1
|
Hamdy DA, Ismail MAM, El-Askary HM, Abdel-Tawab H, Ahmed MM, Fouad FM, Mohamed F. Newly fabricated zinc oxide nanoparticles loaded materials for therapeutic nano delivery in experimental cryptosporidiosis. Sci Rep 2023; 13:19650. [PMID: 37949873 PMCID: PMC10638360 DOI: 10.1038/s41598-023-46260-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 10/30/2023] [Indexed: 11/12/2023] Open
Abstract
Cryptosporidiosis is a global health problem that threatens the lives of immunocompromised patients. This study targets to fabricate and investigate the efficiency of zinc oxide nanoparticles (ZnO-NPs), nitazoxanide (NTZ)-loaded ZnO-NPs, and Allium sativum (A. sativum)-loaded ZnO-NPs in treating cryptosporidiosis. Further FTIR, SEM, XRD, and zeta analysis were used for the characterization of ZnO-NPs and loaded materials. The morphology of loaded materials for ZnO-NPs changed into wrapped layers and well-distributed homogenous particles, which had a direct effect on the oocyst wall. The charge surface of all particles had a negative sign, which indicated well distribution into the parasite matrix. For anti-cryptosporidiosis efficiency, thirty immunosuppressed Cryptosporidium parvum-infected mice, classified into six groups, were sacrificed on the 21st day after infection with an evaluation of parasitological, histopathological, and oxidative markers. It was detected that the highest reduction percent of Cryptosporidium oocyst shedding was (81.5%) in NTZ, followed by (71.1%) in A. sativum-loaded ZnO-NPs-treated groups. Also, treatment with A. sativum and NTZ-loaded ZnO-NPs revealed remarkable amelioration of the intestinal, hepatic, and pulmonary histopathological lesions. Furthermore, they significantly produced an increase in GSH values and improved the changes in NO and MDA levels. In conclusion, this study is the first to report ZnO-NPs as an effective therapy for treating cryptosporidiosis, especially when combined with other treatments that enhance their antioxidant activity. It provides an economical and environment-friendly approach to novel delivery synthesis for antiparasitic applications.
Collapse
Affiliation(s)
- Doaa A Hamdy
- Department of Medical Parasitology, College of Medicine, Beni-Suef University, Beni-Suef, Egypt
| | - Mousa A M Ismail
- Department of Medical Parasitology, College of Medicine, Cairo University, Giza, Egypt
| | - Hala M El-Askary
- Department of Medical Parasitology, College of Medicine, Beni-Suef University, Beni-Suef, Egypt
| | - Heba Abdel-Tawab
- Department of Zoology, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
| | - Marwa M Ahmed
- Department of Pathology, College of Medicine, Beni-Suef University, Beni-Suef, Egypt
| | - Fatma M Fouad
- Department of Medical Parasitology, College of Medicine, Beni-Suef University, Beni-Suef, Egypt
| | - Fatma Mohamed
- Nanophotonics and Applications (NPA) Lab, Faculty of Science, Beni-Suef University, Beni-Suef, 62514, Egypt.
- Materials Science Lab, Chemistry Department, Faculty of Science, Beni-Suef University, Beni-Suef, 62511, Egypt.
| |
Collapse
|
2
|
Shaban M. Fabrication of ZnO/ZnAl 2O 4/Au Nanoarrays through DC Electrodeposition Utilizing Nanoporous Anodic Alumina Membranes for Environmental Application. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2667. [PMID: 37836308 PMCID: PMC10574107 DOI: 10.3390/nano13192667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 09/21/2023] [Accepted: 09/22/2023] [Indexed: 10/15/2023]
Abstract
In this study, anodic aluminum oxide membranes (AAOMs) and Au-coated AAOMs (AAOM/Au) with pore diameters of 55 nm and inter-pore spacing of 100 nm are used to develop ZnO/AAOM and ZnO/ZnAl2O4/Au nanoarrays of different morphologies. The effects of the electrodeposition current, time, barrier layer, and Au coating on the morphology of the resultant nanostructures were investigated using field emission scanning electron microscopy. Energy dispersive X-ray and X-ray diffraction were used to analyze the structural parameters and elemental composition of the ZnO/ZnAl2O4/Au nanoarray, and the Kirkendall effect was confirmed. The developed ZnO/ZnAl2O4/Au electrode was applied to remove organic dyes from aqueous solutions, including methylene blue (MB) and methyl orange (MO). Using a 3 cm2 ZnO/ZnAl2O4/Au sample, the 100% dye removal for 20 ppm MB and MO dyes at pH 7 and 25 °C was achieved after approximately 50 and 180 min, respectively. According to the kinetics analysis, the pseudo-second-order model controls the dye adsorption onto the sample surface. AAOM/Au and ZnO/ZnAl2O4/Au nanoarrays are also used as pH sensor electrodes. The sensing capability of AAOM/Au showed Nernstian behavior with a sensitivity of 65.1 mV/pH (R2 = 0.99) in a wide pH range of 2-9 and a detection limit of pH 12.6, whereas the ZnO/ZnAl2O4/Au electrode showed a slope of 40.1 ± 1.6 mV/pH (R2 = 0.996) in a pH range of 2-6. The electrode's behavior was more consistent with non-Nernstian behavior over the whole pH range under investigation. The sensitivity equation was given by V(mV) = 482.6 + 372.6 e-0.2095 pH at 25 °C with R2 = 1.0, which could be explained in terms of changes in the surface charge during protonation and deprotonation.
Collapse
Affiliation(s)
- Mohamed Shaban
- Department of Physics, Faculty of Science, Islamic University of Madinah, Madinah 42351, Saudi Arabia
| |
Collapse
|
3
|
Eldenary AOA, El-Salam HMA, Allah AE. Chitosan-g-polyacrylonitrile ZnO nano-composite, synthesis and characterization as new and good adsorbent for Iron from groundwater. Int J Biol Macromol 2023; 242:124768. [PMID: 37169054 DOI: 10.1016/j.ijbiomac.2023.124768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 05/01/2023] [Accepted: 05/03/2023] [Indexed: 05/13/2023]
Abstract
The highly poisonous, non-biodegradable heavy metals present serious concern in wastewater environmental sustainability and human health. Using adsorption is an effective technology for the treatment of this kind of water. Therefore, developing efficient and cost-effective adsorbents considers a significant and an emerging topic in the field the water purification. Chitosan grafted polyacrylonitrile (Cs-g-PAN) was facially fabricated via graft polymerization using ammonium persulfate (APS) as the initiator. The simple ultrasonic technique was used for doping ZnO nanoparticles into the Cs-g-PAN matrix to prepare chitosan-grafted polyacrylonitrile/ZnO (Cs-g-PAN/ZnO). For comparative study, pure ZnO and nanocomposite of PAN doped with ZnO (PAN/ZnO) were also prepared. XRD, FTIR, SEM, TEM, BET, EDS, and TGA measurements were conducted to confirm the morphological and structural properties of the prepared materials. Cs-g-PAN/ZnO possesses a specific surface area of 20.23 m2/g with a pore size of 31.58 nm and pore volume of 0.16 cm3 g-1. The adsorption behavior toward Fe(II) as a pollutant for groundwater was studied for the synthesized materials. The effect of pH (4-8), contact time (5-60 min), adsorbent dose (0.01-0.3 g), and different temperature degrees (278, 288, 298, 308, and 318 K) on the removal of iron (II) has been conducted. The removal efficiency was achieved 100 % under the optimum condition, at pH = 7, contact time 30 min, adsorbate concentration 0.93 mg/L, and adsorbent dosage 0.05 g/L at room temperature. Langmuir and Freundlich's isothermal and kinetic studies have been analyzed to determine the adsorption mechanism of Fe(II) ions on the synthesized nanomaterials. The adsorption process of Fe(II) over the surface of prepared catalysts proceeded via the Langmuir model and pseudo-second-order reaction kinetics with R2 > 0.99. Suggesting the formation of Fe(II) monolayer over the adsorbent surface and the rate-limiting step is probably controlled by chemisorption through sharing the electrons between Fe+2 and the prepared catalyst.
Collapse
Affiliation(s)
- Abdelrahman O A Eldenary
- Department of Chemistry, Faculty of Science, Polymer Research Laboratory, Beni-Suef University, 62514 Beni-Suef City, Egypt
| | - H M Abd El-Salam
- Department of Chemistry, Faculty of Science, Polymer Research Laboratory, Beni-Suef University, 62514 Beni-Suef City, Egypt.
| | - Abeer Enaiet Allah
- Department of Chemistry, Faculty of Science, Beni-Suef University, 62514 Beni-Suef City, Egypt
| |
Collapse
|
4
|
Synthesis of Green Engineered Silver Nanoparticles through Urtica dioica: An Inhibition of Microbes and Alleviation of Cellular and Organismal Toxicity in Drosophila melanogaster. Antibiotics (Basel) 2022; 11:antibiotics11121690. [PMID: 36551347 PMCID: PMC9774676 DOI: 10.3390/antibiotics11121690] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/09/2022] [Accepted: 11/18/2022] [Indexed: 11/25/2022] Open
Abstract
Plant fractions have a diversity of biomolecules that can be used to make complicated reactions for the bioactive fabrication of metal nanoparticles (NPs), in addition to being beneficial as antioxidant medications or dietary supplements. The current study shows that Urtica dioica (UD) and biologically synthesized silver nanoparticles (AgNPs) of UD have antibacterial and antioxidant properties against bacteria (Escherichia coli and Pseudomonas putida) and Drosophila melanogaster (Oregon R+). According to their ability to scavenge free radicals, DPPH, ABTS, TFC, and TPC initially estimated the antioxidant potential of UD and UD AgNPs. The fabricated AgNPs were analyzed (UV−Vis, FTIR, EDS, and SEM) to determine the functional groups (alcohol, carboxylic acids, phenol, proteins, and aldehydes) and to observe the shape (agglomerated crystalline and rod-shaped structure). The disc diffusion method was used to test the antimicrobial properties of synthesized Ag-NPs against E. coli and P. putida. For 24 to 120 h, newly enclosed flies and third instar larvae of Drosophila were treated with UD and UD AgNPs. After exposure, tests for biochemical effects (acetylcholinesterase inhibition and protein estimation assays), cytotoxicity (dye exclusion), and behavioral effects (jumping and climbing assays) were conducted. The results showed that nanoparticles were found to have potent antimicrobial activity against all microbial strains tested at various concentrations. In this regard, ethno-medicinal characteristics exhibit a similar impact in D. melanogaster, showing (p < 0.05) significantly decreased cellular toxicity (trypan blue dye), enhanced biochemical markers (AChE efficacy and proteotoxicity), and improved behavioral patterns in the organism treated with UD AgNPs, especially in comparison to UD extract. The results of this study may help in the utilization of specific plants as reliable sources of natural antioxidants that may have been beneficial in the synthesis of metallic NPs, which aids in the production of nanomedicine and other therapeutic applications.
Collapse
|
5
|
Preparation and evaluation of the antimicrobial activity of sodium alginate-grafted diphenylamine embedded with silver nanoparticles. Polym Bull (Berl) 2022. [DOI: 10.1007/s00289-022-04505-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
AbstractAntibiotic nanocomposite polymers show great promise in treating a variety of pathogens that cause widespread disease. Sodium alginate-grafted diphenylamine (NaAlg-g-DPA) embedded with different ratios of silver nanoparticles (AgNPs) was fabricated and characterized through different techniques including FTIR, XRD, and SEM techniques for investigating the antimicrobial activity. XRD confirmed the crystallinity of these compounds, and the average crystal size of Na Alg-g-DPA/Ag was estimated to be 48.6 nm. Then it was applied as an antimicrobial agent and evaluated through two ways (inhibition zone and MIC techniques) against Staphylococcus aureus as gram-positive bacteria with an inhibition zone of 19.31.6 mm and 18.60.63 mm against Escherichia coli as gram-negative bacteria while with increasing the Ag ratio 2:1 there was an enhancement in their biological activity to be 21.90.69 mm against Staphylococcus aureus and with an inhibition zone of 21.32.1 mm against Escherichia coli. The outcomes of this investigation are important for the development of new composite materials with antibacterial properties for industrial applications.
Collapse
|
6
|
Alfryyan N, Kordy MGM, Abdel-Gabbar M, Soliman HA, Shaban M. Characterization of the biosynthesized intracellular and extracellular plasmonic silver nanoparticles using Bacillus cereus and their catalytic reduction of methylene blue. Sci Rep 2022; 12:12495. [PMID: 35864132 PMCID: PMC9304349 DOI: 10.1038/s41598-022-16029-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 07/04/2022] [Indexed: 11/10/2022] Open
Abstract
The biosynthesis of silver nanoparticles (Ag NPs) has been studied in detail using two different approaches. For the first time, Bacillus cereus is used for one-pot biosynthesis of capsulated Ag NPs, using both intracellular and extracellular approaches. To discriminate between the produced nanostructures by these two approaches, their structures, nanomorphologies, optical properties, hydrodynamic sizes and zeta potentials are studied using different techniques. Fourier-transform infrared spectroscopy was used to identify the bioactive components responsible for the reduction of Ag+ ions into Ag and the growth of stable Ag NPs. Scanning and transmission electron microscopy images displayed spherical and polygon nanomorphology for the intracellular and extracellular biosynthesized Ag NPs. For intracellular and extracellular biosynthesized Ag NPs, a face-centred cubic structure was observed, with average crystallite sizes of 45.4 and 90.8 nm, respectively. In comparison to the noncatalytic reduction test, the catalytic activities of intracellular and extracellular biosynthesized Ag NPs were explored for the reduction of highly concentrated MB dye solution. Extracellular Ag NPs achieved 100% MB reduction efficacy after around 80 min, compared to 50.6% and 24.1% in the presence and absence of intracellular Ag NPs, respectively. The rate of MB reduction was boosted by 22 times with the extracellular catalyst, and by 3 times with the intracellular catalyst. Therefore, the extracellular production process of Ag NPs utilizing Bacillus cereus bacteria might be applied in the industry as a cost-effective way for eliminating the toxic MB dye.
Collapse
Affiliation(s)
- Nada Alfryyan
- Department of Physics, College of Sciences, Princess Nourah Bint Abdulrahman University, P.O. Box 84428, Riyadh, 11671, Saudi Arabia
| | - Mohamed G M Kordy
- Biochemistry Department, Faculty of Science, Beni-Suef University, P.O. Box 62521, Beni-Suef, Egypt.
- Nanophotonics and Applications (NPA) Lab, Physics Department, Faculty of Science, Beni-Suef University, Beni-Suef, 62514, Egypt.
| | - Mohammed Abdel-Gabbar
- Biochemistry Department, Faculty of Science, Beni-Suef University, P.O. Box 62521, Beni-Suef, Egypt
| | - Hanan A Soliman
- Biochemistry Department, Faculty of Science, Beni-Suef University, P.O. Box 62521, Beni-Suef, Egypt
| | - Mohamed Shaban
- Nanophotonics and Applications (NPA) Lab, Physics Department, Faculty of Science, Beni-Suef University, Beni-Suef, 62514, Egypt
- Department of Physics, Faculty of Science, Islamic University of Madinah, P.O. Box: 170, Al-Madinah Al-Munawarah, 42351, Saudi Arabia
| |
Collapse
|
7
|
Hamd A, Dryaz AR, Shaban M, AlMohamadi H, Abu Al-Ola KA, Soliman NK, Ahmed SA. Fabrication and Application of Zeolite/Acanthophora Spicifera Nanoporous Composite for Adsorption of Congo Red Dye from Wastewater. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:2441. [PMID: 34578757 PMCID: PMC8464800 DOI: 10.3390/nano11092441] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/20/2021] [Accepted: 08/30/2021] [Indexed: 11/16/2022]
Abstract
Systematic investigations involving laboratory, analytical, and field trials were carried out to obtain the most efficient adsorbent for the removal of congo red (CR) dye from industrial effluent. Modification of the zeolite (Z) by the Acanthophora Spicifera algae (AS; marine algae) was evaluated in terms of adsorption capability of the zeolite to remove CR dye from aqueous solution. The zeolite/algae composite (ZAS) was fabricated using the wet impregnation technique. The AS, Z, and the synthesized ZAS composite were analyzed utilizing various characterization techniques. The newly synthesized ZAS composite has an adsorption capacity that is significantly higher than that of Z and AS, particularly at low CR concentrations. Batch experiments were carried out to explore the effects of different experimental factors, as well as the dye adsorption isotherms and kinetics. Owing to the presence of intermolecular interactions, the computational analysis showed that the adsorption of the CR molecule on zeolite surfaces is exothermic, energetically favorable, and spontaneous. Furthermore, growing the zeolite surface area has no discernible effect on the adsorption energies in all configurations. The ZAS composite may be used as a low-cost substitute adsorbent for the removal of anionic dyes from industrial wastewater at lower dye concentrations, according to the experimental results. Adsorption of CR dye onto Z, AS, and ZAS adsorbents was adequately explained by pseudo-second-order kinetics and the Langmuir isotherm. The sorption mechanism was also evaluated using Weber's intra-particle diffusion module. Finally, field testing revealed that the newly synthesized adsorbent was 98.0% efficient at extracting dyes from industrial wastewater, proving the foundation of modern eco-friendly materials that aid in the reuse of industrial wastewater.
Collapse
Affiliation(s)
- Ahmed Hamd
- Nanophotonics and Applications Lab, Physics Department, Faculty of Science, Beni-Suef University, Beni-Suef 62514, Egypt;
- Basic Science Department, Nahda University Beni-Suef, Beni-Suef 62764, Egypt;
| | - Asmaa Ragab Dryaz
- Chemistry Department, Faculty of Science, Beni-Suef University, Beni-Suef 62511, Egypt; (A.R.D.); (S.A.A.)
| | - Mohamed Shaban
- Nanophotonics and Applications Lab, Physics Department, Faculty of Science, Beni-Suef University, Beni-Suef 62514, Egypt;
- Department of Physics, Faculty of Science, Islamic University in Madinah, Al-Madinah Al-Munawarah 42351, Saudi Arabia
| | - Hamad AlMohamadi
- Department of Chemical Engineering, Faculty of Engineering, Islamic University of Madinah, Madinah 42351, Saudi Arabia;
| | - Khulood A. Abu Al-Ola
- Department of Chemistry, College of Science, Taibah University, Al-Madinah Al-Munawarah 30002, Saudi Arabia;
| | | | - Sayed A. Ahmed
- Chemistry Department, Faculty of Science, Beni-Suef University, Beni-Suef 62511, Egypt; (A.R.D.); (S.A.A.)
| |
Collapse
|
8
|
Flieger J, Franus W, Panek R, Szymańska-Chargot M, Flieger W, Flieger M, Kołodziej P. Green Synthesis of Silver Nanoparticles Using Natural Extracts with Proven Antioxidant Activity. Molecules 2021; 26:4986. [PMID: 34443574 PMCID: PMC8398508 DOI: 10.3390/molecules26164986] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 08/14/2021] [Accepted: 08/15/2021] [Indexed: 12/20/2022] Open
Abstract
Natural extracts are a rich source of biomolecules that are useful not only as antioxidant drugs or diet supplements but also as complex reagents for the biogenic synthesis of metallic nanoparticles. The natural product components can act as strong reducing and capping substrates guaranteeing the stability of formed NPs. The current work demonstrates the suitability of extracts of Camellia sinensis, Ilex paraguariensis, Salvia officinalis, Tilia cordata, Levisticum officinale, Aegopodium podagraria, Urtica dioica, Capsicum baccatum, Viscum album, and marine algae Porphyra Yezoensis for green synthesis of AgNPs. The antioxidant power of methanolic extracts was estimated at the beginning according to their free radical scavenging activity by the DPPH method and reducing power activity by CUPRAC and SNPAC (silver nanoparticle antioxidant capacity) assays. The results obtained by the CUPRAC and SNAPC methods exhibited excellent agreement (R2~0.9). The synthesized AgNPs were characterized by UV-vis spectroscopy, Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), energy dispersive X-ray analysis (EDX), dynamic light scattering (DLS) particle size, and zeta potential. The UV-vis absorption spectra showed a peak at 423 nm confirming the presence of AgNPs. The shapes of extract-mediated AgNPs were mainly spherical, spheroid, rod-shaped, agglomerated crystalline structures. The NPs exhibited a high negative zeta potential value in the range from -49.8 mV to -56.1 mV, proving the existence of electrostatic stabilization. FTIR measurements indicated peaks corresponding to different functional groups such as carboxylic acids, alcohol, phenol, esters, ethers, aldehydes, alkanes, and proteins, which were involved in the synthesis and stabilization of AgNPs. Among the examined extracts, green tea showed the highest activity in all antioxidant tests and enabled the synthesis of the smallest nanoparticles, namely 62.51, 61.19, and 53.55 nm, depending on storage times of 30 min, 24 h, and 72 h, respectively. In turn, the Capsicum baccatum extract was distinguished by the lowest zeta potential, decreasing with storage time from -66.0 up to -88.6 mM.
Collapse
Affiliation(s)
- Jolanta Flieger
- Department of Analytical Chemistry, Medical University of Lublin, Chodźki 4A, 20-093 Lublin, Poland
| | - Wojciech Franus
- Department of Geotechnics, Civil Engineering and Architecture Faculty, Lublin University of Technology, Nadbystrzycka 40, 20-618 Lublin, Poland; (W.F.); (R.P.)
| | - Rafał Panek
- Department of Geotechnics, Civil Engineering and Architecture Faculty, Lublin University of Technology, Nadbystrzycka 40, 20-618 Lublin, Poland; (W.F.); (R.P.)
| | | | - Wojciech Flieger
- Chair and Department of Anatomy, Medical University of Lublin, 20-090 Lublin, Poland;
| | - Michał Flieger
- Faculty of Medicine, Medical University of Lublin, 20-090 Lublin, Poland;
| | - Przemysław Kołodziej
- Department of Biology and Genetics, Medical University of Lublin, Chodźki 4A, 20-093 Lublin, Poland;
| |
Collapse
|