW), a pollutant resulting from the olive oil industry, poses a serious ecological challenge due to its high pollution load. This effluent is highly concentrated in chemical oxygen demand (COD), which is 200 times higher than that of sewage wastewater. Moreover, OMWW is characterized by a strong acidity, high content of fatty matter, and high concentration of phenolic compounds. In this study, coagulation/flocculation and filtration processes were investigated in order to decrease the pollution load of OMWW for potential reuse in olive orchard irrigation. First, two successive coagulation/flocculation steps were applied to a centrifuged OMWW. Lime and aluminum sulfate (alum) were used as coagulants by testing different concentrations in order to select optimal conditions. Then, the efficiency of various filtration systems using activated carbon and/or natural materials (olive stones, olive leaves, sand, Celite, and gravel) was tested. pH, electrical conductivity (EC), total solid (TS), and COD were measured before and after each treatment step (coagulation or filtration). Five phenolic compounds were monitored before and after applying the selected treatment steps under optimal conditions. The quantification and valorization of the sludge derived from coagulation/flocculation were also performed. During the first coagulation/flocculation step, the results showed that the application of 8 g/L of lime combined with 7 g/L of alum allows the removal rates for EC, TS, and COD of approximately 10 %, 41 %, and 48 %, respectively. While the application of 5 g/L of lime and 4 g/L of alum during the second coagulation/flocculation step allows for lower reductions rates for TS (37 %) and higher reduction rates for COD (67 %). In addition, the resulting sludge showed its potential usage as a solid alternative fuel with a calorific value of 3295.79 cal/g. Moreover, filtration using activated carbon and gravel was found to be the optimum filtration system. The reduction rates were 51 %, 37 %, and 26 % for EC, TS, and COD, respectively. Finally, the combination of coagulation/flocculation and filtration allows the substantial elimination of the studied phenolic compounds with global reduction yields of 97 % for vanillyl alcohol, 92 % for tyrosol, and 91 % for vanillic acid and p-coumaric acid. Besides, Mediterranean countries are suffering from water shortages and the majority of olive mill trituration units are known for their artisanal types thus facing economic challenges. This research suggests a practical treatment process and the final effluent can be used to irrigate olive orchards at a rate of 170 m3 per hectare.
Collapse
Affiliation(s)
- Layla Moustafa Fleyfel
- Saint Joseph University of Beirut, Faculty of Pharmacy, Department of Nutrition, Medical Sciences Campus, Damascus Road, P.O.B. 11-5076, Riad Solh Beirut, 1107 2180, Lebanon
| | - Joseph Matta
- Saint Joseph University of Beirut, Faculty of Pharmacy, Department of Nutrition, Medical Sciences Campus, Damascus Road, P.O.B. 11-5076, Riad Solh Beirut, 1107 2180, Lebanon
- Industrial Research Institute (IRI), Lebanese University Campus, Hadeth Baadba, Lebanon
| | - Nicole Fakhoury Sayegh
- Saint Joseph University of Beirut, Faculty of Pharmacy, Department of Nutrition, Medical Sciences Campus, Damascus Road, P.O.B. 11-5076, Riad Solh Beirut, 1107 2180, Lebanon
| | - Nasma Hamdi El Najjar
- Saint Joseph University of Beirut, Faculty of Pharmacy, Department of Nutrition, Medical Sciences Campus, Damascus Road, P.O.B. 11-5076, Riad Solh Beirut, 1107 2180, Lebanon
| |
Collapse
|
2
|
Hachicha R, Elleuch J, Dubessay P, Hachicha R, Abdelkafi S, Michaud P, Fendri I. Integrated processes for olive mill wastewater treatment and its revalorization for microalgae culture. Int Microbiol 2024:10.1007/s10123-024-00600-z. [PMID: 39358585 DOI: 10.1007/s10123-024-00600-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/09/2024] [Accepted: 09/18/2024] [Indexed: 10/04/2024]
Abstract
The olive oil industry generates 30 million cubic meters of olive mill wastewaters (OMWWs) annually. OMWWs are a major environmental concern in the Mediterranean region due to their high organic matter content, suspended solids, unpleasant odor, and dark color. The application of primary treatments such as coagulation-flocculation, adsorption, and hybrid systems combining coagulation-flocculation with adsorption has enabled to remove part of the organic matter, color, turbidity, and growth-inhibiting compounds from OMWWs. Among these methods, the hybrid system combining activated carbon and chitosan has proven to be the best removal efficiency. Subsequently, secondary treatment involving the cultivation of Chlorella sp. on OMWWs pretreated with chitosan achieved the highest maximal specific growth rate (0.513 ± 0.022 day⁻1) and biomass productivity (0.621 ± 0.021 g/L/day). Notably, the fatty acids (FA) profile produced by Chlorella sp. cells grown under these conditions differed, underscoring the potential of OMWWs as a microalgal growth medium. This innovative approach not only addresses environmental issues but also opens new avenues for sustainable bioproducts.
Collapse
Affiliation(s)
- Rihab Hachicha
- Clermont Auvergne University, Clermont Auvergne INP, CNRS, Institut Pascal, 63000, Clermont-Ferrand, France
- Laboratory of Plant Biotechnologies Applied to Crop Improvement, Faculty of Sciences of Sfax, University of Sfax, 3038, Sfax, Tunisia
| | - Jihen Elleuch
- Laboratory of Enzymatic Engineering and Microbiology, Algae Biotechnology Team, National School of Engineers of Sfax, University of Sfax, 3038, Sfax, Tunisia
| | - Pascal Dubessay
- Clermont Auvergne University, Clermont Auvergne INP, CNRS, Institut Pascal, 63000, Clermont-Ferrand, France
| | - Ridha Hachicha
- Laboratory of Enzymatic Engineering and Microbiology, Algae Biotechnology Team, National School of Engineers of Sfax, University of Sfax, 3038, Sfax, Tunisia
| | - Slim Abdelkafi
- Laboratory of Enzymatic Engineering and Microbiology, Algae Biotechnology Team, National School of Engineers of Sfax, University of Sfax, 3038, Sfax, Tunisia
| | - Philippe Michaud
- Clermont Auvergne University, Clermont Auvergne INP, CNRS, Institut Pascal, 63000, Clermont-Ferrand, France.
| | - Imen Fendri
- Laboratory of Plant Biotechnologies Applied to Crop Improvement, Faculty of Sciences of Sfax, University of Sfax, 3038, Sfax, Tunisia
| |
Collapse
|
3
|
Baruah MJ, Dutta R, Zaki MEA, Bania KK. Heterogeneous Iron-Based Catalysts for Organic Transformation Reactions: A Brief Overview. Molecules 2024; 29:3177. [PMID: 38999129 PMCID: PMC11243350 DOI: 10.3390/molecules29133177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 06/15/2024] [Accepted: 06/19/2024] [Indexed: 07/14/2024] Open
Abstract
Iron (Fe) is considered to be one of the most significant elements due to its wide applications. Recent years have witnessed a burgeoning interest in Fe catalysis as a sustainable and cost-effective alternative to noble metal catalysis in organic synthesis. The abundance and low toxicity of Fe, coupled with its competitive reactivity and selectivity, underscore its appeal for sustainable synthesis. A lot of catalytic reactions have been performed using heterogeneous catalysts of Fe oxide hybridized with support systems like aluminosilicates, clays, carbonized materials, metal oxides or polymeric matrices. This review provides a comprehensive overview of the latest advancements in Fe-catalyzed organic transformation reactions. Highlighted areas include cross-coupling reactions, C-H activation, asymmetric catalysis, and cascade processes, showcasing the versatility of Fe across a spectrum of synthetic methodologies. Emphasis is placed on mechanistic insights, elucidating the underlying principles governing iron-catalyzed reactions. Challenges and opportunities in the field are discussed, providing a roadmap for future research endeavors. Overall, this review illuminates the transformative potential of Fe catalysis in driving innovation and sustainability in organic chemistry, with implications for drug discovery, materials science, and beyond.
Collapse
Affiliation(s)
- Manash J Baruah
- Department of Chemistry, DCB Girls' College, Jorhat 785001, Assam, India
- Department of Chemical Sciences, Tezpur University, Napaam, Tezpur 784028, Assam, India
| | - Rupjyoti Dutta
- CSIR-North East Institute of Science and Technology, Jorhat 785006, Assam, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| | - Magdi E A Zaki
- Department of Chemistry, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia
| | - Kusum K Bania
- Department of Chemical Sciences, Tezpur University, Napaam, Tezpur 784028, Assam, India
| |
Collapse
|
4
|
Amalina F, Krishnan S, Zularisam AW, Nasrullah M. Pristine and modified biochar applications as multifunctional component towards sustainable future: Recent advances and new insights. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 914:169608. [PMID: 38157898 DOI: 10.1016/j.scitotenv.2023.169608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 12/09/2023] [Accepted: 12/20/2023] [Indexed: 01/03/2024]
Abstract
Employing biomass for environmental conservation is regarded as a successful and environmentally friendly technique since they are cost-effective, renewable, and abundant. Biochar (BC), a thermochemically converted biomass, has a considerably lower production cost than the other conventional activated carbons. This material's distinctive properties, including a high carbon content, good electrical conductivity (EC), high stability, and a large surface area, can be utilized in various research fields. BC is feasible as a renewable source for potential applications that may achieve a comprehensive economic niche. Despite being an inexpensive and environmentally sustainable product, research has indicated that pristine BC possesses restricted properties that prevent it from fulfilling the intended remediation objectives. Consequently, modifications must be made to BC to strengthen its physicochemical properties and, thereby, its efficacy in decontaminating the environment. Modified BC, an enhanced iteration of BC, has garnered considerable interest within academia. Many modification techniques have been suggested to augment BC's functionality, including its adsorption and immobilization reliability. Modified BC is overviewed in its production, functionality, applications, and regeneration. This work provides a holistic review of the recent advances in synthesizing modified BC through physical, chemical, or biological methods to achieve enhanced performance in a specific application, which has generated considerable research interest. Surface chemistry modifications require the initiation of surface functional groups, which can be accomplished through various techniques. Therefore, the fundamental objective of these modification techniques is to improve the efficacy of BC contaminant removal, typically through adjustments in its physical or chemical characteristics, including surface area or functionality. In addition, this article summarized and discussed the applications and related mechanisms of modified BC in environmental decontamination, focusing on applying it as an ideal adsorbent, soil amendment, catalyst, electrochemical device, and anaerobic digestion (AD) promoter. Current research trends, future directions, and academic demands were available in this study.
Collapse
Affiliation(s)
- Farah Amalina
- Faculty of Civil Engineering Technology, Universiti Malaysia Pahang Al-Sultan Abdullah (UMPSA), Lbh Persiaran Tun Khalil Yaakob, 26300 Gambang, Kuantan, Pahang, Malaysia
| | - Santhana Krishnan
- Department of Civil and Environmental Engineering, Faculty of Engineering, Prince of Songkla University, Songkhla 90110, Thailand
| | - A W Zularisam
- Faculty of Civil Engineering Technology, Universiti Malaysia Pahang Al-Sultan Abdullah (UMPSA), Lbh Persiaran Tun Khalil Yaakob, 26300 Gambang, Kuantan, Pahang, Malaysia
| | - Mohd Nasrullah
- Faculty of Civil Engineering Technology, Universiti Malaysia Pahang Al-Sultan Abdullah (UMPSA), Lbh Persiaran Tun Khalil Yaakob, 26300 Gambang, Kuantan, Pahang, Malaysia.
| |
Collapse
|
5
|
Villora-Picó JJ, González-Arias J, Baena-Moreno FM, Reina TR. Renewable Carbonaceous Materials from Biomass in Catalytic Processes: A Review. MATERIALS (BASEL, SWITZERLAND) 2024; 17:565. [PMID: 38591382 PMCID: PMC10856170 DOI: 10.3390/ma17030565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 01/16/2024] [Accepted: 01/23/2024] [Indexed: 04/10/2024]
Abstract
This review paper delves into the diverse ways in which carbonaceous resources, sourced from renewable and sustainable origins, can be used in catalytic processes. Renewable carbonaceous materials that come from biomass-derived and waste feedstocks are key to developing more sustainable processes by replacing traditional carbon-based materials. By examining the potential of these renewable carbonaceous materials, this review aims to shed light on their significance in fostering environmentally conscious and sustainable practices within the realm of catalysis. The more important applications identified are biofuel production, tar removal, chemical production, photocatalytic systems, microbial fuel cell electrodes, and oxidation applications. Regarding biofuel production, biochar-supported catalysts have proved to be able to achieve biodiesel production with yields exceeding 70%. Furthermore, hydrochars and activated carbons derived from diverse biomass sources have demonstrated significant tar removal efficiency. For instance, rice husk char exhibited an increased BET surface area from 2.2 m2/g to 141 m2/g after pyrolysis at 600 °C, showcasing its effectiveness in adsorbing phenol and light aromatic hydrocarbons. Concerning chemical production and the oxidation of alcohols, the influence of biochar quantity and pre-calcination temperature on catalytic performance has been proven, achieving selectivity toward benzaldehyde exceeding 70%.
Collapse
Affiliation(s)
- Juan J. Villora-Picó
- Inorganic Chemistry Department and Materials Sciences Institute, University of Seville-CSIC, 41092 Seville, Spain; (J.J.V.-P.); (T.R.R.)
| | - Judith González-Arias
- Inorganic Chemistry Department and Materials Sciences Institute, University of Seville-CSIC, 41092 Seville, Spain; (J.J.V.-P.); (T.R.R.)
| | - Francisco M. Baena-Moreno
- Chemical and Environmental Engineering Department, Technical School of Engineering, University of Seville, C/Camino de los Descubrimientos s/n, 41092 Sevilla, Spain
| | - Tomás R. Reina
- Inorganic Chemistry Department and Materials Sciences Institute, University of Seville-CSIC, 41092 Seville, Spain; (J.J.V.-P.); (T.R.R.)
| |
Collapse
|
6
|
Ghosh S, Nandasana M, Webster TJ, Thongmee S. Agrowaste-generated biochar for the sustainable remediation of refractory pollutants. Front Chem 2023; 11:1266556. [PMID: 38033473 PMCID: PMC10687200 DOI: 10.3389/fchem.2023.1266556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 10/30/2023] [Indexed: 12/02/2023] Open
Abstract
The rapid growth of various industries has led to a significant, alarming increase in recalcitrant pollutants in the environment. Hazardous dyes, heavy metals, pesticides, pharmaceutical products, and other associated polycyclic aromatic hydrocarbons (such as acenaphthene, fluorene, fluoranthene, phenanthrene, and pyrene) have posed a significant threat to the surroundings due to their refractory nature. Although activated carbon has been reported to be an adsorbent for removing contaminants from wastewater, it has its limitations. Hence, this review provides an elaborate account of converting agricultural waste into biochar with nanotextured surfaces that can serve as low-cost adsorbents with promising pollutant-removing properties. A detailed mechanism rationalized that this strategy involves the conversion of agrowaste to promising adsorbents that can be reduced, reused, and recycled. The potential of biowaste-derived biochar can be exploited for developing biofuel for renewable energy and also for improving soil fertility. This strategy can provide a solution to control greenhouse gas emissions by preventing the open burning of agricultural residues in fields. Furthermore, this serves a dual purpose for environmental remediation as well as effective management of agricultural waste rich in both organic and inorganic components that are generated during various agricultural operations. In this manner, this review provides recent advances in the use of agrowaste-generated biochar for cleaning the environment.
Collapse
Affiliation(s)
- Sougata Ghosh
- Department of Physics, Faculty of Science, Kasetsart University, Bangkok, Thailand
- Department of Microbiology, School of Science, RK University, Rajkot, Gujarat, India
| | - Maitri Nandasana
- Department of Microbiology, School of Science, RK University, Rajkot, Gujarat, India
| | - Thomas J. Webster
- School of Health Sciences and Biomedical Engineering, Hebei University of Technology, Tianjin, China
- School of Engineering, Saveetha University, Chennai, India
- Materials Program, Federal University of Piaui, Teresina, Brazil
| | - Sirikanjana Thongmee
- Department of Physics, Faculty of Science, Kasetsart University, Bangkok, Thailand
| |
Collapse
|
7
|
Mohamed Abdoul-Latif F, Ainane A, Hachi T, Abbi R, Achira M, Abourriche A, Brulé M, Ainane T. Materials Derived from Olive Pomace as Effective Bioadsorbents for the Process of Removing Total Phenols from Oil Mill Effluents. Molecules 2023; 28:4310. [PMID: 37298784 PMCID: PMC10254907 DOI: 10.3390/molecules28114310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/18/2023] [Accepted: 05/22/2023] [Indexed: 06/12/2023] Open
Abstract
This work investigates olive pomace from olive mill factories as an adsorbent for the removal of total phenols from olive mill effluent (OME). This pathway of valorization of olive pomace reduces the environmental impact of OME while providing a sustainable and cost-effective wastewater treatment approach for the olive oil industry. Olive pomace was pretreated with water washing, drying (60 °C) and sieving (<2 mm) to obtain the raw olive pomace (OPR) adsorbent material. Olive pomace biochar (OPB) was obtained via carbonization of OPR at 450 °C in a muffle furnace. The adsorbent materials OPR and OPB were characterized using several basic analyzes (Scanning Electron Microscopy-Energy-Dispersive X-ray SEM/EDX, X-ray Diffraction XRD, thermal analysis DTA and TGA, Fourier transform infrared FTIR and Brunauer, Emmett and Teller surface BET). The materials were subsequently tested in a series of experimental tests to optimize the sorption of polyphenols from OME, investigating the effects of pH and adsorbent dose. Adsorption kinetics showed good correlation with a pseudo-second-order kinetic model as well as Langmuir isotherms. Maximum adsorption capacities amounted to 21.27 mg·g-1 for OPR and 66.67 mg·g-1 for OPB, respectively. Thermodynamic simulations indicated spontaneous and exothermic reaction. The rates of total phenol removal were within the range of 10-90% following 24 h batch adsorption in OME diluted at 100 mg/L total phenols, with the highest removal rates observed at pH = 10. Furthermore, solvent regeneration with 70% ethanol solution yielded partial regeneration of OPR at 14% and of OPB at 45% following the adsorption, implying a significant rate of recovery of phenols in the solvent. The results of this study suggest that adsorbents derived from olive pomace may be used as economical materials for the treatment and potential capture of total phenols from OME, also suggesting potential further applications for pollutants in industrial wastewaters, which can have significant implications in the field of environmental technologies.
Collapse
Affiliation(s)
- Fatouma Mohamed Abdoul-Latif
- Medicinal Research Institute, Centre d’Etudes et de Recherche de Djibouti, IRM-CERD, Route de l’Aéroport, Haramous B.P. 486, Djibouti City 77101, Djibouti
| | - Ayoub Ainane
- Superior School of Technology of Khenifra, University of Sultan Moulay Slimane, BP 170, Khenifra 54000, Morocco
| | - Touria Hachi
- Superior School of Technology of Khenifra, University of Sultan Moulay Slimane, BP 170, Khenifra 54000, Morocco
| | - Rania Abbi
- Superior School of Technology of Khenifra, University of Sultan Moulay Slimane, BP 170, Khenifra 54000, Morocco
| | - Meryem Achira
- Superior School of Technology of Khenifra, University of Sultan Moulay Slimane, BP 170, Khenifra 54000, Morocco
| | - Abdelmjid Abourriche
- ENSAM Casablanca, University of Hassan II, 150 Bd du Nil, Casablanca 20670, Morocco
| | - Mathieu Brulé
- Laboratory of Biochemical Engineering and Environmental Technology (LBEET), Department of Chemical Engineering, University of Patras, 1 Karatheodori Str., 26504 Patras, Greece
| | - Tarik Ainane
- Superior School of Technology of Khenifra, University of Sultan Moulay Slimane, BP 170, Khenifra 54000, Morocco
| |
Collapse
|
8
|
Mehdaoui R, Agren S, El Haskouri J, Beyou E, Lahcini M, Baouab MHV. An optimized sono-heterogeneous Fenton degradation of olive-oil mill wastewater organic matter by new magnetic glutarlaldehyde-crosslinked developed cellulose. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:20450-20468. [PMID: 36258114 DOI: 10.1007/s11356-022-23276-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 09/21/2022] [Indexed: 06/16/2023]
Abstract
The present study highlights the olive mill wastewater (OMW) treatment characteristics through a sono-heterogeneous Fenton process using new designed [GTA-(PDA-g-DAC) @Fe3O4] and characterized by Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD), thermogravimetric analysis (TGA), magnetic properties measurements, and point of zero charge (pH pzc) analysis. A preliminary removal study showed significant degradation efficiency (75%) occurred combining the magnetic synthesized catalyst [GTA-(PDA-g-DAC)@Fe3O4] ([catalyst] = 2 g/L) with US /H2O2 and maintaining 500WL-1 ultrasonic power (US). The values obtained by US only were (13%), H2O2/US (18%), US/Fe3O4 (28%), and US /Fe3O4/H2O2(35%). The catalytic findings have shown that [GTA-(PDA-g-DAC)@Fe3O4] exhibited good properties for OMW compound's degradation. The sonocatalytic process coupling and extra oxidant addition resulted in the degradation substantial levels. For instance, the concomitant effect of degradation optimized parameters; H2O2 10 mM, [GTA-(PDA-g-DAC) @Fe3O4] nanocomposites 2.5 g/L, at pH 3, and T 35 °C for 70 min resulted in an almost complete mineralization of aqueous OMW solution followed by a significant decolorization. Oxidation results exhibited efficient degradation rates in total phenolic compounds (TPC), total amino compounds (TAC), and chemical oxygen demand (COD) oxidation rate were 89.88, 92.75, and 95.66 respectively following the optimized sono-heterogeneous catalytic Fenton process. The prepared magnetic catalyst exhibited a good stability during repeated cycles. The gathered findings gave the evidence that sono-heterogeneous catalytic Fenton process is a promising treatment technology for OMW effluents.
Collapse
Affiliation(s)
- Rahma Mehdaoui
- Research Unit Materials and Organic Synthesis (UR17ES31), Preparatory Institute for Engineering Studies of Monastir, University of Monastir, Avenue of the Environment, 5000, Monastir, Tunisia
| | - Soumaya Agren
- Research Unit Materials and Organic Synthesis (UR17ES31), Preparatory Institute for Engineering Studies of Monastir, University of Monastir, Avenue of the Environment, 5000, Monastir, Tunisia
- Department of Inorganic Chemistry, Instituto de Ciencias de Los Materiales de la Universitad de Valencia, Calle Catedratico José Beltran 2, 46980, Paterna, Valencia, Spain
| | - Jamal El Haskouri
- Department of Inorganic Chemistry, Instituto de Ciencias de Los Materiales de la Universitad de Valencia, Calle Catedratico José Beltran 2, 46980, Paterna, Valencia, Spain
| | - Emmanuel Beyou
- Department of Material's Engineering, Université Lyon 1, UMR CNRS5223, Ingénierie des Matériaux Polymères, Villeurbanne, France
| | - Mohammed Lahcini
- Laboratory of organometallic and macromolecular chemistry-composites Materials, Faculty of Sciences and Technologies, Cadi Ayyad University, Avenue Abdelhakim Elkhattabi, BP549, 40000, Marrakech, Morocco
- Mohamed VI Polytechnic University, Lot 660, Hay Moulay Rachid, 43150, Ben Guerir, Morocco
| | - Mohamed Hassen V Baouab
- Research Unit Materials and Organic Synthesis (UR17ES31), Preparatory Institute for Engineering Studies of Monastir, University of Monastir, Avenue of the Environment, 5000, Monastir, Tunisia.
| |
Collapse
|
9
|
Amalina F, Syukor Abd Razak A, Krishnan S, Sulaiman H, Zularisam A, Nasrullah M. Advanced techniques in the production of biochar from lignocellulosic biomass and environmental applications. CLEANER MATERIALS 2022; 6:100137. [DOI: 10.1016/j.clema.2022.100137] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
10
|
Amalina F, Razak ASA, Krishnan S, Zularisam A, Nasrullah M. Dyes removal from textile wastewater by agricultural waste as an absorbent – A review. CLEANER WASTE SYSTEMS 2022; 3:100051. [DOI: 10.1016/j.clwas.2022.100051] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
11
|
Sustainable vs. Conventional Approach for Olive Oil Wastewater Management: A Review of the State of the Art. WATER 2022. [DOI: 10.3390/w14111695] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The main goal of this review is to collect and analyze the recently published research concerning the conventional and sustainable treatment processes for olive mill wastewater (OMW). In the conventional treatment processes, it is noticed that the main objective is to meet the environmental regulations for remediated wastewater without considering the economical values of its valuable constituents such as polyphenols. These substances have many important environmental values and could be used in many vital applications. Conversely, sustainable treatment processes aim to recover the valuable constituents through different processes and then treat the residual wastewater. Both approaches’ operational and design parameters were analyzed to generalize their advantages and possible applications. A valorization-treatment approach for OMW is expected to make it a sustainable resource for ingredients of high economical value that could lead to a profitable business. In addition, inclusion of a recovery process will detoxify the residual OMW, simplify its management treatment, and allow the possible reuse of the vast amounts of processed water. In a nutshell, the proposed approach led to zero waste with a closed water cycle development.
Collapse
|
12
|
Available Pathways for Operationalizing Circular Economy into the Olive Oil Supply Chain: Mapping Evidence from a Scoping Literature Review. SUSTAINABILITY 2021. [DOI: 10.3390/su13179789] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Circular economy (CE) is increasingly seen as a promising paradigm for transitioning agri-food systems towards more sustainable models of production and consumption, enabling virtuous and regenerative biological metabolisms based on strategies of eco-efficiency and eco-effectiveness. This contribution seeks to provide a theoretical and empirical framework for operationalizing the CE principles into the olive oil supply chain, that plays a central role in the agroecological systems of the Mediterranean region. A scoping literature review has been conducted in order to identify the available pathways so far explored by scholars for reshaping the olive oil supply chain from a circular perspective. The analyzed literature has been charted on the base of the circular pathway examined, and according to the supply chain subsystem(s) to which it refers. Results are discussed highlighting the main issues, the technology readiness level of the available pathways, the prevailing approaches and knowledge gaps. A synthetic evidence map is provided, framing visually the scrutinized pathways into the Ellen MacArthur Foundation’s CE ‘butterfly’ graph. The work is intended to be a valuable baseline for inquiring how circularity can be advanced in the specific supply chain of olive oil, and which are the strategic opportunities, as well as the barriers to overcome, in order to foster the transition.
Collapse
|
13
|
Wang T, Yang CC, Qin K, Chen CW, Dong CD. Life time enhanced Fenton-like catalyst by dispersing iron oxides in activated carbon: Preparation and reactivation through carbothermal reaction. JOURNAL OF HAZARDOUS MATERIALS 2021; 406:124791. [PMID: 33316677 DOI: 10.1016/j.jhazmat.2020.124791] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 11/22/2020] [Accepted: 12/04/2020] [Indexed: 06/12/2023]
Abstract
Heterogeneous Fenton-like catalyst prepared by dispersing iron oxides in activated carbon (FeOx@AC) has frequently been assembled for advanced oxidation processes (AOPs). An intriguing but barely emphasized property of FeOx@AC is that it can be easily reactivated through a simple carbothermal reaction. Importantly, by this manner the life time of FeOx@AC could be effectively enhanced. We herein reported the synthesis of FeOx@ACs hydrothermally with assistance of several commercially available surfactants and their performance in degrading real dye wastewater were evaluated. In general, as-synthesized FeOx@ACs were noted to equip high Fe content. Deposited FeOx reduced the fraction of micropores but simultaneously introduced additional mesopores and macropores. Elevated magnetite content was observed in FeOx@AC equipped with high fraction of micropore and mesopore and macropore but fast dye degradation occurred at FeOx@AC possessing low fraction of micropore along with low mesopores and macropores. Reactivation via carbothermal reaction redistributed the deposited FeOx by increasing micropores while decreasing mesopores and macropores. Importantly, well dispersed FeOx synthesized with the assistance of surfactants exhibited high resistance to the corrosion in the degradation process. For the perspective of circular economy, deep understanding the material chemistry of FeOx@AC would be of particularly interest for further enhancing its life time.
Collapse
Affiliation(s)
- TsingHai Wang
- Department of Chemical Engineering and Materials Science, Yuan Ze University, Zhongli 320, Taiwan.
| | - Ching-Chieh Yang
- Department of Chemical Engineering and Materials Science, Yuan Ze University, Zhongli 320, Taiwan
| | - Kun Qin
- College of Chemistry and Pharmaceutical Engineering, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, PR China.
| | - Chiu-Wen Chen
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung, Taiwan
| | - Cheng-Di Dong
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung, Taiwan
| |
Collapse
|
14
|
Performance of Iron-Functionalized Activated Carbon Catalysts (Fe/AC-f) on CWPO Wastewater Treatment. Catalysts 2021. [DOI: 10.3390/catal11030337] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Two commercial activated carbon were functionalized with nitric acid, sulfuric acid, and ethylenediamine to induce the modification of their surface functional groups and facilitate the stability of corresponding AC-supported iron catalysts (Fe/AC-f). Synthetized Fe/AC-f catalysts were characterized to determine bulk and surface composition (elemental analysis, emission spectroscopy, XPS), textural (N2 isotherms), and structural characteristics (XRD). All the Fe/AC-f catalysts were evaluated in the degradation of phenol in ultrapure water matrix by catalytic wet peroxide oxidation (CWPO). Complete pollutant removal at short reaction times (30–60 min) and high TOC reduction (XTOC = 80 % at ≤ 120 min) were always achieved at the conditions tested (500 mg·L−1 catalyst loading, 100 mg·L−1 phenol concentration, stoichiometric H2O2 dose, pH 3, 50 °C and 200 rpm), improving the results found with bare activated carbon supports. The lability of the interactions of iron with functionalized carbon support jeopardizes the stability of some catalysts. This fact could be associated to modifications of the induced surface chemistry after functionalization as a consequence of the iron immobilization procedure. The reusability was demonstrated by four consecutive CWPO cycles where the activity decreased from 1st to 3rd, to become recovered in the 4th run. Fe/AC-f catalysts were applied to treat two real water matrices: the effluent of a wastewater treatment plant with a membrane biological reactor (WWTP-MBR) and a landfill leachate, opening the opportunity to extend the use of these Fe/AC-f catalysts for complex wastewater matrices remediation. The degradation of phenol spiked WWTP-MBR effluent by CWPO using Fe/AC-f catalysts revealed pH of the reaction medium as a critical parameter to obtain complete elimination of the pollutant, only reached at pH 3. On the contrary, significant TOC removal, naturally found in complex landfill leachate, was obtained at natural pH 9 and half stoichiometric H2O2 dose. This highlights the importance of the water matrix in the optimization of the CWPO operating conditions.
Collapse
|
15
|
Glucose–Carbon Hybrids as Pt Catalyst Supports for the Continuous Furfural Hydroconversion in Gas Phase. Catalysts 2021. [DOI: 10.3390/catal11010049] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Glucose–carbon hybrids were synthetized with different carbon materials, namely carbon nanotubes, reduced graphene oxide, carbon black and activated carbon by a hydrothermal treatment. These carbon hybrids were used as Pt-supports (1 wt.%) for the furfural (FUR) hydroconversion in the gas phase at mild operating conditions (i.e., P = 1 atm and T = 200 °C). The physicochemical properties (porosity, surface chemistry, Pt-dispersion, etc.) were analyzed by different techniques. Glucose–carbon hybrids presented apparent surface areas between 470–500 m2 g−1, a neutral character and a good distribution of small Pt-nanoparticles, some large ones with octahedral geometry being also formed. Catalytic results showed two main reaction pathways: (i) FUR hydrogenation to furfuryl alcohol (FOL), and (ii) decarbonylation to furane (FU). The products distribution depended on the reaction temperature, FOL or FU being mainly produced at low (120–140 °C) or high temperatures (170–200 °C), respectively. At intermediate temperatures, tetrahydrofurfuryl alcohol was formed by secondary FOL hydrogenation. FUR hydroconversion is a structure-sensitive reaction, rounded-shape Pt-nanoparticles producing FU, while large octahedral Pt-particles favor the formation of FOL. Pt-catalysts supported on glucose–carbon hybrids presented a better catalytic performance at low temperature than the catalyst prepared on reference material, no catalyst deactivation being identified after several hours on stream.
Collapse
|