1
|
Morganti D, Longo V, Leonardi AA, Irrera A, Colombo P, Fazio B. First Vibrational Fingerprint of Parietaria judaica Protein via Surface-Enhanced Raman Spectroscopy. BIOSENSORS 2025; 15:182. [PMID: 40136979 PMCID: PMC11940344 DOI: 10.3390/bios15030182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 03/07/2025] [Accepted: 03/11/2025] [Indexed: 03/27/2025]
Abstract
Accurate identification and characterization of allergenic proteins at the molecular level are essential for pinpointing the specific protein structures responsible for allergic reactions, thus advancing the development of precise diagnostic tests. Significant efforts have been focused on novel experimental techniques aimed at deepening the understanding of the underlying molecular mechanisms of these reactions. In this work, we show, for the first time to our knowledge, the unique Raman fingerprint of three Parietaria judaica (Par j) allergenic proteins. These proteins are typically present in pollen and are known to trigger severe respiratory diseases. In our research, we further exploited the surface-enhanced Raman scattering (SERS) effect from an Ag dendrite substrate. This approach provided better discrimination and a comprehensive analysis of the proteins Par j 1, 2, and 4 in hydration conditions, enabling rapid differentiation between them through a spectroscopic study.
Collapse
Affiliation(s)
- Dario Morganti
- CNR IMM-ME, Institute for Microelectronics and Microsystems, Viale F.S. d’Alcontres 31, I-98166 Messina, Italy; (D.M.); (A.I.)
- CNR DSFTM, Department of Physical Sciences and Technologies of Matter, Piazzale Aldo Moro, 7, I-00185 Roma, Italy
| | - Valeria Longo
- CNR IRIB-PA, Institute for Biomedical Research and Innovation, Via U. La Malfa 153, I-90146 Palermo, Italy;
| | - Antonio Alessio Leonardi
- Department of Chemical, Biological, Pharmaceutical, and Environmental Sciences (ChiBioFarAm), University of Messina, Viale F.S. d’Alcontres 31, I-98166 Messina, Italy;
| | - Alessia Irrera
- CNR IMM-ME, Institute for Microelectronics and Microsystems, Viale F.S. d’Alcontres 31, I-98166 Messina, Italy; (D.M.); (A.I.)
| | - Paolo Colombo
- CNR IRIB-PA, Institute for Biomedical Research and Innovation, Via U. La Malfa 153, I-90146 Palermo, Italy;
| | - Barbara Fazio
- CNR IMM-ME, Institute for Microelectronics and Microsystems, Viale F.S. d’Alcontres 31, I-98166 Messina, Italy; (D.M.); (A.I.)
| |
Collapse
|
2
|
Rizzo MG, Briglia M, Zammuto V, Morganti D, Faggio C, Impellitteri F, Multisanti CR, Graziano ACE. Innovation in Osteogenesis Activation: Role of Marine-Derived Materials in Bone Regeneration. Curr Issues Mol Biol 2025; 47:175. [PMID: 40136429 PMCID: PMC11941683 DOI: 10.3390/cimb47030175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2025] [Revised: 03/02/2025] [Accepted: 03/05/2025] [Indexed: 03/27/2025] Open
Abstract
Marine-derived biomaterials are emerging as promising candidates for tissue regeneration due to their sustainability, biocompatibility, bioactivity, and unique chemical structure. This review provides an overview of different marine-derived inorganic and organic materials, such as calcium carbonate, magnesium salts, silica, polysaccharides, bioactive peptides, and lipid-based compounds, and their effects in promoting osteogenesis. Specifically, the osteoinductive, osteoconductive, and osteointegrative activities of traditional and innovative materials that influence key molecular pathways such as BMP/Smad and Wnt/β-catenin signaling underlying bone formation will be evaluated. This review also prospects innovative approaches, i.e., phage display technology, to optimize marine-derived peptides for targeted bone regeneration. In the context of innovative and sustainable materials, this review suggests some interesting applications of unusual materials able to overcome the limitations of conventional ones and stimulate cellular regeneration of bone tissue by activating specific molecular pathways.
Collapse
Affiliation(s)
- Maria Giovanna Rizzo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d’Alcontres, 31, 98166 Messina, Italy;
| | - Marilena Briglia
- Department of Medicine and Surgery, “Kore” University of Enna, 94100 Enna, Italy; (M.B.); (A.C.E.G.)
| | - Vincenzo Zammuto
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d’Alcontres, 31, 98166 Messina, Italy;
| | - Dario Morganti
- Consiglio Nazionale delle Ricerche DSFTM, Department of Physical Sciences and Technologies of Matter, Piazzale Aldo Moro, 7, 00185 Roma, Italy
| | - Caterina Faggio
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d’Alcontres, 31, 98166 Messina, Italy;
- Department of Eco-Sustainable Marine Biotechnology, Stazione Zoologica Anton Dohrn, 80122 Naples, Italy
| | - Federica Impellitteri
- Department of Veterinary Sciences, University of Messina, Viale Giovanni Palatucci, 98168 Messina, Italy; (F.I.); (C.R.M.)
| | - Cristiana Roberta Multisanti
- Department of Veterinary Sciences, University of Messina, Viale Giovanni Palatucci, 98168 Messina, Italy; (F.I.); (C.R.M.)
| | | |
Collapse
|
3
|
Vardhan V, Biswas S, Ghosh S, Tsetseris L, Hellebust S, Echresh A, Georgiev YM, Holmes JD. Nitrogen Dioxide Detection with Ambipolar Silicon Nanowire Transistor Sensors. ACS APPLIED MATERIALS & INTERFACES 2025; 17:9539-9553. [PMID: 39889144 PMCID: PMC11826891 DOI: 10.1021/acsami.4c18322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 01/20/2025] [Accepted: 01/20/2025] [Indexed: 02/02/2025]
Abstract
Si nanowire transistors are ideal for the sensitive detection of atmospheric species due to their enhanced sensitivity to changes in the electrostatic potential at the channel surface. In this study, we present unique ambipolar Si junctionless nanowire transistors (Si-JNTs) that incorporate both n- and p-type conduction within a single device. These transistors enable scalable detection of nitrogen dioxide (NO2), a critical atmospheric oxidative pollutant, across a broad concentration range, from high levels (25-50 ppm) to low levels (250 ppb-2 ppm). Acting as an electron acceptor, NO2 generates holes and functions as a pseudodopant for Si-JNTs, altering the conductance and other device parameters. Consequently, ambipolar Si-JNTs exhibit a dual response at room temperature, reacting on both p- and n-conduction channels when exposed to gaseous NO2, thereby offering a larger parameter space compared to a unipolar device. Key characteristics of the Si-JNTs, including on-current (Ion), threshold voltage (Vth) and mobility (μ), were observed to dynamically change on both the p- and n-channels when exposed to NO2. The p-conduction channel showed superior performance across all parameters when compared to the device's n-channel. For example, within the NO2 concentration range of 250 ppb to 2 ppm, the p-channel achieved a responsivity of 37%, significantly surpassing the n-channel's 12.5%. Additionally, the simultaneous evolution of multiple parameters in this dual response space enhances the selectivity of Si-JNTs toward NO2 and improves their ability to distinguish between different pollutant gases, such as NO2, ammonia, sulfur dioxide and methane.
Collapse
Affiliation(s)
- Vaishali Vardhan
- School
of Chemistry, University College Cork, Cork T12 YN60, Ireland
- AMBER
Centre, Environmental Research Institute, University College Cork, Cork T23 XE10, Ireland
| | - Subhajit Biswas
- School
of Chemistry, University College Cork, Cork T12 YN60, Ireland
- AMBER
Centre, Environmental Research Institute, University College Cork, Cork T23 XE10, Ireland
| | - Sayantan Ghosh
- Institute
of Ion Beam Physics and Materials Research, Helmholtz-Zentrum Dresden Rossendorf, 01328 Dresden, Germany
- Technische
Universität Dresden, Dresden 01069, Germany
| | - Leonidas Tsetseris
- Department
of Physics, School of Applied Mathematical and Physical Sciences, National Technical University of Athens, Athens 15780, Greece
| | - S. Hellebust
- School
of Chemistry, University College Cork, Cork T12 YN60, Ireland
- AMBER
Centre, Environmental Research Institute, University College Cork, Cork T23 XE10, Ireland
| | - Ahmad Echresh
- Institute
of Ion Beam Physics and Materials Research, Helmholtz-Zentrum Dresden Rossendorf, 01328 Dresden, Germany
| | - Yordan M. Georgiev
- Institute
of Ion Beam Physics and Materials Research, Helmholtz-Zentrum Dresden Rossendorf, 01328 Dresden, Germany
- Institute
of Electronics at the Bulgarian Academy of Sciences, 72, Tsarigradsko Chaussee Blvd., Sofia 1784, Bulgaria
| | - Justin D. Holmes
- School
of Chemistry, University College Cork, Cork T12 YN60, Ireland
- AMBER
Centre, Environmental Research Institute, University College Cork, Cork T23 XE10, Ireland
| |
Collapse
|
4
|
Lo Faro MJ, Ielo I, Morganti D, Leonardi AA, Conoci S, Fazio B, De Luca G, Irrera A. Alkoxysilane-Mediated Decoration of Si Nanowires Vertical Arrays with Au Nanoparticles as Improved SERS-Active Platforms. Int J Mol Sci 2023; 24:16685. [PMID: 38069007 PMCID: PMC10706837 DOI: 10.3390/ijms242316685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 11/15/2023] [Accepted: 11/21/2023] [Indexed: 12/18/2023] Open
Abstract
The search for improved transducers to fabricate better-performing (bio)sensors is a challenging but rewarding endeavor aiming to better diagnose and treat diseases. In this paper, we report on the decoration of a dense vertical array of ultrathin silicon nanowires (Si NWs), produced by metal-assisted chemical etching, with 20 nm gold nanoparticles (Au NPs) for surface-enhanced Raman scattering (SERS) applications. To optimize the production of a uniform 3D SERS active platform, we tested different Si NW surface functionalizations with various alkoxysilanes before Au decoration. Scanning electron microscopy investigations confirm that Au NPs decorate both bare and (3-glycidiloxypropyl)trimethoxysilane (GPTMS)-modified Si NWs with a high surface coverage uniformity. The SERS response of the decorated NWs was probed using a model dye system (methylene blue; MB) at 633 and 785 nm excitation wavelengths. The GPTMS-modified NWs present the highest enhancements of 2.9 and 2.6 for the 450 cm-1 and 1625 cm-1 peaks under 785 nm excitation and of 10.8 and 5.3 for the 450 cm-1 and 1625 cm-1 peaks under 633 nm excitation. These results demonstrate the perspective role of Si NWs decorated with Au NPs as a low-cost 3D SERS platform.
Collapse
Affiliation(s)
- Maria Josè Lo Faro
- Dipartimento di Fisica e Astronomia “Ettore Majorana”, Università degli Studi di Catania, 95123 Catania, Italy;
- Istituto per la Microelettronica e Microsistemi, CNR-IMM Catania Università, 95121 Catania, Italy
| | - Ileana Ielo
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche, ed Ambientali, Università degli Studi di Messina, 98166 Messina, Italy; (I.I.); (D.M.); (S.C.)
| | - Dario Morganti
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche, ed Ambientali, Università degli Studi di Messina, 98166 Messina, Italy; (I.I.); (D.M.); (S.C.)
| | | | - Sabrina Conoci
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche, ed Ambientali, Università degli Studi di Messina, 98166 Messina, Italy; (I.I.); (D.M.); (S.C.)
- URT LAB SENS CNR and Beyond Nano, CNR, 98166 Messina, Italy; (A.A.L.); (B.F.)
- Istituto per la Microelettronica e Microsistemi, CNR-IMM Zona Industriale, 95121 Catania, Italy
| | - Barbara Fazio
- URT LAB SENS CNR and Beyond Nano, CNR, 98166 Messina, Italy; (A.A.L.); (B.F.)
| | - Giovanna De Luca
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche, ed Ambientali, Università degli Studi di Messina, 98166 Messina, Italy; (I.I.); (D.M.); (S.C.)
- URT LAB SENS CNR and Beyond Nano, CNR, 98166 Messina, Italy; (A.A.L.); (B.F.)
| | - Alessia Irrera
- URT LAB SENS CNR and Beyond Nano, CNR, 98166 Messina, Italy; (A.A.L.); (B.F.)
| |
Collapse
|
5
|
Zhang X, Yao C, Niu J, Li H, Xie C. Wafer-Scale Fabrication of Ultra-High Aspect Ratio, Microscale Silicon Structures with Smooth Sidewalls Using Metal Assisted Chemical Etching. MICROMACHINES 2023; 14:179. [PMID: 36677239 PMCID: PMC9865805 DOI: 10.3390/mi14010179] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/07/2023] [Accepted: 01/09/2023] [Indexed: 06/17/2023]
Abstract
Silicon structures with ultra-high aspect ratios have great potential applications in the fields of optoelectronics and biomedicine. However, the slope and increased roughness of the sidewalls inevitably introduced during the use of conventional etching processes (e.g., Bosch and DRIE) remain an obstacle to their application. In this paper, 4-inch wafer-scale, ultra-high aspect ratio (>140:1) microscale silicon structures with smooth sidewalls are successfully prepared using metal-assisted chemical etching (MacEtch). Here, we clarify the impact of the size from the metal catalytic structure on the sidewall roughness. By optimizing the etchant ratio to accelerate the etch rate of the metal-catalyzed structure and employing thermal oxidation, the sidewall roughness can be significantly reduced (average root mean square (RMS) from 42.3 nm to 15.8 nm). Simulations show that a maximum exciton production rate (Gmax) of 1.21 × 1026 and a maximum theoretical short-circuit current density (Jsc) of 39.78 mA/cm2 can be obtained for the micropillar array with smooth sidewalls, which have potential applications in high-performance microscale photovoltaic devices.
Collapse
Affiliation(s)
- Xiaomeng Zhang
- Key Laboratory of Microelectronic Devices & Integrated Technology, Institute of Microelectronics of Chinese Academy of Sciences, Beijing 100029, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chuhao Yao
- Key Laboratory of Microelectronic Devices & Integrated Technology, Institute of Microelectronics of Chinese Academy of Sciences, Beijing 100029, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiebin Niu
- Key Laboratory of Microelectronic Devices & Integrated Technology, Institute of Microelectronics of Chinese Academy of Sciences, Beijing 100029, China
| | - Hailiang Li
- Key Laboratory of Microelectronic Devices & Integrated Technology, Institute of Microelectronics of Chinese Academy of Sciences, Beijing 100029, China
| | - Changqing Xie
- Key Laboratory of Microelectronic Devices & Integrated Technology, Institute of Microelectronics of Chinese Academy of Sciences, Beijing 100029, China
| |
Collapse
|
6
|
Lo Faro MJ, Leonardi AA, Priolo F, Fazio B, Irrera A. Future Prospects of Luminescent Silicon Nanowires Biosensors. BIOSENSORS 2022; 12:1052. [PMID: 36421170 PMCID: PMC9688548 DOI: 10.3390/bios12111052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/15/2022] [Accepted: 11/17/2022] [Indexed: 06/16/2023]
Abstract
In this paper, we exploit the perspective of luminescent Si nanowires (NWs) in the growing field of commercial biosensing nanodevices for the selective recognition of proteins and pathogen genomes. We fabricated quantum confined fractal arrays of Si NWs with room temperature emission at 700 nm obtained by thin-film, metal-assisted, chemical etching with high production output at low cost. The fascinating optical features arising from multiple scattering and weak localization of light promote the use of Si NWs as optical biosensing platforms with high sensitivity and selectivity. In this work, label-free Si NW optical sensors are surface modified for the selective detection of C-reactive protein through antigen-gene interaction. In this case, we report the lowest limit of detection (LOD) of 1.6 fM, fostering the flexibility of different dynamic ranges for detection either in saliva or for serum analyses. By varying the NW surface functionalization with the specific antigen, the luminescence quenching of NW biosensors is used to measure the hepatitis B-virus pathogen genome without PCR-amplification, with an LOD of about 20 copies in real samples or blood matrix. The promising results show that NW optical biosensors can detect and isolate extracellular vesicles (EV) marked with CD81 protein with unprecedented sensitivity (LOD 2 × 105 sEV/mL), thus enabling their measurement even in a small amount of blastocoel fluid.
Collapse
Affiliation(s)
- Maria Josè Lo Faro
- Department of Physics and Astronomy, University of Catania, Via Santa Sofia 64, 95123 Catania, Italy
- CNR-IMM UoS Catania, Via Santa Sofia 64, 95123 Catania, Italy
| | - Antonio Alessio Leonardi
- Department of Physics and Astronomy, University of Catania, Via Santa Sofia 64, 95123 Catania, Italy
- CNR-IMM UoS Catania, Via Santa Sofia 64, 95123 Catania, Italy
| | - Francesco Priolo
- Department of Physics and Astronomy, University of Catania, Via Santa Sofia 64, 95123 Catania, Italy
| | - Barbara Fazio
- URT LAB SENS, Beyond Nano—CNR, c/o Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d’Alcontres 5, 98166 Messina, Italy
| | - Alessia Irrera
- URT LAB SENS, Beyond Nano—CNR, c/o Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d’Alcontres 5, 98166 Messina, Italy
| |
Collapse
|
7
|
Morganti D, Faro MJL, Leonardi AA, Fazio B, Conoci S, Irrera A. Luminescent Silicon Nanowires as Novel Sensor for Environmental Air Quality Control. SENSORS (BASEL, SWITZERLAND) 2022; 22:8755. [PMID: 36433351 PMCID: PMC9698341 DOI: 10.3390/s22228755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 10/28/2022] [Accepted: 11/07/2022] [Indexed: 06/16/2023]
Abstract
Air quality monitoring is an increasingly debated topic nowadays. The increasing spillage of waste products released into the environment has contributed to the increase in air pollution. Consequently, the production of increasingly performing devices in air monitoring is increasingly in demand. In this scenario, the attention dedicated to workplace safety monitoring has led to the developing and improving of new sensors. Despite technological advancements, sensors based on nanostructured materials are difficult to introduce into the manufacturing flow due to the high costs of the processes and the approaches that are incompatible with the microelectronics industry. The synthesis of a low-cost ultra-thin silicon nanowires (Si NWs)-based sensor is here reported, which allows us the detection of various dangerous gases such as acetone, ethanol, and the ammonia test as a proof of concept in a nitrogen-based mixture. A modified metal-assisted chemical etching (MACE) approach enables to obtain ultra-thin Si NWs by a cost-effective, rapid and industrially compatible process that exhibit an intense light emission at room temperature. All these gases are common substances that we find not only in research or industrial laboratories, but also in our daily life and can pose a serious danger to health, even at small concentrations of a few ppm. The exploitation of the Si NWs optical and electrical properties for the detection of low concentrations of these gases through their photoluminescence and resistance changes will be shown in a nitrogen-based gas mixture. These sensing platforms give fast and reversible responses with both optical and electrical transductions. These high performances and the scalable synthesis of Si NWs could pave the way for market-competitive sensors for ambient air quality monitoring.
Collapse
Affiliation(s)
- Dario Morganti
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d’Alcontres 5, 98166 Messina, Italy
| | - Maria José Lo Faro
- Department of Physics and Astronomy, University of Catania, Via Santa Sofia 64, 95123 Catania, Italy
- CNR-IMM UoS Catania, Via Santa Sofia 64, 95123 Catania, Italy
| | - Antonio Alessio Leonardi
- Department of Physics and Astronomy, University of Catania, Via Santa Sofia 64, 95123 Catania, Italy
- CNR-IMM UoS Catania, Via Santa Sofia 64, 95123 Catania, Italy
| | - Barbara Fazio
- URT LAB SENS, Beyond Nano—CNR, c/o Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d’Alcontres 5, 98166 Messina, Italy
| | - Sabrina Conoci
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d’Alcontres 5, 98166 Messina, Italy
- URT LAB SENS, Beyond Nano—CNR, c/o Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d’Alcontres 5, 98166 Messina, Italy
- CNR-IMM Istituto per la Microelettronica e Microsistemi, Zona Industriale, VIII Strada 5, 95121 Catania, Italy
| | - Alessia Irrera
- URT LAB SENS, Beyond Nano—CNR, c/o Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d’Alcontres 5, 98166 Messina, Italy
| |
Collapse
|
8
|
Kale P, Sahoo MK. Removal of Ag remanence and improvement in structural attributes of silicon nanowires array via sintering. Sci Rep 2021; 11:24189. [PMID: 34921206 PMCID: PMC8683431 DOI: 10.1038/s41598-021-03654-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 11/30/2021] [Indexed: 12/14/2022] Open
Abstract
Metal-assisted chemical etching (MACE) is popular due to the large-area fabrication of silicon nanowires (SiNWs) exhibiting a high aspect ratio at a low cost. The remanence of metal, i.e., silver nanoparticles (AgNPs) used in the MACE, deteriorates the device (especially solar cell) performance by acting as a defect center. The superhydrophobic behavior of nanowires (NWs) array prohibits any liquid-based solution (i.e., thorough cleaning with HNO3 solution) from removing the AgNPs. Thermal treatment of NWs is an alternative approach to reduce the Ag remanence. Sintering temperature variation is chosen between the melting temperature of bulk-Ag (962 °C) and bulk-Si (1412 °C) to reduce the Ag particles and improve the crystallinity of the NWs. The melting point of NWs decreases due to surface melting that restricts the sintering temperature to 1200 °C. The minimum sintering temperature is set to 1000 °C to eradicate the Ag remanence. The SEM-EDS analysis is carried out to quantify the reduction in Ag remanence in the sintered NWs array. The XRD analysis is performed to study the oxides (SiO and Ag2O) formed in the NWs array due to the trace oxygen level in the furnace. The TG-DSC characterization is carried out to know the critical sintering temperature at which remanence of AgNPs removes without forming any oxides. The Raman analysis is studied to determine the crystallinity, strain, and size of Si nanocrystals (SiNCs) formed on the NWs surface due to sidewalls etching. An optimized polynomial equation is derived to find the SiNCs size for various sintering temperatures.
Collapse
Affiliation(s)
- Paresh Kale
- Department of Electrical Engineering, NIT Rourkela, Odisha, 769008, India.
| | - Mihir Kumar Sahoo
- DST-IIT Bombay Energy Storage Platform On Hydrogen, IIT Bombay, Maharashtra, 410076, India
| |
Collapse
|
9
|
Leonardi AA, Lo Faro MJ, Fazio B, Spinella C, Conoci S, Livreri P, Irrera A. Fluorescent Biosensors Based on Silicon Nanowires. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:2970. [PMID: 34835735 PMCID: PMC8624671 DOI: 10.3390/nano11112970] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 10/27/2021] [Accepted: 11/03/2021] [Indexed: 01/05/2023]
Abstract
Nanostructures are arising as novel biosensing platforms promising to surpass current performance in terms of sensitivity, selectivity, and affordability of standard approaches. However, for several nanosensors, the material and synthesis used make the industrial transfer of such technologies complex. Silicon nanowires (NWs) are compatible with Si-based flat architecture fabrication and arise as a hopeful solution to couple their interesting physical properties and surface-to-volume ratio to an easy commercial transfer. Among all the transduction methods, fluorescent probes and sensors emerge as some of the most used approaches thanks to their easy data interpretation, measure affordability, and real-time in situ analysis. In fluorescent sensors, Si NWs are employed as substrate and coupled with several fluorophores, NWs can be used as quenchers in stem-loop configuration, and have recently been used for direct fluorescent sensing. In this review, an overview on fluorescent sensors based on Si NWs is presented, analyzing the literature of the field and highlighting the advantages and drawbacks for each strategy.
Collapse
Affiliation(s)
- Antonio Alessio Leonardi
- Dipartimento di Fisica e Astronomia “Ettore Majorana”, Università degli Studi di Catania, Via S. Sofia 64, 95123 Catania, Italy; (A.A.L.); (M.J.L.F.)
- Istituto per i Processi Chimico-Fisici, Consiglio Nazionale delle Ricerche (CNR-IPCF), Viale F. Stagno D’Alcontres 37, 98158 Messina, Italy;
- Istituto per la Microelettronica e Microsistemi, Consiglio Nazionale delle Ricerche (CNR-IMM) UoS Catania, Via S. Sofia 64, 95123 Catania, Italy
- Lab SENS, Beyond NANO, Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche, ed Ambientali, Università Degli Studi di Messina, Viale Ferdinando Stagno d’Alcontres, 98166 Messina, Italy; (C.S.); (S.C.)
| | - Maria José Lo Faro
- Dipartimento di Fisica e Astronomia “Ettore Majorana”, Università degli Studi di Catania, Via S. Sofia 64, 95123 Catania, Italy; (A.A.L.); (M.J.L.F.)
- Istituto per la Microelettronica e Microsistemi, Consiglio Nazionale delle Ricerche (CNR-IMM) UoS Catania, Via S. Sofia 64, 95123 Catania, Italy
| | - Barbara Fazio
- Istituto per i Processi Chimico-Fisici, Consiglio Nazionale delle Ricerche (CNR-IPCF), Viale F. Stagno D’Alcontres 37, 98158 Messina, Italy;
- Lab SENS, Beyond NANO, Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche, ed Ambientali, Università Degli Studi di Messina, Viale Ferdinando Stagno d’Alcontres, 98166 Messina, Italy; (C.S.); (S.C.)
| | - Corrado Spinella
- Lab SENS, Beyond NANO, Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche, ed Ambientali, Università Degli Studi di Messina, Viale Ferdinando Stagno d’Alcontres, 98166 Messina, Italy; (C.S.); (S.C.)
- Istituto per la Microelettronica e Microsistemi, Consiglio Nazionale delle Ricerche (CNR-IMM) Zona Industriale, VIII Strada 5, 95121 Catania, Italy
| | - Sabrina Conoci
- Lab SENS, Beyond NANO, Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche, ed Ambientali, Università Degli Studi di Messina, Viale Ferdinando Stagno d’Alcontres, 98166 Messina, Italy; (C.S.); (S.C.)
- Istituto per la Microelettronica e Microsistemi, Consiglio Nazionale delle Ricerche (CNR-IMM) Zona Industriale, VIII Strada 5, 95121 Catania, Italy
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche, ed Ambientali, Università Degli Studi di Messina, Viale Ferdinando Stagno d’Alcontres, 98166 Messina, Italy
| | - Patrizia Livreri
- Dipartimento di ingegneria, Università degli Studi di Palermo, Viale delle Scienze BLDG 9, 90128 Palermo, Italy;
| | - Alessia Irrera
- Istituto per i Processi Chimico-Fisici, Consiglio Nazionale delle Ricerche (CNR-IPCF), Viale F. Stagno D’Alcontres 37, 98158 Messina, Italy;
- Lab SENS, Beyond NANO, Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche, ed Ambientali, Università Degli Studi di Messina, Viale Ferdinando Stagno d’Alcontres, 98166 Messina, Italy; (C.S.); (S.C.)
| |
Collapse
|