1
|
Hupele M, Raj R, Rai S, Sen T, Kanta Haldar K. Insight into the Coupling of HgS and CuO with Metal-Organic Frameworks Support in Electrocatalytic Oxygen Evolution Reaction. Chemphyschem 2025; 26:e202400956. [PMID: 39907000 DOI: 10.1002/cphc.202400956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 12/16/2024] [Accepted: 01/30/2025] [Indexed: 02/06/2025]
Abstract
This study investigates the coupling of mercury sulfide (HgS) and copper oxide (CuO) nanoparticles with metal-organic frameworks (MOFs) as a support material for enhancing the electrocatalytic oxygen evolution reaction (OER). The integration of HgS and CuO into the MOF framework aims to leverage the unique electronic and structural properties of both the nanoparticles and the MOFs to improve catalytic performance. Metal-organic frameworks (MOFs), particularly ZIF-67, are investigated for their potential to catalyze water-splitting reactions due to their high porosity and large specific surface areas. The strategic incorporation of HgS and CuO into ZIF-67 significantly enhances its electrocatalytic properties, resulting in remarkable performance metrics: a low overpotential of 246 mV at 10 mA/cm2, a Tafel slope of 123 mV/dec, an expanded electrochemical active surface area (ECSA) of 23.56 cm2, and a reduced charge transfer resistance of 34.86 Ω. This integration enhances porosity and increases active surface area, which is crucial for improved catalytic performance. This investigation introduces an innovative methodology for fabricating highly efficient electrocatalysts, positioning HgS/CuO/ZIF-67 as a promising candidate for oxygen evolution reactions in alkaline media. The findings highlight the potential of this novel nanocomposite in future clean energy applications, particularly in the realm of water-splitting technologies.
Collapse
Affiliation(s)
- Mitali Hupele
- Department of Chemistry, Central University of Punjab, Bathinda, 151401, India
| | - Ritu Raj
- Department of Metallurgical and Materials Engineering, Central University of Jharkhand, Ranchi, 835205, India
| | - Shikha Rai
- Institute of Nano Science and Technology, Mohali, Punjab, 140306
| | - Tapasi Sen
- Institute of Nano Science and Technology, Mohali, Punjab, 140306
| | | |
Collapse
|
2
|
Khumphon J, Ahmed R, Imboon T, Giri J, Chattham N, Mohammad F, Kityakarn S, Mangala Gowri V, Thongmee S. Boosting Photocatalytic Activity in Rhodamine B Degradation Using Cu-Doped ZnO Nanoflakes. ACS OMEGA 2025; 10:9337-9350. [PMID: 40092784 PMCID: PMC11904667 DOI: 10.1021/acsomega.4c10034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 02/16/2025] [Accepted: 02/20/2025] [Indexed: 03/19/2025]
Abstract
The present investigation examined how substituting some Cu2+ ions for Zn2+ ions could increase zinc oxide (ZnO) photocatalytic activity toward the reduction of Rhodamine B. Phase composition, the presence of functional groups, optical properties, emission spectra, and surface morphology of ZnO nanoflakes (NFs) were evaluated using X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), UV-visible spectroscopy (UV-vis), photoluminescence (PL) spectrophotometer, and scanning electron microscopy (SEM). To investigate the photocatalytic capabilities of Cu-doped ZnO NFs driven by visible light/sunlight, Rhodamine B dyes were photocatalytically degraded in water using UV-visible absorption spectroscopy. Using Williamson-Hall analysis of the XRD data, it was discovered that the internal strain of the Cu-doped ZnO NFs was altered. UV-vis absorption showed that the energy gap of the semiconducting ZnO NFs shrank when Cu was substituted. FT-IR studies revealed that the surface of the Cu-doped ZnO NFs contained greater amounts of reactive oxidizing species. PL studies revealed that the ZnO NFs' surface defects were being caused by the Cu substitution. According to SEM research, more surface fault NFs formed when the concentration of Cu increased. The photocatalytic activity was enhanced by the production of these NFs. The UV-vis absorption spectra showed that Cu-doped ZnO NFs were more effective than pure ZnO at degrading the rhodamine B dye (RhB). Finally, it was shown that replacing Zn2+ ions with Cu2+ ions improved the photodegradation of the rhodamine B dye. According to this study, Cu-doped ZnO NFs are an excellent choice for wastewater treatment.
Collapse
Affiliation(s)
- Jeerawan Khumphon
- Department
of Physics, Faculty of Science, Kasetsart
University, Bangkok 10900, Thailand
| | - Ramzan Ahmed
- Department
of Physics, Faculty of Science, Kasetsart
University, Bangkok 10900, Thailand
- Department
of Applied Biology, University of Science
and Technology Meghalaya, Ri-Bhoi, India, 793101
| | - Tanawat Imboon
- Department
of Physics, Faculty of Science, Kasetsart
University, Bangkok 10900, Thailand
| | - Jayant Giri
- Department
of Mechanical Engineering, Yeshwantrao Chavan
College of Engineering, Nagpur 441110, India
- Division
of Research and Development, Lovely Professional
University, Phagwara 144411, India
- Centre
for Research Impact & Outcome, Chitkara University Institute of
Engineering and Technology, Chitkara University, Rajpura 140401, Punjab, India
| | - Nattaporn Chattham
- Department
of Physics, Faculty of Science, Kasetsart
University, Bangkok 10900, Thailand
| | - Faruq Mohammad
- Department
of Chemistry, College of Science, King Saud
University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Sutasinee Kityakarn
- Department
of Chemistry,Faculty of Science, Kasetsart
University, Bangkok 10900, Thailand
- Advanced
Porous Materials for One Health Integrations (APM Unit), Kasetsart University, Bangkok 10900, Thailand
| | | | - Sirikanjana Thongmee
- Department
of Physics, Faculty of Science, Kasetsart
University, Bangkok 10900, Thailand
| |
Collapse
|
3
|
Wisz G, Sibiński M, Łabuz M, Potera P, Płoch D, Bester M, Yavorskyi R. Effect of Annealing in Air on the Structural and Optical Properties and Efficiency Improvement of TiO 2/Cu xO Solar Cells Obtained via Direct-Current Reactive Magnetron Sputtering. MATERIALS (BASEL, SWITZERLAND) 2025; 18:888. [PMID: 40004410 PMCID: PMC11857570 DOI: 10.3390/ma18040888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 02/12/2025] [Accepted: 02/14/2025] [Indexed: 02/27/2025]
Abstract
In this study, four various titanium dioxide/cuprum oxide (TiO2/CuxO) photovoltaic structures deposited on glass/indium tin oxide (ITO) substrates using the direct-current (DC) reactive magnetron sputtering technique were annealed in air. In our previous work, the deposition parameters for different buffer layer configurations were first optimized to enhance cell fabrication efficiency. In this paper, the effects of post-deposition annealing at 150 °C in air on the optical properties and I-V characteristics of the prepared structures were examined. As a result, significant changes in optical properties and a meaningful improvement in performance in comparison to unannealed cells were observed. Air annealing led to an increase in the reflection coefficient of the TiO2 layer for three out of four structures. A similar increase in the reflection of the CuxO layer occurred after heating for two out of four structures. Transmission of the TiO2/CuxO photovoltaic structures also increased after heating for three out of four samples. For two structures, changes in both transmission and reflection resulted in higher absorption. Moreover, annealing the as-deposited structures resulted in a maximum relative increase in open-circuit voltage (Voc) by 294% and an increase in short-circuit current (Isc) by 1200%. The presented article gives some in-depth analysis of these reported changes in character and origin.
Collapse
Affiliation(s)
- Grzegorz Wisz
- Institute of Materials Engineering, University of Rzeszow, Pigonia 1, 35-310 Rzeszow, Poland; (G.W.); (P.P.); (D.P.)
| | - Maciej Sibiński
- Department of Material and Environmental Technology, Tallinn University of Technology, Ehitajate tee 5, 19086 Tallinn, Estonia;
- Department of Semiconductor and Optoelectronic Devices, Łódź University of Technology, Al. Politechniki 10, 93-590 Łódź, Poland
| | - Mirosław Łabuz
- Institute of Physics, University of Rzeszow, Pigonia 1, 35-310 Rzeszow, Poland;
| | - Piotr Potera
- Institute of Materials Engineering, University of Rzeszow, Pigonia 1, 35-310 Rzeszow, Poland; (G.W.); (P.P.); (D.P.)
| | - Dariusz Płoch
- Institute of Materials Engineering, University of Rzeszow, Pigonia 1, 35-310 Rzeszow, Poland; (G.W.); (P.P.); (D.P.)
| | - Mariusz Bester
- Institute of Physics, University of Rzeszow, Pigonia 1, 35-310 Rzeszow, Poland;
| | - Rostyslav Yavorskyi
- Department of Physics and Chemistry of Solid State, Vasyl Stefanyk Precarpathian National University, T. Shevchenko Str. 57, 76-018 Ivano-Frankivsk, Ukraine;
| |
Collapse
|
4
|
MP N, Rao BM. Anodized CuO Nanoflakes for the Antibacterial and Antifungal Applications. Heliyon 2025; 11:e42304. [PMID: 39981373 PMCID: PMC11840185 DOI: 10.1016/j.heliyon.2025.e42304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 12/28/2024] [Accepted: 01/27/2025] [Indexed: 02/22/2025] Open
Abstract
The remarkable properties of CuO ("Copper Oxide") nanostructures have attracted much interest recently in investigating the potential for use in many sectors, including antibacterial applications. While much of the work has been on nanoparticles, the studies on film-based CuO are still very few. In this work, we emphasize the effective approach to inhibit the bacterial and fungal growth by synthesizing CuO film-based nanostructures mainly with the investigation of the effect of morphology on the antibacterial properties of CuO prepared via electrochemical anodization method. The tenorite phase and monoclinic structure were validated through XRD analysis with the average crystallite size in the range of 15.3 nm, whereas FESEM recorded nanowire and nanoflake morphologies which showed variable activities against bacteria. UV-Vis spectroscopy obtained a bandgap ranging between 1.42 and 1.44 eV. The agar diffusion method was used for assessing the antibacterial and antifungal properties. The generation of Cu2+ ions for ROS production was confirmed by the XPS spectra. The nanoflakes of CuO displayed excellent inhibitory activity towards the gram-positive bacteria Streptococcus pneumoniae, Staphylococcus aureus and gram-negative bacteria including E. coli, Shigella dysenteriae, and fungus Candida albicans.
Collapse
Affiliation(s)
- Niharika MP
- Bioengineering and Materials Research (BMR) Group, Department of Physics, School of Advanced Sciences, VIT-AP University, AP Secretariat, Inavolu, Amaravati, Guntur, Andhra Pradesh, 522237, India
| | - B. Manmadha Rao
- Bioengineering and Materials Research (BMR) Group, Department of Physics, School of Advanced Sciences, VIT-AP University, AP Secretariat, Inavolu, Amaravati, Guntur, Andhra Pradesh, 522237, India
| |
Collapse
|
5
|
Ghattavi S, Homaei A, Kamrani E. Innovative CuO-melanin hybrid nanoparticles and polytetrafluoroethylene for enhanced antifouling coatings. Colloids Surf B Biointerfaces 2025; 246:114387. [PMID: 39577146 DOI: 10.1016/j.colsurfb.2024.114387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 11/14/2024] [Accepted: 11/16/2024] [Indexed: 11/24/2024]
Abstract
Based on current research, a highly effective, completely biocompatible, and eco-friendly antifouling method was developed. Sepia pharaonis was used to synthesize melanin nanoparticles from its ink. To improve the anti-biofouling characteristics, CuO nanoparticles were synthesized from Padina sp., and a CuO-melanin hybrid nanoparticle complex was created under reflux. The XRD spectrum of the hybrid nanoparticles revealed several prominent peaks, indicating the crystalline structure of the nanoparticles. An EDS analysis identified copper, carbon, and oxygen in the hybrid nanoparticles. According to FE-SEM analysis, CuO-melanin hybrid nanoparticles displayed spherical morphology, with sizes ranging from 15 nm to 55 nm. DLS analysis showed that the hydrodynamic diameter of CuO-melanin hybrid nanoparticles was 187.5 nm. The biological test showed that CuO-melanin nanoparticles had the highst effect on marine bacteria (Phaeobacter sp. (6.25 μg/mL), Alteromonas sp. (12.5 μg/mL)), and algae (Isochrysis galbana Parke) (99 %) after 48 h. The CuO-melanin (3 wt%) exhibited the lowest pseudo-barnacle adhesion strength at 0.021 MPa and the lowest surface free energy, measuring 14.22 mN/m. The field immersion study in a marine environment showed that among the panels tested, the one containing 3 wt% CuO-melanin hybrid nanoparticles with polytetrafluoroethylene yielded the most favorable and efficient outcome, since it led to the lowest measured weight of biofouling at 26.44 g. The findings of this study show that CuO-melanin hybrid nanoparticles combined with polytetrafluoroethylene exhibit highly promising characteristics, make them appealing for antifouling applications.
Collapse
Affiliation(s)
- Saba Ghattavi
- Fisheries Department, Faculty of Marine Sciences, University of Hormozgan, Bandar Abbas, Iran
| | - Ahmad Homaei
- Department of Marine Biology, Faculty of Marine Science and Technology, University of Hormozgan, Bandar Abbas, Iran.
| | - Ehsan Kamrani
- Fisheries Department, Faculty of Marine Sciences, University of Hormozgan, Bandar Abbas, Iran.
| |
Collapse
|
6
|
Magagula LP, Masemola CM, Motaung TE, Moloto N, Linganiso-Dziike EC. Sustainable Conversion of Corncob Biomass Waste into High Performance Carbon Materials for Detection of VOCs at Room Temperature. Molecules 2024; 30:110. [PMID: 39795167 PMCID: PMC11721489 DOI: 10.3390/molecules30010110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 12/22/2024] [Accepted: 12/23/2024] [Indexed: 01/13/2025] Open
Abstract
The demand for reliable, cost-effective, room temperature gas sensors with high sensitivity, selectivity, and short response times is rising, particularly for environmental monitoring, biomedicine, and agriculture. In this study, corncob waste-derived activated carbon (ACC) was combined with CuO nanoparticles and polyvinyl alcohol (PVA) to fabricate ACC/PVA/CuO composites with CuO loadings of 5, 10, and 15 wt.%. The CuO nanoparticles (average size: 21.79 ± 9.88 nm) were successfully incorporated into the ACC matrix, as confirmed by TEM, XRD, and N2 adsorption-desorption analyses. Increasing CuO content reduced the specific surface area due to pore blockage but enhanced the composites' ethanol sensing performance. The ACC/PVA/CuO (15 wt.%) sensor exhibited the highest response and fastest recovery times (125 s and 130 s, respectively, at 100 ppm ethanol), outperforming other composites and pristine ACC. This improvement was attributed to surface defects and increased active sites promoting vapor adsorption and diffusion. These results demonstrate the potential of ACC/PVA/CuO as an effective ethanol sensor at room temperature.
Collapse
Affiliation(s)
- Lindokuhle P. Magagula
- Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, Braamfontein 2050, South Africa
| | - Clinton M. Masemola
- Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, Braamfontein 2050, South Africa
- DSI/NRF Centre of Excellence in Strong Materials, University of the Witwatersrand, Braamfontein 2050, South Africa
| | - Tshwafo E. Motaung
- Department of Chemistry, Sefako Makgatho Health Science University, Medunsa 0204, South Africa
| | - Nosipho Moloto
- Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, Braamfontein 2050, South Africa
| | - Ella C. Linganiso-Dziike
- Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, Braamfontein 2050, South Africa
- DSI/NRF Centre of Excellence in Strong Materials, University of the Witwatersrand, Braamfontein 2050, South Africa
- Department of Chemistry, Sefako Makgatho Health Science University, Medunsa 0204, South Africa
| |
Collapse
|
7
|
Assefa H, Singh S, Shehata N, Khan NA, Olu FE, Ramamurthy PC. Green synthesis and characterization of CuO/PANI nanocomposite for efficient Pb (II) adsorption from contaminated water. Sci Rep 2024; 14:30972. [PMID: 39730679 DOI: 10.1038/s41598-024-81970-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 12/02/2024] [Indexed: 12/29/2024] Open
Abstract
This study presents the synthesis of a green polymer-based nanocomposite by incorporating green CuO nanoparticles into polyaniline (PANI) for the adsorption of Pb (II) ions from contaminated water. The nanocomposite was extensively characterized using FTIR, XRD, BET, SEM-EDX, XPS, and Raman spectroscopy, both before and after Pb(II) adsorption. Optimization studies were performed to assess the effects of key parameters, including pH, adsorbent dosage, and initial ion concentration on the adsorption process. Adsorption isotherms and kinetic models were applied to analyze the experimental data, revealing that the Freundlich isotherm provided the best fit, with a high correlation coefficient (R²) and a (1/n) value less than 1, indicating favorable adsorption conditions. Furthermore, the Avrami and pseudo-first-order kinetic models demonstrated superior fitting compared to other models. The green nanocomposite exhibited outstanding adsorption capacity, highlighting its potential as a sustainable and efficient adsorbent for Pb(II) removal from wastewater.
Collapse
Affiliation(s)
- Hailemariam Assefa
- Faculty of Material Science and Engineering, Jimma Institute of Technology, Jimma University, Jimma, Ethiopia
| | - Simranjeet Singh
- Interdisciplinary Centre for Water Research (ICWaR), Indian Institute of Science, Bangalore, 560012, India
| | - Nabila Shehata
- Environmental Science and Industrial Development Department, Faculty of Postgraduate Studies for Advanced Sciences, Beni-Suef University, Beni Suef, Egypt
| | - Nadeem A Khan
- Civil Engineering Department, College of Engineering, King Khalid University, Abha, 61421, Saudi Arabia
| | - Femi Emmanuel Olu
- Faculty of Material Science and Engineering, Jimma Institute of Technology, Jimma University, Jimma, Ethiopia.
| | - Praveen C Ramamurthy
- Interdisciplinary Centre for Water Research (ICWaR), Indian Institute of Science, Bangalore, 560012, India.
| |
Collapse
|
8
|
Deb M, Roy S, Hassan N, Chowdhury D, Sanfui MDH, Nandy P, Maiti DK, Chang M, Rahaman M, Hasnat MA, Bhunia K, Chattopadhyay PK, Singha NR. Synthesis and optimization of chitosan-incorporated semisynthetic polymer/α-Fe 2O 3 nanoparticle hybrid polymer to explore optimal efficacy of fluorescence resonance energy transfer/charge transfer for Co(II) and Ni(II) sensing. Int J Biol Macromol 2024; 280:135831. [PMID: 39349075 DOI: 10.1016/j.ijbiomac.2024.135831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 09/13/2024] [Accepted: 09/18/2024] [Indexed: 10/02/2024]
Abstract
Initially, four synthetic fluorescent polymers (SFPs) are synthesized from α-methacrylic acid and methanolacrylamide monomers carrying -C(=O)OH and -C(=O)NH subfluorophores, respectively. Among SFPs, ∼1:1 incorporation of subfluorophores in the optimum SFP3 is explored by spectroscopic analyses. Subsequently, chitosan is incorporated in SFP3 to produce five semi-synthetic fluorescent polymers (SSFPs). The maximum incorporation of chitosan in SSFP4 is supported by different spectroscopies. In SSFP4, strong electrostatic interactions among polar functionalities of chitosan and synthetic polymer favor resonance-associated charge transfer (RCT) from SSFP4-(amide) to SSFP4-(canonical). Finally, three hybrid fluorescent polymers (HFPs) are fabricated encapsulating iron-oxide nanoparticle within SSFP4. The maximum proportion of hematite (α-Fe2O3) phase in HFPs is explored by spectroscopic, magnetometric, microscopic, and light scattering studies. HFP2 shows local/RCT/fluorescence resonance energy transfer (FRET) emission at 393/460/570 nm. In HFP2, FRET, RCT, and ratiometric pH-sensing within 3.0-6.5 phenomena are explored by solvent polarity effects, time-correlated single photon counting, quantum yield measurements, alongside I431/I460 vs pH plots. RCT and FRET emissions of HFP2 are utilized for selective sensing of Co(II)/Ni(II) with limits of detection of 4.990 ppb (460 nm)/4.353 ppb (570 nm) and 45.041 ppb (428 nm)/29.617 ppb (527 nm) in organic and aqueous solutions, respectively.
Collapse
Affiliation(s)
- Mousumi Deb
- Advanced Polymer Laboratory, Department of Polymer Science and Technology, Government College of Engineering and Leather Technology (Post Graduate), Maulana Abul Kalam Azad University of Technology, Salt Lake City, Kolkata-700106, West Bengal, India
| | - Shrestha Roy
- Advanced Polymer Laboratory, Department of Polymer Science and Technology, Government College of Engineering and Leather Technology (Post Graduate), Maulana Abul Kalam Azad University of Technology, Salt Lake City, Kolkata-700106, West Bengal, India; Department of Chemistry, University of Calcutta, 92, A.P.C. Road, Kolkata-700009, West Bengal, India
| | - Nadira Hassan
- Advanced Polymer Laboratory, Department of Polymer Science and Technology, Government College of Engineering and Leather Technology (Post Graduate), Maulana Abul Kalam Azad University of Technology, Salt Lake City, Kolkata-700106, West Bengal, India
| | - Deepak Chowdhury
- Advanced Polymer Laboratory, Department of Polymer Science and Technology, Government College of Engineering and Leather Technology (Post Graduate), Maulana Abul Kalam Azad University of Technology, Salt Lake City, Kolkata-700106, West Bengal, India
| | - M D Hussain Sanfui
- Advanced Polymer Laboratory, Department of Polymer Science and Technology, Government College of Engineering and Leather Technology (Post Graduate), Maulana Abul Kalam Azad University of Technology, Salt Lake City, Kolkata-700106, West Bengal, India
| | - Preetam Nandy
- Advanced Polymer Laboratory, Department of Polymer Science and Technology, Government College of Engineering and Leather Technology (Post Graduate), Maulana Abul Kalam Azad University of Technology, Salt Lake City, Kolkata-700106, West Bengal, India; Department of Chemistry, University of Calcutta, 92, A.P.C. Road, Kolkata-700009, West Bengal, India
| | - Dilip K Maiti
- Department of Chemistry, University of Calcutta, 92, A.P.C. Road, Kolkata-700009, West Bengal, India
| | - Mincheol Chang
- Department of Polymer Engineering, Graduate School, Chonnam National University, Gwangju 61186, South Korea
| | - Mostafizur Rahaman
- Department of Chemistry, College of Science, King Saud University, PO Box 2455, Riyadh 11451, Saudi Arabia
| | - Mohammad A Hasnat
- Electrochemistry & Catalysis Research Laboratory (ECRL), Department of Chemistry, School of Physical Sciences, Shahjalal University of Science and Technology, Sylhet 3114, Bangladesh
| | - Kamalendu Bhunia
- Department of Chemical Engineering, Government College of Engineering and Leather Technology (Post Graduate), Maulana Abul Kalam Azad University of Technology, Salt Lake City, Kolkata 700106, West Bengal, India
| | - Pijush Kanti Chattopadhyay
- Department of Leather Technology, Government College of Engineering and Leather Technology (Post Graduate), Maulana Abul Kalam Azad University of Technology, Salt Lake City, Kolkata 700106, West Bengal, India
| | - Nayan Ranjan Singha
- Advanced Polymer Laboratory, Department of Polymer Science and Technology, Government College of Engineering and Leather Technology (Post Graduate), Maulana Abul Kalam Azad University of Technology, Salt Lake City, Kolkata-700106, West Bengal, India.
| |
Collapse
|
9
|
Murgueitio Herrera E, Jacome G, Stael C, Arroyo G, Izquierdo A, Debut A, Delgado P, Montalvo G. Green Synthesis of Metal Nanoparticles with Borojó ( Borojoa patinoi) Extracts and Their Application in As Removal in Water Matrix. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1526. [PMID: 39330682 PMCID: PMC11434951 DOI: 10.3390/nano14181526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/23/2024] [Accepted: 08/06/2024] [Indexed: 09/28/2024]
Abstract
The predominant aim of the current research was to generate a proposal for the removal of arsenic, a highly toxic pollutant, encountered within the Papallacta Lagoon in Ecuador. The average concentrations of As yielded ranges between 18 to 652 μg/L, through the use of metallic nanoparticles. Sampling was performed in the lagoon with their respective geographic locations and "in situ" parameters. Nanoparticles of Mn3O4 NPs, Fe3O4 NPs, and CuO NPs were synthesized at a 0.5 M concentration, using the precipitation method, and borojó (Borojoa patinoi) extract was added as an anti-caking agent as well as antioxidant. The nanoparticles were characterized by visible spectrophotometry, scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), and Raman spectroscopy. After arsenic removal treatment using nanoparticles, a randomized experimental design of different concentrations (5 mg/L, 10 mg/L, 25 mg/L, 50 mg/L, 100 mg/L, and 150 mg/L) was applied at laboratory level. The average diameter of Fe3O4NPs ranged from 9 nm to 36 nm, Mn3O4 NPs were 15-20 nm, and CuO NPs ranged from 25 nm to 30 nm. Arsenic removal percentages using Fe3O4 NPs with a concentration of 150 mg/L was 87%; with Mn3O4 NPs, the removal was 70% and CuO NPs of about 63.5%. Finally, these nanoparticles could be used in a water treatment plant for the Papallacta Lagoon.
Collapse
Affiliation(s)
- Erika Murgueitio Herrera
- Centro de Nanociencia y Nanotecnología, Universidad de las Fuerzas Armadas ESPE, Av. Gral. Rumiñahui s/n, Sangolqui P.O. Box 171-5-231B, Ecuador; (C.S.); (G.A.); (P.D.); (A.I.); (A.D.)
- Departamento de Ciencias de la Tierra y de la Construcción, Universidad de las Fuerzas Armadas ESPE, Av. Gral. Rumiñahui s/n, Sangolqui P.O. Box 171-5-231B, Ecuador;
| | - Gissela Jacome
- Departamento de Ciencias de la Tierra y de la Construcción, Universidad de las Fuerzas Armadas ESPE, Av. Gral. Rumiñahui s/n, Sangolqui P.O. Box 171-5-231B, Ecuador;
| | - Carina Stael
- Centro de Nanociencia y Nanotecnología, Universidad de las Fuerzas Armadas ESPE, Av. Gral. Rumiñahui s/n, Sangolqui P.O. Box 171-5-231B, Ecuador; (C.S.); (G.A.); (P.D.); (A.I.); (A.D.)
| | - Geovanna Arroyo
- Centro de Nanociencia y Nanotecnología, Universidad de las Fuerzas Armadas ESPE, Av. Gral. Rumiñahui s/n, Sangolqui P.O. Box 171-5-231B, Ecuador; (C.S.); (G.A.); (P.D.); (A.I.); (A.D.)
| | - Andrés Izquierdo
- Centro de Nanociencia y Nanotecnología, Universidad de las Fuerzas Armadas ESPE, Av. Gral. Rumiñahui s/n, Sangolqui P.O. Box 171-5-231B, Ecuador; (C.S.); (G.A.); (P.D.); (A.I.); (A.D.)
| | - Alexis Debut
- Centro de Nanociencia y Nanotecnología, Universidad de las Fuerzas Armadas ESPE, Av. Gral. Rumiñahui s/n, Sangolqui P.O. Box 171-5-231B, Ecuador; (C.S.); (G.A.); (P.D.); (A.I.); (A.D.)
| | - Patricio Delgado
- Centro de Nanociencia y Nanotecnología, Universidad de las Fuerzas Armadas ESPE, Av. Gral. Rumiñahui s/n, Sangolqui P.O. Box 171-5-231B, Ecuador; (C.S.); (G.A.); (P.D.); (A.I.); (A.D.)
- Departamento de Ciencias Exactas, Universidad de las Fuerzas Armadas ESPE, Av. Gral. Rumiñahui s/n, Sangolqui P.O. Box 171-5-231B, Ecuador
| | - Gemma Montalvo
- Departamento de Química Analítica, Química Física e Ingeniería Química, Universidad de Alcalá, Ctra. Madrid-Barcelona km 33.6, 28871 Alcalá de Henares, Madrid, Spain;
- Instituto Universitario de Investigación en Ciencias Policiales, Universidad de Alcalá, Libreros 27, 28801 Alcalá de Henares, Madrid, Spain
| |
Collapse
|
10
|
Bandaranayake S, Patnaik A, Hruska E, Zhu Q, Das S, Baker LR. Effect of Surface Electron Trapping and Small Polaron Formation on the Photocatalytic Efficiency of Copper(I) and Copper(II) Oxides. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 39052931 DOI: 10.1021/acsami.4c03941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
Cu2O, CuO, and mixed phase Cu2O/CuO represent promising candidates for photoelectrochemical H2 evolution due to their strong visible light absorption, earth-abundance, and chemical stability. However, the photoelectrochemical efficiency in these materials remains far below the theoretical limit, largely due to poorly understood surface electron dynamics. These dynamics depend on defect states, such as Cu atom vacancies and phase boundaries, which control electron trapping, charge carrier separation, and recombination. In this work, we study the photoinduced electron and hole dynamics at the surface of various Cu oxides using ultrafast extreme ultraviolet reflection-absorption (XUV-RA) spectroscopy. In Cu2O we find that photoexcitation occurs as electron promotion from primarily Cu 3d valence band to Cu 4s conduction band states compared to O 2p valence band to Cu 4s conduction band states in CuO. In catalysts with a significant concentration of Cu vacancies, we observe fast electron trapping to the Cu 3d defect band occurring in less than 100 fs. In contrast, photoexcited electrons in phase pure CuO do not trap to midgap states; rather these electrons form small polarons within approximately 500 fs. Photoelectrochemical measurements of these catalysts show that Cu vacancy-mediated electron trapping correlates with a significant loss of photocurrent. Together, these results provide a detailed picture of the defect states and associated ultrafast carrier dynamics that govern the photocatalytic efficiency in widely studied Cu2O and CuO photocatalysts.
Collapse
Affiliation(s)
- Savini Bandaranayake
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Ananya Patnaik
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Emily Hruska
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Quansong Zhu
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Subhajit Das
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - L Robert Baker
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| |
Collapse
|
11
|
Jabeen S, Siddiqui VU, Bala S, Mishra N, Mishra A, Lawrence R, Bansal P, Khan AR, Khan T. Biogenic Synthesis of Copper Oxide Nanoparticles from Aloe vera: Antibacterial Activity, Molecular Docking, and Photocatalytic Dye Degradation. ACS OMEGA 2024; 9:30190-30204. [PMID: 39035949 PMCID: PMC11256313 DOI: 10.1021/acsomega.3c10179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/12/2024] [Accepted: 05/09/2024] [Indexed: 07/23/2024]
Abstract
Green synthesis methods offer a cost-effective and environmentally friendly approach to producing nanoparticles (NPs), particularly metal-based oxides. This study explores the green synthesis of copper oxide nanoparticles using Aloe vera (Aloe barbadensis Miller) leaf extract. The characterization revealed a unique sago-shaped morphology revealed by field-emission scanning electron microscopy and X-ray diffraction analysis. Distinctive metal-oxygen bonds at 521 and 601 cm-1 were confirmed by Fourier-transform infrared (FT-IR) spectroscopy. Furthermore, UV-visible spectroscopy revealed absorbance at 248 nm, suggesting electron transitions across energy bands and varying surface conduction electrons. The band gap value indicated the presence of quantum confinement effects, which were probably caused by the distinctive morphology and surface structure of the biogenic NPs. Additionally, molecular docking studies were carried out against key proteins of Salmonella typhi and Listeria monocytogenes, namely, listeriolysin O (PDB ID: 4CDB), internalin (InlA) (PDB ID: 1O6T), Salmonella effector protein (SopB) (PDB ID: 4DID), and YfdX (PDB ID: 6A07) using AutoDock 4.2. The results revealed binding energies against S. typhi and L. monocytogenes proteins, indicating potential interactions establishing the foundation for further in-depth understanding of the molecular basis underlying the observed antibacterial effects in vitro against S. typhi, Klebsiella pneumoniae, Pseudomonas aeruginosa, and L. monocytogenes. Antibacterial activity evaluation yielded impressive results, with CuO NPs displaying significant activity against S. typhi and L. monocytogenes, exhibiting zones of inhibition values of 13 ± 0.02 and 15 ± 0.04 mm, respectively. Moreover, the CuO NPs demonstrated remarkable photocatalytic efficacy, resulting in the degradation of 77% of the methylene blue dye when exposed to UV irradiation. This study highlighted the potential of green-synthesized CuO NPs derived from A. vera with their unique morphology, interesting spectroscopic properties, and promising antibacterial and photocatalytic activities.
Collapse
Affiliation(s)
- Sabeeha Jabeen
- Department
of Chemistry, Integral University, Lucknow 226026, Uttar Pradesh, India
- Department
of Chemistry, University of Lucknow, Lucknow 226007, Uttar Pradesh, India
| | - Vasi Uddin Siddiqui
- Advanced
Engineering Materials and Composites Research Centre (AEMC), Department
of Mechanical and Manufacturing Engineering, Universiti Putra Malaysia, UPM, Serdang, Selangor Darul Ehsan 43400, Malaysia
| | - Shashi Bala
- Department
of Chemistry, University of Lucknow, Lucknow 226007, Uttar Pradesh, India
| | - Nidhi Mishra
- Department
of Applied Sciences, Indian Institute of
Information Technology, Allahabad 2110155, Uttar Pradesh, India
| | - Anamika Mishra
- Department
of Applied Sciences, Indian Institute of
Information Technology, Allahabad 2110155, Uttar Pradesh, India
| | - Rubina Lawrence
- Department
of Industrial Microbiology, Sam Higginbottom
University of Agriculture Technology and Sciences, Allahabad 211007, Uttar Pradesh, India
| | - Pratibha Bansal
- Department
of Chemistry, University of Lucknow, Lucknow 226007, Uttar Pradesh, India
| | - Abdul Rahman Khan
- Department
of Chemistry, Integral University, Lucknow 226026, Uttar Pradesh, India
| | - Tahmeena Khan
- Department
of Chemistry, Integral University, Lucknow 226026, Uttar Pradesh, India
| |
Collapse
|
12
|
Sihag S, Dahiya R, Rani S, Berwal P, Jatrana A, Sisodiya AK, Sharma A, Kumar V. Low ppm NO 2 detection through advanced ultrasensitive copper oxide gas sensor. DISCOVER NANO 2024; 19:107. [PMID: 38913270 PMCID: PMC11557803 DOI: 10.1186/s11671-024-04039-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Accepted: 05/26/2024] [Indexed: 06/25/2024]
Abstract
The imperative development of a cutting-edge environmental gas sensor is essential to proficiently monitor and detect hazardous gases, ensuring comprehensive safety and awareness. Nanostructures developed from metal oxides are emerging as promising candidates for achieving superior performance in gas sensors. NO2 is one of the toxic gases that affects people as well as the environment so its detection is crucial. The present study investigates the gas sensing capability of copper oxide-based sensor for 5 ppm of NO2 gas at 100 °C. The sensing material was synthesized using a facile precipitation method and characterized by XRD, FE-SEM, UV-visible spectroscopy, photoluminescence spectroscopy, XPS and BET techniques. The developed material shows a response equal to 67.1% at optimal temperature towards 5 ppm NO2 gas. The sensor demonstrated an impressive detection limit of 300 ppb, along with a commendable percentage response of 5.2%. Under optimized conditions, the synthesized material demonstrated its high selectivity, as evidenced by the highest percentage response recorded for NO2 gas among NO2, NH3, CO, CO2 and H2S.
Collapse
Affiliation(s)
- Smriti Sihag
- Department of Physics, COBS&H, CCS Haryana Agricultural University, Hisar, Haryana, 125004, India
| | - Rita Dahiya
- Department of Physics, COBS&H, CCS Haryana Agricultural University, Hisar, Haryana, 125004, India
| | - Suman Rani
- Department of Physics, COBS&H, CCS Haryana Agricultural University, Hisar, Haryana, 125004, India
| | - Priyanka Berwal
- Department of Physics, COBS&H, CCS Haryana Agricultural University, Hisar, Haryana, 125004, India
| | - Anushree Jatrana
- Department of Chemistry, COBS&H, CCS Haryana Agricultural University, Hisar, Haryana, 125004, India
| | | | - Ashutosh Sharma
- Department of Material Science and Engineering, Ajou University, Yeongtong-gu, Suwon, 16499, Korea
- Amity Institute of Applied Sciences, Amity University, Jharkhand, Ranchi, 834002, India
| | - Vinay Kumar
- Department of Physics, COBS&H, CCS Haryana Agricultural University, Hisar, Haryana, 125004, India.
| |
Collapse
|
13
|
Ogwuegbu MC, Ayangbenro AS, Mthiyane DMN, Babalola OO, Onwudiwe DC. Green synthesis of CuO nanoparticles using Ligustrum lucidum extract, and the antioxidant and antifungal evaluation. MATERIALS RESEARCH EXPRESS 2024; 11:055010. [DOI: 10.1088/2053-1591/ad4e9d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
Abstract
Biosynthesis of metal oxide nanoparticles using plant extract is an inexpensive, simple, rapid, and environmentally friendly approach to obtaining nanoparticles for biological applications. Herein, copper oxide nanoparticles (CuO-NPs) were successfully synthesized using an aqueous extract from Ligustrum lucidum leaves. The structural, optical, and morphological characteristics of the nanoparticles were assessed using x-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, UV-visible spectrophotometer, transmission and scanning electron microscopy (TEM and SEM), and energy-dispersive x-ray (EDX). Nanocrystalline CuO with an average crystalline size of 22.0 nm and a band gap energy of 1.4 eV were confirmed from the XRD and UV-vis spectrophotometer, respectively. Morphological studies showed spherical nanoparticles, whose particle size estimation (30 ± 5 nm) agrees with the crystalline size deduced from the XRD pattern. A free radical scavenging activity of the CuO nanoparticles, evaluated using the 1, 1-diphenhyl-2-picrylhydrazyl (DPPH) assay, showed that it exhibited high antioxidant activity (IC50: 63.35 μg ml−1) that is concentration dependent. Antifungal evaluation using four different fungal strains (Aspergillus flavus, Aspergillus niger, Fusarium oxysporum, and Trichoderma harzianum) indicated a direct relationship between the potency of the particles and their concentration, with 1 ppm solution exhibiting the highest potency. The green synthesized CuO-NPs using Ligustrum lucidum may be potentially used as an antioxidant and antifungal agent for therapeutic applications.
Collapse
|
14
|
Roy S, Dahiya P, Mandal TK, Roy S. The role of reducibility vis-à-vis oxygen vacancies of doped Co 3O 4/CeO 2 in the oxygen evolution reaction. Dalton Trans 2024; 53:5484-5494. [PMID: 38415329 DOI: 10.1039/d4dt00315b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Abstract
Electrochemical water splitting, which is a highly promising and environmentally friendly technology for H2 fuel production, faces significant hurdles due to the sluggish kinetics of the oxygen evolution reaction. Co -based oxides have garnered significant attention as alternative catalysts for the oxygen evolution reaction owing to the Co2+/Co3+ redox couple. Enhancing the challenging Co2+ → Co3+ oxidation process can further improve the catalytic oxygen evolution reaction. The aim of our work was to design a Co3O4-based catalyst to enhance reactivity by increasing the number of Co3+ active sites, serving as an excellent platform for facilitating the oxygen evolution reaction. To drive the effectiveness of the catalyst, in this study, we synthesized Co3O4 anchored on CeO2 (Co3O4/CeO2). The kinetics and efficacy of the oxygen evolution reaction catalysed by Co3O4/CeO2 was significantly improved by aliovalent doping of Sr into Ce sites and Cu into Co sites. The reducible nature of Ce stimulates the formation of Co3+ ions, resulting in an increased production of intermediate -OOH species, thus expediting the reaction. The transformation of Co2+ to Co3+ consequently leads to an increase in anion vacancies, which, in turn, promotes the adsorption of more intermediate species at the active site. The Sr- and Cu-doped Co3O4/CeO2 catalyst exhibited a high current density of 200 mA cm-2 at 580 mV and a low overpotential of 297 mV at 10 mA cm-2. The study functions as a key indicator to establish a connection between oxygen vacancies and metal oxidation states in order to investigate the mechanistic aspects of the oxygen evolution reaction on mixed metal oxides. Moreover, this study is expected to pave the way for the development of innovative oxygen evolution reaction catalysts with reducible supports, thus offering a new pathway for their design.
Collapse
Affiliation(s)
- Saraswati Roy
- Department of Chemistry, Birla Institute of Technology and Science Pilani, Hyderabad Campus, Hyderabad-500078, India.
| | - Preeti Dahiya
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee - 247 667, India
| | - Tapas Kumar Mandal
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee - 247 667, India
- Centre for Nanotechnology, Indian Institute of Technology Roorkee, Roorkee - 247 667, India
| | - Sounak Roy
- Department of Chemistry, Birla Institute of Technology and Science Pilani, Hyderabad Campus, Hyderabad-500078, India.
- Materials Center for Sustainable Energy & Environment, Birla Institute of Technology and Science Pilani, Hyderabad Campus, Hyderabad - 500078, India
| |
Collapse
|
15
|
Ganeshbabu M, Priya JS, Manoj GM, Puneeth NPN, Shobana C, Shankar H, Selvan RK. Photocatalytic degradation of fluoroquinolone antibiotics using chitosan biopolymer functionalized copper oxide nanoparticles prepared by facile sonochemical method. Int J Biol Macromol 2023; 253:127027. [PMID: 37751823 DOI: 10.1016/j.ijbiomac.2023.127027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 08/31/2023] [Accepted: 09/20/2023] [Indexed: 09/28/2023]
Abstract
Photocatalytic degradation is an excellent method for removing pharmaceutical residues due to their simplicity, ecological benignity, high efficiency, and exceptional stability. Herein, we demonstrate the sonochemically synthesised chitosan biopolymer functionalized copper oxide nanoparticles as an efficient photocatalyst for the degradation of fluoroquinolone-based antibiotics. The X-ray diffraction Rietveld refinement revealed the formation of single-phase copper oxide (CuO) with a monoclinic structure. The presence of biopolymer functionalization was corroborated by Fourier Transform Infrared spectroscopy by observing the -NH2 and -OH functional groups. The high-resolution transmission electron microscopic images inferred that Chitosan functionalized copper oxide (C-CuO) particles are nano-sized with a smooth texture and aggregation-free particles. The strong absorbance and the broad photoluminescence emission in the ultraviolet-visible region confirm the suitability of CuO and C-CuO nanoparticles for photocatalytic applications. The catalytic activity was studied against fluoroquinolone-based antibiotics such as ciprofloxacin and norfloxacin under direct sunlight illumination. Interestingly, the C-CuO catalyst demonstrated 71.07 % (@140 min.) and 71.9 % (@60 min.) of degradation for ciprofloxacin and norfloxacin, respectively. The obtained photocatalytic activity of the prepared CuO and C-CuO catalysts was superior to the CuO particles prepared by the coprecipitation method (CC-CuO).
Collapse
Affiliation(s)
- M Ganeshbabu
- Energy Storage and Conversion Devices Laboratory, Department of Physics, Bharathiar University, Coimbatore 641046, Tamil Nadu, India
| | - J Shiva Priya
- Energy Storage and Conversion Devices Laboratory, Department of Physics, Bharathiar University, Coimbatore 641046, Tamil Nadu, India
| | - G Murali Manoj
- Department of Physics, KPR Institute of Engineering and Technology, Coimbatore 641407, India
| | - N Prasanna Naga Puneeth
- Energy Storage and Conversion Devices Laboratory, Department of Physics, Bharathiar University, Coimbatore 641046, Tamil Nadu, India
| | - C Shobana
- Department of Zoology, Kongunadu Arts and Science College, G.N. Mills, Coimbatore 641 029, India
| | - H Shankar
- Department of Physics, KPR Institute of Engineering and Technology, Coimbatore 641407, India.
| | - R Kalai Selvan
- Energy Storage and Conversion Devices Laboratory, Department of Physics, Bharathiar University, Coimbatore 641046, Tamil Nadu, India.
| |
Collapse
|
16
|
Mane PC, Kadam DD, Khadse AN, Chaudhari AR, Ughade SP, Agawane SB, Chaudhari RD. Green adeptness in synthesis of non-toxic copper and cobalt oxide nanocomposites with multifaceted bioactivities. Cancer Nanotechnol 2023; 14:79. [DOI: 10.1186/s12645-023-00226-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 09/14/2023] [Indexed: 01/04/2025] Open
Abstract
Abstract
Background
In the present era, we are facing different health problems mainly concerning with drug resistance in microorganisms as well as in cancer cells. In addition, we are also facing the problems of controlling oxidative stress and insect originated diseases like dengue, malaria, chikungunya, etc. originated from mosquitoes. In this investigation, we unfurled the potential of Achatina fulica mucus in green synthesis of mucus mediated copper oxide bio-nanocomposites (SM-CuONC) and cobalt oxide bio-nanocomposites (SM-Co3O4NC). Herein we carried out the physico-chemical characterization like UV–Vis spectra, X-ray diffraction (XRD), Field Emission Scanning Electron Microscopy (FESEM), Transmission electron microscopy (TEM), Energy Dispersive X-ray Analysis (EDAX) and X-ray photoelectron spectroscopy (XPS) of as synthesized bio-nanocomposites. Both the bio-nanocomposites were tested for their potential as antimicrobial activity using well diffusion assay, anticancer activity by MTT assay, antioxidant activity by phosphomolybdenum assay and mosquito larvicidal activity.
Results
The results of this study revealed that, SM-CuONC and SM-Co3O4NC were synthesized successfully using A. fulica mucus. The FESEM and TEM data reveal the formation of nanoparticles with quasi-spherical morphology and average particle size of ~ 18 nm for both nanocomposites. The EDAX peak confirms the presence of elemental copper and cobalt in the analyzed samples. The X-ray diffraction analysis confirmed the crystalline nature of the CuO and Co3O4. The result of anti microbial study exhibited that, SM-CuONC showed maximum antimicrobial activity against Escherichia coli NCIM 2065 and Aspergillus fumigatus NCIM 902 which were noted as 2.36 ± 0.31 and 2.36 ± 0.59 cm resp. at 60 µg/well concentration. The result of anticancer activity for SM-CuONC was exhibited as, 68.66 ± 3.72, 62.66 ± 3.61 and 71.00 ± 2.36 percent kill, while SM-Co3O4NC exhibited 61.00 ± 3.57, 72.66 ± 4.50 and 71.66 ± 4.22 percent kill against Human colon cancer (HCT-15), Cervical cancer (HeLa), and Breast cancer (MDA-MB-231) cell lines, respectively, at 20 µg/well concentration. Both the nanocomposites also exhibited better antioxidant activity. Total antioxidant activity for SM-CuONC at 50 µg/ml concentration was found to be highest as 55.33 ± 3.72 while that of SM-Co3O4Ns was 52.00 ± 3.22 mM of ascorbic acid/µg respectively. Both bio-nanocomposites also exhibited 100% mosquito larvicidal activity at concentration ranging from 40 to 50 mg/l. During cytotoxicity study it is noted that at 5 µg/well concentration, SM-CuO and SM-Co3O4NCs suspension showed more than 97% viability of normal (L929) cell lines. We also studied phytotoxicity of both bio-nanocomposites on Triticum aestivum. In this study, 100% seed germination was observed when seeds are treated with SM-CuONC and SM-Co3O4NC at 500 mg/l and 250 mg/l concentration respectively.
Conclusions
This study concludes that in future as synthesized SM-CuONC and SM-Co3O4NC can be used in pharmaceutical, health care system for betterment and welfare of human life as both bio-nanocomposites exhibits better antimicrobial, anticancer, antioxidant and mosquito larvicidal potential.
Collapse
|
17
|
Sohouli E, Teymourinia H, Ramazani A, Adib K. Preparation of high-performance supercapacitor electrode with nanocomposite of CuO/NCNO flower-like. Sci Rep 2023; 13:16221. [PMID: 37758758 PMCID: PMC10533827 DOI: 10.1038/s41598-023-43430-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 09/23/2023] [Indexed: 09/29/2023] Open
Abstract
Due to the importance of energy storage systems based on supercapacitors, various studies have been conducted. In this research CuO, NCNO and the flower like CuO/NCNO have been studied as a novel materials in this field. The resulte showed that the synthesized CuO nanostructutes have flower like morphology which studied by FE-SEM analisis. Further, the XRD pattern confirmed the crystalline properties of the CuO/NCNO nanocomposite, and the Raman verified the functional groups and vibrations of the components of CuO/NCNO nanocomposite. In a two-electrode system at a current density of 4 A/g, the capacitance, power density, and energy density were 450 F/g, 3200 W/kg, and 98 Wh/kg, respectively. The charge transfer resistances of CuO and NCNO/CuO electrodes obtained 8 and 2 Ω respectively, which show that the conductivity and supercapacitive properties of nanocomposite are better than pure components. Also, the stability and low charge transfer resistance are other advantages obtained in a two-symmetrical electrode investigation. The stability investigation showed that after 3000 consecutive cycles, only 4% of the initial capacitance of the CuO/NCNO electrode decreased.
Collapse
Affiliation(s)
- Esmail Sohouli
- Department of Chemistry, Faculty of Science, University of Imam Hossein, Tehran, Iran
| | - Hakimeh Teymourinia
- Department of Biotechnology, Research Institute of Modern Biological Techniques (RIMBT), University of Zanjan, Zanjan, 45371-38791, Iran
- Department of Chemistry, Faculty of Science, University of Zanjan, Zanjan, 45371-38791, Iran
| | - Ali Ramazani
- Department of Biotechnology, Research Institute of Modern Biological Techniques (RIMBT), University of Zanjan, Zanjan, 45371-38791, Iran
- Department of Chemistry, Faculty of Science, University of Zanjan, Zanjan, 45371-38791, Iran
| | - Koroush Adib
- Department of Chemistry, Faculty of Science, University of Imam Hossein, Tehran, Iran.
| |
Collapse
|
18
|
Zhakypov AS, Nemkayeva RR, Yerlanuly Y, Tulegenova MA, Kurbanov BY, Aitzhanov MB, Markhabayeva AA, Gabdullin MT. Synthesis and in situ oxidation of copper micro- and nanoparticles by arc discharge plasma in liquid. Sci Rep 2023; 13:15714. [PMID: 37735535 PMCID: PMC10514342 DOI: 10.1038/s41598-023-41631-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 08/29/2023] [Indexed: 09/23/2023] Open
Abstract
This work presents a one-step controlled method for the synthesis of copper oxide nanoparticles using an arc discharge in deionized water without subsequent thermal annealing. The synthesis conditions were varied by changing the arc discharge current from 2 to 4 A. Scanning electron microscopy images of samples synthesized at discharge current of 2 A revealed the formation of tenorite (CuO) nanopetals with an average length of 550 nm and a width of 100 nm, which had a large surface area. Arc discharge synthesis at 3 and 4 A current modes provides the formation of a combination of CuO nanopetals with spherical cuprite (Cu2O) nanoparticles with sizes ranging from 30 to 80 nm. The crystalline phase and elemental composition of the synthesized particles were identified by X-ray diffraction analysis, Raman spectroscopy and Energy dispersive analysis. As the arc discharge current was raised from 2 to 4 A, two notable changes occurred in the synthesized particles: the Cu/O ratio increased, and the particle sizes decreased. At 4 A, the synthesized particles were from 30 to 80 nm in size and had a spherical shape, indicating an increase in the amount of cuprite (Cu2O) phase. The optical band gap of the aqueous solutions of copper oxide particles also increased from 2 to 2.34 eV with increasing synthesis current from 2 to 4 A, respectively. This suggests that the proposed synthesis method can be used to tune the band gap of the final material by controlling the Cu/O ratio through the current of arc discharge. Overall, this work demonstrates a novel approach to the synthesis of copper oxide nanoparticles with controllable CuO/Cu2O/Cu ratios, which has the potential to be useful in a variety of applications, particularly due to the significant enhancement of photocatalytic abilities and widen the working spectral range.
Collapse
Affiliation(s)
- Alibek S Zhakypov
- Kazakh-British Technical University, 59 Tole Bi, 050000, Almaty, Kazakhstan
- Al-Farabi Kazakh National University, 71 Al-Farabi Av., 050040, Almaty, Kazakhstan
| | - Renata R Nemkayeva
- Kazakh-British Technical University, 59 Tole Bi, 050000, Almaty, Kazakhstan
- Al-Farabi Kazakh National University, 71 Al-Farabi Av., 050040, Almaty, Kazakhstan
| | - Yerassyl Yerlanuly
- Kazakh-British Technical University, 59 Tole Bi, 050000, Almaty, Kazakhstan
- Al-Farabi Kazakh National University, 71 Al-Farabi Av., 050040, Almaty, Kazakhstan
- Institute of Applied Science and Information Technologies, Shashkina, 40/48, 050038, Almaty, Kazakhstan
| | - Malika A Tulegenova
- Al-Farabi Kazakh National University, 71 Al-Farabi Av., 050040, Almaty, Kazakhstan
| | - Beibarys Y Kurbanov
- Kazakh-British Technical University, 59 Tole Bi, 050000, Almaty, Kazakhstan
- Al-Farabi Kazakh National University, 71 Al-Farabi Av., 050040, Almaty, Kazakhstan
| | - Madi B Aitzhanov
- Al-Farabi Kazakh National University, 71 Al-Farabi Av., 050040, Almaty, Kazakhstan
| | - Aiymkul A Markhabayeva
- Kazakh-British Technical University, 59 Tole Bi, 050000, Almaty, Kazakhstan
- Al-Farabi Kazakh National University, 71 Al-Farabi Av., 050040, Almaty, Kazakhstan
| | | |
Collapse
|
19
|
Yahya NAA, Samir OM, Al-Ariki S, Ahmed AAM, Swillam MA. Synthesis of novel antibacterial nanocomposite CuO/Ag-modified zeolite for removal of MB dye. Sci Rep 2023; 13:14948. [PMID: 37696834 PMCID: PMC10495417 DOI: 10.1038/s41598-023-40790-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 08/16/2023] [Indexed: 09/13/2023] Open
Abstract
Novel CuO/Ag nanocomposites added zeolite (CAZ) were successfully fabricated, and their effectiveness as an antibacterial on S. aureus and MB removal was evaluated. EDX, XRD, and FTIR confirm the presence of the elemental compositions of CAZ. Friable CuO nanorods (10-70 nm in diameter) existed on the surface of the zeolite. Pure zeolite had a higher band gap (5.433 eV) and lower MB removal efficiency than CAZ. The adsorption method by CAZ was more effective at removing MB than photodegradation. 0.10 CAZ had the highest removal effectiveness (~ 99%) and adsorption capacity (~ 70.4 mg g-1) of MB. The inhibitory zone diameter for 0.005 CAZ against S. aureus was 20 mm, while 0.01 CAZ had a diameter of 17 mm. Azithromycin, ceftriaxone, and erythromycin antibiotics demonstrated lower or no efficacy against S. aureus than CAZ. Significant antibacterial activities and wastewater treatment were achieved by CAZ. The combination of photodegradation and adsorption enhanced pollutant removal. It will be interesting to study further the optimal molar ratio for MB removal (0.10 CAZ) in future investigations.
Collapse
Affiliation(s)
- Nabil A A Yahya
- Department of Physics, School of Sciences and Engineering, American University in Cairo, New Cairo, 11835, Cairo, Egypt
- Physics Department, Thamar University, 87246, Thamar, Yemen
| | - O M Samir
- Physics Department, Faculty of Science, Ibb University, Ibb, Yemen
- Aljanad University, Taiz, Yemen
| | - S Al-Ariki
- Physics Department, Thamar University, 87246, Thamar, Yemen
| | - Amira A M Ahmed
- Department of Physics, School of Sciences and Engineering, American University in Cairo, New Cairo, 11835, Cairo, Egypt
| | - Mohamed A Swillam
- Department of Physics, School of Sciences and Engineering, American University in Cairo, New Cairo, 11835, Cairo, Egypt.
| |
Collapse
|
20
|
Mashentseva AA, Seitzhapar N, Barsbay M, Aimanova NA, Alimkhanova AN, Zheltov DA, Zhumabayev AM, Temirgaziev BS, Almanov AA, Sadyrbekov DT. Adsorption isotherms and kinetics for Pb(ii) ion removal from aqueous solutions with biogenic metal oxide nanoparticles. RSC Adv 2023; 13:26839-26850. [PMID: 37692348 PMCID: PMC10483273 DOI: 10.1039/d3ra05347d] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 08/24/2023] [Indexed: 09/12/2023] Open
Abstract
This study investigates the sorption removal of lead(ii) ions using zinc oxide (ZnO) and copper(ii) oxide (CuO) nanoparticles synthesized through a wet burning method with the aid of plant extract from Serratula coronata L. The effect of plant collection time on polyphenol content was investigated and optimal conditions were determined. The structural and chemical properties of the nanoparticles were studied by scanning electron microscopy, energy dispersive analysis, X-ray phase analysis, and X-ray photoelectron spectroscopy. A comparative analysis of lead ion sorption on the surface of synthesized nanoparticles was conducted. The kinetic study revealed that the sorption process follows a pseudo-second-order mechanism, and the Freundlich sorption model provides a better fit for the experimental data. ZnO and CuO nanoparticles exhibited significant sorption capacities, with values of 163.6 and 153.8 mg g-1, respectively.
Collapse
Affiliation(s)
- Anastassiya A Mashentseva
- The Institute of Nuclear Physics of the Republic of Kazakhstan 050032 Almaty Kazakhstan
- Department of Nuclear Physics, New Materials and Technologies, L.N. Gumilyov Eurasian National University 010008 Astana Kazakhstan
| | - Nurzhigit Seitzhapar
- The Institute of Nuclear Physics of the Republic of Kazakhstan 050032 Almaty Kazakhstan
- Department of Nuclear Physics, New Materials and Technologies, L.N. Gumilyov Eurasian National University 010008 Astana Kazakhstan
| | - Murat Barsbay
- Department of Chemistry, Hacettepe University 06800 Ankara Turkey
| | - Nurgulim A Aimanova
- The Institute of Nuclear Physics of the Republic of Kazakhstan 050032 Almaty Kazakhstan
| | - Assel N Alimkhanova
- The Institute of Nuclear Physics of the Republic of Kazakhstan 050032 Almaty Kazakhstan
- Department of Nuclear Physics, New Materials and Technologies, L.N. Gumilyov Eurasian National University 010008 Astana Kazakhstan
| | - Dmitriy A Zheltov
- The Institute of Nuclear Physics of the Republic of Kazakhstan 050032 Almaty Kazakhstan
| | - Alisher M Zhumabayev
- The Institute of Nuclear Physics of the Republic of Kazakhstan 050032 Almaty Kazakhstan
- Department of Nuclear Physics, New Materials and Technologies, L.N. Gumilyov Eurasian National University 010008 Astana Kazakhstan
| | | | - Alimzhan A Almanov
- The Institute of Nuclear Physics of the Republic of Kazakhstan 050032 Almaty Kazakhstan
- Department of Nuclear Physics, New Materials and Technologies, L.N. Gumilyov Eurasian National University 010008 Astana Kazakhstan
| | | |
Collapse
|
21
|
Manikandan DB, Arumugam M, Sridhar A, Perumalsamy B, Ramasamy T. Sustainable fabrication of hybrid silver-copper nanocomposites (Ag-CuO NCs) using Ocimum americanum L. as an effective regime against antibacterial, anticancer, photocatalytic dye degradation and microalgae toxicity. ENVIRONMENTAL RESEARCH 2023; 228:115867. [PMID: 37044164 DOI: 10.1016/j.envres.2023.115867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 04/05/2023] [Accepted: 04/08/2023] [Indexed: 05/16/2023]
Abstract
In this study, a sustainable fabrication of hybrid silver-copper oxide nanocomposites (Ag-CuO NCs) was accomplished utilizing Ocimum americanum L. by one pot green chemistry method. The multifarious biological and environmental applications of the green fabricated Ag-CuO NCs were evaluated through their antibacterial, anticancer, dye degradation, and microalgae growth inhibition activities. The morphological features of the surface functionalized hybrid Ag-CuO NCs were confirmed by FE-SEM and HR-TEM techniques. The surface plasmon resonance λmax peak appeared at 441.56 nm. The average hydrodynamic size distribution of synthesized nanocomposite was 69.80 nm. Zeta potential analysis of Ag-CuO NCs confirmed its remarkable stability at -21.5 mV. XRD and XPS techniques validated the crystalline structure and electron binding affinity of NCs, respectively. The Ag-CuO NCs demonstrated excellent inhibitory activity against Vibrio cholerae (19.93 ± 0.29 mm) at 100 μg/mL. Anticancer efficacy of Ag-CuO NCs was investigated against the A549 lung cancer cell line, and Ag-CuO NCs exhibited outstanding antiproliferative activity with a low IC50 of 2.8 ± 0.05 μg/mL. Furthermore, staining and comet assays substantiated that the Ag-CuO NCs hindered the progression of the A549 cells and induced apoptosis as a result of cell cycle arrest at the G0/G1 phase. Concerning the environmental applications, the Ag-CuO NCs displayed efficient photocatalytic activity against eosin yellow degradation up to 80.94% under sunlight irradiation. Microalgae can be used as an early bio-indicator/prediction of environmental contaminants and toxic substances. The treatment of the Ag-CuO NCs on the growth of marine microalgae Tetraselmis suecica demonstrated the dose and time-dependent growth reduction and variations in the chlorophyll content. Therefore, the efficient multifunctional properties of hybrid Ag-CuO NCs could be exploited as a regime against infective diseases and cancer. Further, the findings of our investigation witness the remarkable scope and potency of Ag-CuO NCs for environmental applications.
Collapse
Affiliation(s)
- Dinesh Babu Manikandan
- Laboratory of Aquabiotics/Nanoscience, Department of Animal Science, School of Life Sciences, Bharathidasan University, Tiruchirappalli, 620 024, Tamil Nadu, India
| | - Manikandan Arumugam
- Laboratory of Aquabiotics/Nanoscience, Department of Animal Science, School of Life Sciences, Bharathidasan University, Tiruchirappalli, 620 024, Tamil Nadu, India
| | - Arun Sridhar
- Laboratory of Aquabiotics/Nanoscience, Department of Animal Science, School of Life Sciences, Bharathidasan University, Tiruchirappalli, 620 024, Tamil Nadu, India
| | - Balaji Perumalsamy
- National Centre for Alternatives to Animal Experiments (NCAAE), Bharathidasan University, Tiruchirappalli, 620 024, Tamil Nadu, India
| | - Thirumurugan Ramasamy
- Laboratory of Aquabiotics/Nanoscience, Department of Animal Science, School of Life Sciences, Bharathidasan University, Tiruchirappalli, 620 024, Tamil Nadu, India; National Centre for Alternatives to Animal Experiments (NCAAE), Bharathidasan University, Tiruchirappalli, 620 024, Tamil Nadu, India.
| |
Collapse
|
22
|
Limthin D, Leepheng P, Tunhoo B, Onlaor K, Klamchuen A, Phromyothin D, Thiwawong T. Preparation of surface-modified electrode of copper(ii) oxide mixed with the molecularly imprinted polymer for enhancement of melamine detection with photoelectrochemical technique. RSC Adv 2023; 13:14729-14736. [PMID: 37197674 PMCID: PMC10183999 DOI: 10.1039/d3ra01854g] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 04/24/2023] [Indexed: 05/19/2023] Open
Abstract
Melamine contamination in food and beverages affects short- and long-term health. In this work, enhanced sensitivity and selectivity in photoelectrochemical determination for melamine detection was achieved using copper(ii) oxide (CuO) combined with a molecularly imprinted polymer (MIP). A CuO nanomaterial was used to achieve MIP surface modification via co-precipitation synthesis. An MIP film was deposited by polymerizing the methacrylic acid monomer and a melamine template. The properties of the CuO nanomaterials, such as the surface morphology, chemical oxidation state, and crystalline structure, were characterized using field emission scanning electron microscopy (FESEM), X-ray photoelectron spectroscopy (XPS), and X-ray diffraction patterns (XRD), respectively. The diffuse reflection spectroscopy technique was applied to evaluate the optical properties of the CuO nanoparticles. The results indicated that the synthesized CuO nanomaterials had a monoclinic structure with an optical bandgap of 1.49 eV, which corresponds to absorbance in the visible light region. CPE electrodes with surface-modified CuO/MIP were measured using the photoelectrochemical techniques of cyclic voltammetry, differential pulse voltammetry (DPV), and amperometry. The modified CuO/MIP electrode for melamine detection in 7.4 pH PBS buffer solution exhibited a high sensitivity of 0.332 nA nM-1, with a linear range of 5.0-75.0 nM and a limit of detection of 2.45 nM. Moreover, real samples of various kinds of milk were applied to evaluate the sensing response of the prepared CuO/MIP electrode. The modified CuO/MIP electrodes could be reused seven times with good reproducibility and high selectivity for melamine detection.
Collapse
Affiliation(s)
- Dalawan Limthin
- College of Materials Innovation and Technology, King Mongkut's Institute of Technology Ladkrabang Bangkok 10520 Thailand
| | - Piyawan Leepheng
- College of Materials Innovation and Technology, King Mongkut's Institute of Technology Ladkrabang Bangkok 10520 Thailand
| | - Benchapol Tunhoo
- College of Materials Innovation and Technology, King Mongkut's Institute of Technology Ladkrabang Bangkok 10520 Thailand
- Electronic and Control System for Nanodevice Research Laboratory (ECSN), College of Materials Innovation and Technology, King Mongkut's Institute of Technology Ladkrabang 10520 Thailand
| | - Korakot Onlaor
- College of Materials Innovation and Technology, King Mongkut's Institute of Technology Ladkrabang Bangkok 10520 Thailand
- Electronic and Control System for Nanodevice Research Laboratory (ECSN), College of Materials Innovation and Technology, King Mongkut's Institute of Technology Ladkrabang 10520 Thailand
| | - Annop Klamchuen
- National Nanotechnology Center, National Science and Technology Development Agency Patumthani 12120 Thailand
| | - Darinee Phromyothin
- College of Materials Innovation and Technology, King Mongkut's Institute of Technology Ladkrabang Bangkok 10520 Thailand
| | - Thutiyaporn Thiwawong
- College of Materials Innovation and Technology, King Mongkut's Institute of Technology Ladkrabang Bangkok 10520 Thailand
- Electronic and Control System for Nanodevice Research Laboratory (ECSN), College of Materials Innovation and Technology, King Mongkut's Institute of Technology Ladkrabang 10520 Thailand
| |
Collapse
|
23
|
Baranov O, Bazaka K, Belmonte T, Riccardi C, Roman HE, Mohandas M, Xu S, Cvelbar U, Levchenko I. Recent innovations in the technology and applications of low-dimensional CuO nanostructures for sensing, energy and catalysis. NANOSCALE HORIZONS 2023; 8:568-602. [PMID: 36928662 DOI: 10.1039/d2nh00546h] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Low-dimensional copper oxide nanostructures are very promising building blocks for various functional materials targeting high-demanded applications, including energy harvesting and transformation systems, sensing and catalysis. Featuring a very high surface-to-volume ratio and high chemical reactivity, these materials have attracted wide interest from researchers. Currently, extensive research on the fabrication and applications of copper oxide nanostructures ensures the fast progression of this technology. In this article we briefly outline some of the most recent, mostly within the past two years, innovations in well-established fabrication technologies, including oxygen plasma-based methods, self-assembly and electric-field assisted growth, electrospinning and thermal oxidation approaches. Recent progress in several key types of leading-edge applications of CuO nanostructures, mostly for energy, sensing and catalysis, is also reviewed. Besides, we briefly outline and stress novel insights into the effect of various process parameters on the growth of low-dimensional copper oxide nanostructures, such as the heating rate, oxygen flow, and roughness of the substrates. These insights play a key role in establishing links between the structure, properties and performance of the nanomaterials, as well as finding the cost-and-benefit balance for techniques that are capable of fabricating low-dimensional CuO with the desired properties and facilitating their integration into more intricate material architectures and devices without the loss of original properties and function.
Collapse
Affiliation(s)
- Oleg Baranov
- Department of Theoretical Mechanics, Engineering and Robomechanical Systems, National Aerospace University, Kharkiv 61070, Ukraine.
- Department of Gaseous Electronics, Jozef Stefan Institute, Ljubljana 1000, Slovenia
| | - Kateryna Bazaka
- School of Engineering, The Australian National University, Canberra, ACT 2601, Australia
| | | | - Claudia Riccardi
- Dipartimento di Fisica "Giuseppe Occhialini", Università degli Studi di Milano-Bicocca, Piazza della Scienza 3, I20126 Milan, Italy
| | - H Eduardo Roman
- Dipartimento di Fisica "Giuseppe Occhialini", Università degli Studi di Milano-Bicocca, Piazza della Scienza 3, I20126 Milan, Italy
| | - Mandhakini Mohandas
- Center for Nanoscience and Technology, Anna University, Chennai, 600 025, India
| | - Shuyan Xu
- Plasma Sources and Application Centre, NIE, Nanyang Technological University, 637616, Singapore.
| | - Uroš Cvelbar
- Department of Gaseous Electronics, Jozef Stefan Institute, Ljubljana 1000, Slovenia
| | - Igor Levchenko
- Plasma Sources and Application Centre, NIE, Nanyang Technological University, 637616, Singapore.
| |
Collapse
|
24
|
Pouthika K, Madhumitha G. Synergistic synthesis of Carrisa edulis fruit extract capped heterogeneous CuO-ZnO-HNT composite for photocatalytic removal of organic pollutants. Inorganica Chim Acta 2023. [DOI: 10.1016/j.ica.2023.121457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
|
25
|
Rajamohan R, Raorane CJ, Kim SC, Ashokkumar S, Lee YR. Novel Microwave Synthesis of Copper Oxide Nanoparticles and Appraisal of the Antibacterial Application. MICROMACHINES 2023; 14:456. [PMID: 36838156 PMCID: PMC9960782 DOI: 10.3390/mi14020456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 02/10/2023] [Accepted: 02/13/2023] [Indexed: 06/18/2023]
Abstract
The exceptional characteristics of bio-synthesized copper oxide nanoparticles (CuO NPs), including high surface-to-volume ratio and high-profit strength, are of tremendous interest. CuO NPs have cytotoxic, catalytic, antibacterial, and antioxidant properties. Fruit peel extract has been recommended as a valuable alternative method due to the advantages of economic prospects, environment-friendliness, improved biocompatibility, and high biological activities, such as antioxidant and antimicrobial activities, as many physical and chemical methods have been applied to synthesize metal oxide NPs. In the presence of apple peel extract and microwave (MW) irradiation, CuO NPs are produced from the precursor CuCl2. 2H2O. With the help of TEM analysis, and BET surface area, the average sizes of the obtained NPs are found to be 25-40 nm. For use in antimicrobial applications, CuO NPs are appropriate. Disk diffusion tests were used to study the bactericidal impact in relation to the diameter of the inhibition zone, and an intriguing antibacterial activity was confirmed on both the Gram-positive bacterial pathogen Staphylococcus aureus and Gram-negative bacterial pathogen Escherichia coli. Moreover, CuO NPs did not have any toxic effect on seed germination. Thus, this study provides an environmentally friendly material and provides a variety of advantages for biomedical applications and environmental applications.
Collapse
Affiliation(s)
- Rajaram Rajamohan
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | | | - Seong-Cheol Kim
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Sekar Ashokkumar
- Plasma Bioscience Research Center, Kwangwoon University, Seoul 01897, Republic of Korea
| | - Yong Rok Lee
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
| |
Collapse
|
26
|
Mahdavi H, Hosseini F, Akbar Heidari A, Karami M. Polyethersulfone-TPU blend membrane coated with an environmentally friendly sabja seed mucilage-Cu2+ cross-linked layer with outstanding separation performance and superior antifouling. J IND ENG CHEM 2023. [DOI: 10.1016/j.jiec.2023.01.044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
27
|
Psathas P, Zindrou A, Papachristodoulou C, Boukos N, Deligiannakis Y. In Tandem Control of La-Doping and CuO-Heterojunction on SrTiO 3 Perovskite by Double-Nozzle Flame Spray Pyrolysis: Selective H 2 vs. CH 4 Photocatalytic Production from H 2O/CH 3OH. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13030482. [PMID: 36770444 PMCID: PMC9920848 DOI: 10.3390/nano13030482] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/19/2023] [Accepted: 01/21/2023] [Indexed: 06/12/2023]
Abstract
ABO3 perovskites offer versatile photoactive nano-templates that can be optimized towards specific technologies, either by means of doping or via heterojunction engineering. SrTiO3 is a well-studied perovskite photocatalyst, with a highly reducing conduction-band edge. Herein we present a Double-Nozzle Flame Spray Pyrolysis (DN-FSP) technology for the synthesis of high crystallinity SrTiO3 nanoparticles with controlled La-doping in tandem with SrTiO3/CuO-heterojunction formation. So-produced La:SrTiO3/CuO nanocatalysts were optimized for photocatalysis of H2O/CH3OH mixtures by varying the La-doping level in the range from 0.25 to 0.9%. We find that, in absence of CuO, the 0.9La:SrTiO3 material achieved maximal efficient photocatalytic H2 production, i.e., 12 mmol g-1 h-1. Introduction of CuO on La:SrTiO3 enhanced selective production of methane CH4. The optimized 0.25La:SrTiO3/0.5%CuO catalyst achieved photocatalytic CH4 production of 1.5 mmol g-1 h-1. Based on XRD, XRF, XPS, BET, and UV-Vis/DRS data, we discuss the photophysical basis of these trends and attribute them to the effect of La atoms in the SrTiO3 lattice regarding the H2-production, plus the effect of interfacial CuO on the promotion of CH4 production. Technology-wise this work is among the first to exemplify the potential of DN-FSP for scalable production of complex nanomaterials such as La:SrTiO3/CuO with a diligent control of doping and heterojunction in a single-step synthesis.
Collapse
Affiliation(s)
- Pavlos Psathas
- Department of Physics, University of Ioannina, 45110 Ioannina, Greece
| | - Areti Zindrou
- Department of Physics, University of Ioannina, 45110 Ioannina, Greece
| | | | - Nikos Boukos
- Institute of Nanoscience and Nanotechnology (INN), NCSR Demokritos, 15310 Athens, Greece
| | | |
Collapse
|
28
|
Rajamohan R, Raorane CJ, Kim SC, Lee YR. One Pot Synthesis of Copper Oxide Nanoparticles for Efficient Antibacterial Activity. MATERIALS (BASEL, SWITZERLAND) 2022; 16:217. [PMID: 36614555 PMCID: PMC9822411 DOI: 10.3390/ma16010217] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 12/14/2022] [Accepted: 12/21/2022] [Indexed: 06/17/2023]
Abstract
The unique semiconductor and optical properties of copper oxides have attracted researchers for decades. However, using fruit waste materials such as peels to synthesize the nanoparticles of copper oxide (CuO NPs) has been rarely described in literature reviews. The main purpose of this part of the research was to report on the CuO NPs with the help of apple peel extract under microwave irradiation. Metal salts and extracts were irradiated at 540 W for 5 min in a microwave in a 1:2 ratio. The crystallinity of the NPs was confirmed by the XRD patterns and the crystallite size of the NPs was found to be 41.6 nm. Elemental mapping of NPs showed homogeneous distributions of Cu and O. The NPs were found to contain Cu and O by EDX and XPS analysis. In a test involving two human pathogenic microbes, NPs showed antibacterial activity and the results revealed that the zone of inhibition grew significantly with respect to the concentration of CuO NPs. In a biofilm, more specifically, NPs at 25.0 µg/mL reduced mean thickness and biomass values of S. aureus and E. coli biofilms by >85.0 and 65.0%, respectively, with respect to untreated controls. In addition, environmentally benign materials offer a number of benefits for pharmaceuticals and other biomedical applications as they are eco-friendly and compatible.
Collapse
|
29
|
Mansi K, Kumar R, Narula D, Pandey SK, Kumar V, Singh K. Microwave-Induced CuO Nanorods: A Comparative Approach between Curcumin, Quercetin, and Rutin to Study Their Antioxidant, Antimicrobial, and Anticancer Effects against Normal Skin Cells and Human Breast Cancer Cell Lines MCF-7 and T-47D. ACS APPLIED BIO MATERIALS 2022; 5:5762-5778. [PMID: 36417758 DOI: 10.1021/acsabm.2c00769] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Herein, we explore the biological properties of curcumin, quercetin, and rutin by loading them onto porous CuO nanorods (NRs). The CuO NRs were synthesized using the microwave irradiation method through a chemical reaction between CuSO4·5H2O and NaOH in the presence of the anionic stabilizer sodium dodecyl sulfate. The shape and surface morphology of CuO NRs were examined with two microscopic techniques: high-resolution transmission electron microscopy (HR-TEM) and field emission scanning electron microscopy (FESEM). Their average diameter was measured by TEM to be 15 ± 2 nm. The porosity and interfacial area of the fabricated material were determined by Brunauer-Emmett-Teller analysis. After successful synthesis, CuO NRs were loaded with polyphenolic curcumin, quercetin, and rutin, with the loading efficiency of 57.8, 62.2, and 81.2%, respectively, which was confirmed by UV-visible and infra-red spectroscopy and finally with a thermal gravimetric technique. Their radical scavenging activity was measured with the 2,2-diphenyl-1-picrylhydrazyl radical and compared with the control (ascorbic acid). Further, good bactericidal effects were observed against both Gram-positive bacterial strains, including Staphylococcus aureus and Bacillus subtilis, and Gram-negative bacterial strains, including Salmonella typhi, Pseudomonas aeruginosa, Escherichia coli, and Klebsiella pneumoniae. Excellent anticancer activity was observed against normal skin cells and breast cancer cells T-47D and MCF-7.
Collapse
Affiliation(s)
- Kumari Mansi
- School of Advanced Chemical Sciences, Shoolini University of Biotechnology & Management Sciences, Solan, Himachal Pradesh173212, India
| | - Raj Kumar
- School of Advanced Chemical Sciences, Shoolini University of Biotechnology & Management Sciences, Solan, Himachal Pradesh173212, India.,Department of Chemistry, School of Basic and Applied Sciences, Maharaja Agrasen University, Baddi174103, India
| | - Dipika Narula
- Department of Chemistry, School of Basic and Applied Sciences, Maharaja Agrasen University, Baddi174103, India
| | - Satish Kumar Pandey
- Department of Biotechnology, School of Life Sciences, Mizoram University (Central University), Aizawl796004, India
| | - Vinod Kumar
- Department of Dermatology, Venerology and Leprology, Post Graduate Institute of Medical Education &Research (PGIMER), Chandigarh160012, India
| | - Kulvinder Singh
- Department of Chemistry, DAV College, Sector 10, Chandigarh160011, India
| |
Collapse
|
30
|
Ultrasound-assisted synthesis of kojic acid-1,2,3-triazole based dihydropyrano[3,2-b]pyran derivatives using Fe 3O 4@CQD@CuI as a novel nanomagnetic catalyst. Sci Rep 2022; 12:19917. [PMID: 36402826 PMCID: PMC9675794 DOI: 10.1038/s41598-022-24089-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Accepted: 11/09/2022] [Indexed: 11/21/2022] Open
Abstract
The magnetic nanoparticles coated with carbon quantum dot and copper (I) iodide (Fe3O4@CQD@CuI) were used as eco-friendly heterogeneous Lewis / Brønsted acid sites and Cu (I) nanocatalysts. In the first step, it was applied in the synthesis of kojic acid-based dihydropyrano[3,2-b]pyran derivatives in a three-component reaction and in the second step, as a recyclable catalyst for the synthesis of kojic acid-1,2,3-triazole based dihydropyrano[3,2-b]pyran derivatives in the CuI-catalyzed azide/alkyne cycloaddition (CuAAC) reaction. The catalyst was characterized fully by using the different techniques including fourier transform infrared spectroscopy (FT-IR), elemental mapping analysis, X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), X-ray spectroscopy (EDX), transmission electron microscopy (TEM), thermal gravimetric (TG) and value-stream mapping (VSM) methods. The final synthesized derivatives were identified by 1H- and 13C-NMR spectroscopy.
Collapse
|
31
|
Jawad KH, Hasoon BA, Ismail RA, Shaker SS. Preparation of copper oxide nanosheets by pulsed laser ablation in liquid for anticancer, antioxidant, and antibacterial activities. J INDIAN CHEM SOC 2022. [DOI: 10.1016/j.jics.2022.100773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
32
|
Jung D, Hwang S, Kim HJ, Han JH, Lee HN. Characterization of Porous CuO Films for H 2S Gas Sensors. MATERIALS (BASEL, SWITZERLAND) 2022; 15:7270. [PMID: 36295331 PMCID: PMC9610780 DOI: 10.3390/ma15207270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 10/11/2022] [Accepted: 10/12/2022] [Indexed: 06/16/2023]
Abstract
Using a thermal evaporator, various porous Cu films were deposited according to the deposition pressure. CuO films were formed by post heat treatment in the air. Changes in morphological and structural characteristics of films were analyzed using field-emission scanning electron microscopy (FE-SEM) and X-ray diffraction (XRD). Relative density and porosity were quantitatively calculated. CuO films with various pores ranging from 39.4 to 95.2% were successfully manufactured and were applied as gas sensors for H2S detection on interdigitated electrode (IDE) substrate. Resistance change was monitored at 325 °C and an increase in porosity of the film improved the sensor performance. The CuO-10 gas sensor with a high porosity of 95.2% showed a relatively high response (2.7) and a fast recovery time (514 s) for H2S 1.5 ppm. It is confirmed that the porosity of the CuO detection layer had a significant effect on response and recovery time.
Collapse
Affiliation(s)
- Dawoon Jung
- Heat & Surface Technology R&D Department, Korea Institute of Industrial Technology (KITECH), Incheon 21999, Korea
- Department of Materials Science and Engineering, Gacheon University, Seongnam-si 13120, Korea
| | - Sehoon Hwang
- Heat & Surface Technology R&D Department, Korea Institute of Industrial Technology (KITECH), Incheon 21999, Korea
| | - Hyun-Jong Kim
- Heat & Surface Technology R&D Department, Korea Institute of Industrial Technology (KITECH), Incheon 21999, Korea
| | - Jae-Hee Han
- Department of Materials Science and Engineering, Gacheon University, Seongnam-si 13120, Korea
| | - Ho-Nyun Lee
- Heat & Surface Technology R&D Department, Korea Institute of Industrial Technology (KITECH), Incheon 21999, Korea
| |
Collapse
|
33
|
Gupta S, Maji A, Panja D, Halder M, Kundu S. CuO NPs catalyzed synthesis of quinolines, pyridines, and pyrroles via dehydrogenative coupling strategy. J Catal 2022. [DOI: 10.1016/j.jcat.2022.08.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
34
|
Characterization, kinetics and stability studies of NiO and CuO supported by Al2O3, ZrO2, CeO2 and their combinations in chemical looping combustion. Catal Today 2022. [DOI: 10.1016/j.cattod.2021.09.035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
35
|
Cho EC, Chang-Jian CW, Huang JH, Huang TY, Wu NJ, Li MT, Chen YL, Hsu SC, Weng HC, Lee KC. Preparation of Ni(OH) 2/CuO heterostructures for improved photocatalytic degradation of organic pollutants and microorganism. CHEMOSPHERE 2022; 300:134484. [PMID: 35395258 DOI: 10.1016/j.chemosphere.2022.134484] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 03/07/2022] [Accepted: 03/29/2022] [Indexed: 06/14/2023]
Abstract
In this study, the Ni(OH)2/CuO heterostructured photocatalysts have been prepared via microwave (MW) hydrothermal method. The results indicate that the Ni(OH)2/CuO heterostructured composite exhibits a strong absorption in the UV and Vis regions. The construction of the heterojunction also improves the photogenerated carrier transport and inhibits the electron-hole separation due to the enhanced absorbance and the well alignment of the energy band at the Ni(OH)2/CuO interface. The photocatalytic capability of the heterostructured composites with different Ni(OH)2/CuO molar ratios is evaluated by the photodegradation of methylene blue under visible light illumination. The results reveal that the Ni(OH)2/CuO (1:1) heterostructures show the best photocatalytic efficiency, which is 2.18 and 6.13 times higher than that of pure Ni(OH)2 and CuO, respectively. Besides, the Ni(OH)2/CuO composites also reveal remarkable biocompatibility and strong photocatalytic activity in the degradation of antibiotics such as ciprofloxacin (CIP) and tetracycline (TC) and inactivation of Escherichia coli (E. coli).
Collapse
Affiliation(s)
- Er-Chieh Cho
- School of Pharmacy, College of Pharmacy, Taipei Medical University, 250 Wuxing Street, Taipei City, 110, Taiwan; Cancer Center, Wan Fang Hospital, Taipei Medical University, Taipei 110, Taiwan
| | - Cai-Wan Chang-Jian
- Department of Mechanical and Automation Engineering, I-Shou University, No.1, Sec. 1, Syuecheng Rd., Dashu District, Kaohsiung City, 84001, Taiwan
| | - Jen-Hsien Huang
- Department of Green Material Technology, Green Technology Research Institute, CPC Corporation, No.2, Zuonan Rd., Nanzi District, Kaohsiung City, 81126, Taiwan
| | - Tzu-Yen Huang
- National Synchrotron Radiation Research Center, 101 Hsin-Ann Road, Hsinchu Science Park, Hsinchu, 30076, Taiwan
| | - Nian-Jheng Wu
- Université Paris-Saclay, CNRS, Institut des Sciences Moléculaires D'Orsay, 91405, Orsay, France
| | - Man-Tzu Li
- School of Pharmacy, College of Pharmacy, Taipei Medical University, 250 Wuxing Street, Taipei City, 110, Taiwan
| | - Yi-Lun Chen
- Department of Science Education, National Taipei University of Education, No. 134, Sec. 2, Heping E. Road, Da-an District, Taipei City, 106, Taiwan
| | - Shih-Chieh Hsu
- Department of Chemical and Materials Engineering, Tamkang University, No. 151, Yingzhuan Road, Tamsui District, New Taipei City, 25137, Taiwan.
| | - Huei Chu Weng
- Department of Mechanical Engineering, Chung Yuan Christian University, No. 200, Chungpei Rd, Chungli District, Taoyuan City, 32023, Taiwan.
| | - Kuen-Chan Lee
- Department of Science Education, National Taipei University of Education, No. 134, Sec. 2, Heping E. Road, Da-an District, Taipei City, 106, Taiwan; PhD Program for Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University, 250 Wuxing Street, Taipei City, 110, Taiwan.
| |
Collapse
|
36
|
Effect of Ethylene Glycol: Citric Acid Molar Ratio and pH on the Morphology, Vibrational, Optical and Electronic Properties of TiO2 and CuO Powders Synthesized by Pechini Method. MATERIALS 2022; 15:ma15155266. [PMID: 35955201 PMCID: PMC9369947 DOI: 10.3390/ma15155266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 06/04/2022] [Accepted: 06/06/2022] [Indexed: 02/04/2023]
Abstract
High-purity TiO2 and CuO powders were synthesized by the Pechini method, an inexpensive and easy-to-implement procedure to synthetize metal oxides. The variables of synthesis were the ethylene glycol:citric acid molar ratio and the pH. High reproducibility of the anatase and tenorite phase was obtained for all synthesis routes. The degree of purity of the powders was confirmed by XRD, FTIR, UV-Vis absorption and XPS spectra. SEM and TEM images revealed the powders are composed of micrometer grains that can have a spherical shape (only in the TiO2) or formed by a non-compacted nanocrystalline conglomerate. FTIR spectra only displayed vibrational modes associating TiO2 and CuO with nanoparticle behavior. UV-Vis absorption spectra revealed the values of maximum absorbance percentage of both systems are reached in the ultraviolet region, with percentages above 83% throughout the entire visible light spectrum for the CuO system, a relevant result for solar cell applications. Finally, XPS experiments allow the observation of the valence bands and the calculation of the energy bands of all oxides.
Collapse
|
37
|
Liang YC, Li TH. Sputtering-Assisted Synthesis of Copper Oxide–Titanium Oxide Nanorods and Their Photoactive Performances. NANOMATERIALS 2022; 12:nano12152634. [PMID: 35957065 PMCID: PMC9370441 DOI: 10.3390/nano12152634] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 07/21/2022] [Accepted: 07/28/2022] [Indexed: 12/10/2022]
Abstract
A TiO2 nanorod template was successfully decorated with a copper oxide layer with various crystallographic phases using sputtering and postannealing procedures. The crystallographic phase of the layer attached to the TiO2 was adjusted from a single Cu2O phase or dual Cu2O–CuO phase to a single CuO phase by changing the postannealing temperature from 200 °C to 400 °C. The decoration of the TiO2 (TC) with a copper oxide layer improved the light absorption and photoinduced charge separation abilities. These factors resulted in the composite nanorods demonstrating enhanced photoactivity compared to that of the pristine TiO2. The ternary phase composition of TC350 allowed it to achieve superior photoactive performance compared to the other composite nanorods. The possible Z-scheme carrier movement mechanism and the larger granular size of the attached layer of TC350 under irradiation accounted for the superior photocatalytic activity in the degradation of RhB dyes.
Collapse
|
38
|
Duraivel M, Nagappan S, Park KH, Ha CS, Prabakar K. Transition metal oxy/hydroxides functionalized flexible halloysite nanotubes for hydrogen evolution reaction. J Colloid Interface Sci 2022; 618:518-528. [PMID: 35366479 DOI: 10.1016/j.jcis.2022.03.095] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 03/16/2022] [Accepted: 03/21/2022] [Indexed: 11/20/2022]
Abstract
The hierarchical halloysite nanotubes (HNT) have alumina containing positive Al-OH groups on its inner surface and silica-containing negative siloxane groups of Si-O-Si on its outer surface. The silicate laminate consists of silicon-oxygen at tetrahedral sites and aluminum-oxygen at octahedral sites. Since HNT has an abundant hydroxyl group on the surface with exceptional cation/anion exchange capacity, the surface-functionalized HNT could boost electrocatalytic activity. Hence, we have synthesized Ni, Co, and Cu metal oxy/hydroxides functionalized HNT by a facile hydrothermal method for HER. Among them, Co(OH)2@HNT on flexible carbon cloth displays an ultra-low overpotential of 65 mV at 10 mA cm-2 current density and Tafel slope of 181 mV dec-1 and also exhibited a larger exchange current density of 3.98 mA cm-2 in alkaline 1 M KOH electrolyte due to superior electrostatic affinity between OH- and Co2+. The electrolyzers with anion exchange membrane consisting of RuO2||Co(OH)2@HNT show remarkable stability of over 50 h at 10 mA cm-2 in alkaline electrolyte. The post stability sample retains the same surface oxidation state which confirms the robustness of the electrocatalyst. The reported results are far better than many of the transition metal oxides/chalcogenides electrocatalysts and hence it is expected that HNT could act as a potential alternative candidate to replace the benchmark platinum catalyst.
Collapse
Affiliation(s)
- Malarkodi Duraivel
- Department of Electrical Engineering, Pusan National University, 2 Busandaehak-ro 63beon-gil, Geumjeong-Gu, Busan 46241, Republic of Korea
| | - Saravanan Nagappan
- Department of Chemistry, Chemistry Institute for Functional Materials, Pusan National University, 2 Busandaehak-ro 63beon-gil, Geumjeong-Gu, Busan 46241, Republic of Korea
| | - Kang Hyun Park
- Department of Chemistry, Chemistry Institute for Functional Materials, Pusan National University, 2 Busandaehak-ro 63beon-gil, Geumjeong-Gu, Busan 46241, Republic of Korea
| | - Chang-Sik Ha
- Department of Polymer Science and Engineering, Pusan National University, 2 Busandaehak-ro 63beon-gil, Geumjeong-Gu, Busan 46241, Republic of Korea
| | - Kandasamy Prabakar
- Department of Electrical Engineering, Pusan National University, 2 Busandaehak-ro 63beon-gil, Geumjeong-Gu, Busan 46241, Republic of Korea.
| |
Collapse
|
39
|
The heterostructure of ceria and hybrid transition metal oxides with high electrocatalytic performance for water splitting and enzyme-free glucose detection. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116369] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
40
|
Chung WC, Hsu SY, Pao CW, Chuang YC, Lu KT, Chen JM. Correlation of photocatalytic CO2 conversion and electronic structure of UiO-66 and Cu-UiO-66-NH2 under irradiation studied by in-situ X-ray absorption spectroscopy. J CO2 UTIL 2022. [DOI: 10.1016/j.jcou.2022.101961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
41
|
Lemecho BA, Sabir FK, Andoshe DM, Gultom NS, Kuo DH, Chen X, Mulugeta E, Desissa TD, Zelekew OA. Biogenic Synthesis of Cu-Doped ZnO Photocatalyst for the Removal of Organic Dye. Bioinorg Chem Appl 2022; 2022:8081494. [PMID: 35572070 PMCID: PMC9095405 DOI: 10.1155/2022/8081494] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/20/2022] [Accepted: 04/25/2022] [Indexed: 02/03/2023] Open
Abstract
The Cu-doped ZnO photocatalysts were prepared with a green and coprecipitation approach by using water hyacinth (Eichhornia crassipes) aquatic plant extract. In the preparation process, different amount of copper precursors such as 1, 2, 3, 4, and 5% of molar ratio were added to zinc nitrate precursors and abbreviated as Cu-ZnO (1%), Cu-ZnO (2%), Cu-ZnO (3%), Cu-ZnO (4%), and Cu-ZnO (5%), respectively. The characterization of the obtained samples was carried out, and the removal of the methylene blue (MB) dye was examined. Out of all catalysts, Cu-ZnO (3%) had the best photocatalytic performance and 89% of the MB dye was degraded. However, the degradation performances of blank (without catalysts), ZnO, Cu-ZnO (1%), Cu-ZnO (2%), Cu-ZnO (4%), and Cu-ZnO (5%) catalysts were 6, 54, 69, 83, 80, and 73%, respectively. Therefore, the use of water hyacinth plant extract with the optimum amount of Cu added to ZnO during the preparation of the catalyst could have a promising application in the degradation of organic pollutants.
Collapse
Affiliation(s)
- Biruktait Ayele Lemecho
- Department of Materials Science and Engineering, Adama Science and Technology University, Adama, Ethiopia
| | - Fedlu Kedir Sabir
- Department of Applied Chemistry, Adama Science and Technology University, Adama, Ethiopia
| | - Dinsefa Mensur Andoshe
- Department of Materials Science and Engineering, Adama Science and Technology University, Adama, Ethiopia
| | - Noto Susanto Gultom
- Department of Materials Science and Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan
| | - Dong-Hau Kuo
- Department of Materials Science and Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan
| | - Xiaoyun Chen
- College of Materials Engineering, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Endale Mulugeta
- Department of Applied Chemistry, Adama Science and Technology University, Adama, Ethiopia
| | - Temesgen D. Desissa
- Department of Materials Science and Engineering, Adama Science and Technology University, Adama, Ethiopia
| | - Osman Ahmed Zelekew
- Department of Materials Science and Engineering, Adama Science and Technology University, Adama, Ethiopia
| |
Collapse
|
42
|
Wawrzyniak J, Karczewski J, Coy E, Ryl J, Grochowska K, Siuzdak K. Nanostructure of the laser-modified transition metal nanocomposites for water splitting. NANOTECHNOLOGY 2022; 33:205401. [PMID: 35108692 DOI: 10.1088/1361-6528/ac512a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 02/02/2022] [Indexed: 06/14/2023]
Abstract
Although hydrogen is considered by many to be the green fuel of the future, nowadays it is primarily produced through steam reforming, which is a process far from ecological. Therefore, emphasis is being put on the development of electrodes capable of the efficient production of hydrogen and oxygen from water. To make the green alternative possible, the solution should be cost-efficient and well processable, generating less waste which is a huge challenge. In this work, the laser-based modification technique of the titania nanotubes containing sputtered transition metal species (Fe, Co, Ni, and Cu) was employed. The characteristics of the electrodes are provided both for the hydrogen and oxygen evolution reactions, where the influence of the laser treatment has been found to have the opposite effect. The structural and chemical analysis of the substrate material provides insight into pathways towards more efficient, low-temperature water splitting. Laser-assisted integration of transition metal with the tubular nanostructure results in the match-like structure where the metal species are accumulated at the head. The electrochemical data indicates a significant decrease in material resistance that leads to an overpotential of only +0.69 V at 10 mA cm-2for nickel-modified material.
Collapse
Affiliation(s)
- Jakub Wawrzyniak
- The Szewalski Institute of Fluid-Flow Machinery, Polish Academy of Sciences, Fiszera 14, 80-231 Gdansk, Poland
| | - Jakub Karczewski
- Faculty of Applied Physics and Mathematics, Institute of Nanotechnology and Materials Engineering, Gdansk University of Technology, Narutowicza 11/12, 80-233 Gdansk, Poland
| | - Emerson Coy
- NanoBioMedical Centre, Adam Mickiewicz University, Wszechnicy Piastowskiej 3, 61-614 Poznan, Poland
| | - Jacek Ryl
- Faculty of Applied Physics and Mathematics, Institute of Nanotechnology and Materials Engineering, Gdansk University of Technology, Narutowicza 11/12, 80-233 Gdansk, Poland
| | - Katarzyna Grochowska
- The Szewalski Institute of Fluid-Flow Machinery, Polish Academy of Sciences, Fiszera 14, 80-231 Gdansk, Poland
| | - Katarzyna Siuzdak
- The Szewalski Institute of Fluid-Flow Machinery, Polish Academy of Sciences, Fiszera 14, 80-231 Gdansk, Poland
| |
Collapse
|
43
|
Abstract
Copper oxide (CuO) films were deposited onto glass substrates by the microwave assisted chemical bath deposition method, and varying the pH of the solution. The pH range was varied from 11.0 to 13.5, and the effects on the film properties were studied. An analytical study of the precursor solution was proposed to describe and understand the chemical reaction mechanisms that take place in the chemical bath at certain pH to produce the CuO film. A series of experiments were performed by varying the parameters of the analytical model from which the CuO films were obtained. The crystalline structure of the CuO films was studied using X-ray diffraction, while the surface morphology, chemical composition, and optical band-gap energy were analyzed by scanning electron microscopy, X-ray photoelectron spectroscopy, and UV–Vis spectrophotometry, respectively. The CuO films obtained exhibited a monoclinic crystalline phase, nanostructured surface morphology, stoichiometric Cu/O ratio of 50/50 at%, and band-gap energy value of 1.2 eV.
Collapse
|
44
|
Advanced Nanoscale Surface Characterization of CuO Nanoflowers for Significant Enhancement of Catalytic Properties. Molecules 2021; 26:molecules26092700. [PMID: 34064537 PMCID: PMC8124738 DOI: 10.3390/molecules26092700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 04/13/2021] [Accepted: 04/15/2021] [Indexed: 11/26/2022] Open
Abstract
In this work, advanced nanoscale surface characterization of CuO Nanoflowers synthesized by controlled hydrothermal approach for significant enhancement of catalytic properties has been investigated. The CuO nanoflower samples were characterized by field-emission scanning electron microscopy (FE-SEM), X-ray powder diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Raman spectroscopy, high-resolution transmission electron microscopy (HR-TEM), selected-area electron diffraction (SAED), high-angular annular dark field scanning transmission electron microscopy (HAADF-STEM) with elemental mapping, energy dispersive spectroscopy (STEM-EDS) and UV–Vis spectroscopy techniques. The nanoscale analysis of the surface study of monodispersed individual CuO nanoflower confirmed the fine crystalline shaped morphology composed of ultrathin leaves, monoclinic structure and purified phase. The result of HR-TEM shows that the length of one ultrathin leaf of copper oxide nanoflower is about ~650–700 nm, base is about ~300.77 ± 30 nm and the average thickness of the tip of individual ultrathin leaf of copper oxide nanoflower is about ~10 ± 2 nm. Enhanced absorption of visible light ~850 nm and larger value of band gap energy (1.68 eV) have further supported that the as-grown material (CuO nanoflowers) is an active and well-designed surface morphology at the nanoscale level. Furthermore, significant enhancement of catalytic properties of copper oxide nanoflowers in the presence of H2O2 for the degradation of methylene blue (MB) with efficiency ~96.7% after 170 min was obtained. The results showed that the superb catalytic performance of well-fabricated CuO nanoflowers can open a new way for substantial applications of dye removal from wastewater and environment fields.
Collapse
|
45
|
Zhang J, Tian H, Yu Y, Jiang Z, Ma M, He C. Novel CuO@TiO2 Core–Shell Nanostructure Catalyst for Selective Catalytic Reduction of NOx with NH3. Catal Letters 2021. [DOI: 10.1007/s10562-020-03515-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|