1
|
Pedisić S, Zorić Z, Repajić M, Levaj B, Dobrinčić A, Balbino S, Čošić Z, Dragović-Uzelac V, Elez Garofulić I. Valorization of Berry Fruit By-Products: Bioactive Compounds, Extraction, Health Benefits, Encapsulation and Food Applications. Foods 2025; 14:1354. [PMID: 40282756 PMCID: PMC12026826 DOI: 10.3390/foods14081354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2025] [Revised: 04/07/2025] [Accepted: 04/11/2025] [Indexed: 04/29/2025] Open
Abstract
The increased production of high-quality berry products in recent years has led to considerable quantities of by-products such as pomace (25-50%), which consists of skin, seeds, stems and leaves. The improper management of pomace can lead to environmental pollution and potential public health problems due to microbial contamination, and storage causes additional processing costs. However, due to their high content of various valuable bioactive compounds (BACs), berry by-products have gained much attention as sustainable and functional ingredients with applications in the food and nutraceutical industries. The health benefits are primarily attributed to the phenolic compounds, which exhibit numerous biological activities, especially good antioxidant and antibacterial activity as well as health-promoting effects. This review summarizes the bioactive content and composition of extracts from berry by-products (genera Ribes, Rubus, Fragaria, Sambucus, Aronia and Vaccinium) obtained using advanced extraction technologies and their stabilization through sophisticated encapsulation technologies that make them suitable for various food applications. The addition of berry pomace to beverages, bakery, dairy and meat products improves sensory quality, extends shelf life, increases nutritional value and reduces the environmental footprint. This information can provide food scientists with valuable insights to evaluate the potential of berry by-products as functional ingredients with health-promoting and disease-preventing properties that create value-added products for human consumption while reducing food waste.
Collapse
Affiliation(s)
- Sandra Pedisić
- Centre for Food Technology and Biotechnology, University of Zagreb Faculty of Food Technology and Biotechnology, P. Kasandrića 3, 23000 Zadar, Croatia;
| | - Zoran Zorić
- Department of Ecology, Agronomy and Aquaculture, University of Zadar, Trg kneza Višeslava 9, 23000 Zadar, Croatia;
| | - Maja Repajić
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia; (M.R.); (B.L.); (A.D.); (S.B.); (V.D.-U.); (I.E.G.)
| | - Branka Levaj
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia; (M.R.); (B.L.); (A.D.); (S.B.); (V.D.-U.); (I.E.G.)
| | - Ana Dobrinčić
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia; (M.R.); (B.L.); (A.D.); (S.B.); (V.D.-U.); (I.E.G.)
| | - Sandra Balbino
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia; (M.R.); (B.L.); (A.D.); (S.B.); (V.D.-U.); (I.E.G.)
| | - Zrinka Čošić
- Centre for Food Technology and Biotechnology, University of Zagreb Faculty of Food Technology and Biotechnology, P. Kasandrića 3, 23000 Zadar, Croatia;
| | - Verica Dragović-Uzelac
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia; (M.R.); (B.L.); (A.D.); (S.B.); (V.D.-U.); (I.E.G.)
| | - Ivona Elez Garofulić
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia; (M.R.); (B.L.); (A.D.); (S.B.); (V.D.-U.); (I.E.G.)
| |
Collapse
|
2
|
Luo B, Xuan S, Wang X, Ding K, Jin P, Zheng Y, Wu Z. Liposome/chitosan coating film bioplastic packaging for Litchi fruit preservation. Food Chem 2025; 464:141850. [PMID: 39489124 DOI: 10.1016/j.foodchem.2024.141850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 10/12/2024] [Accepted: 10/28/2024] [Indexed: 11/05/2024]
Abstract
Chitosan is an ideal coating film for food preservation, but the performance of a single chitosan coating film is not good. Herein, the liposome was prepared by embedding copper nanoparticles (CuNPs) and thyme essential oil (TEO) in the hydrophilic and hydrophobic double-domain structure formed by phospholipids, and combining with chitosan to obtain a chitosan-based coating film for litchi preservation. The liposome was well-dispersed and stable with an average particle size of about 190 nm. The liposome showed excellent controllable release properties, and the cumulative release rate of TEO was 65.17 % and that of CuNPs was 15.17 % after 7 days. Furthermore, the oxygen and water vapor barrier properties of the coating film were greatly improved. Importantly, the film possessed effective antioxidant, antibacterial activity and excellent safety, which presents a better fresh-keeping effect on litchi. This study provides insights into the design and manufacture of food packaging for controllable and long-lasting preservation.
Collapse
Affiliation(s)
- Bodan Luo
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Simin Xuan
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiaotong Wang
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Keying Ding
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Peng Jin
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| | - Yonghua Zheng
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| | - Zhengguo Wu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
3
|
Singh A, Fatima Z, Srivastava D. A Comprehensive Review on Polyphenols based Nanovesicular System for Topical Delivery. Curr Drug Deliv 2025; 22:123-139. [PMID: 38279739 DOI: 10.2174/0115672018265118231213094410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 10/26/2023] [Accepted: 11/06/2023] [Indexed: 01/28/2024]
Abstract
BACKGROUND Polyphenols are naturally occurring compounds having more than one hydroxy functional group. They are ubiquitous secondary plant metabolites possessing a wide range of pharmacological activity. Brightly colored fruits and vegetables are the natural source of polyphenols. Majorly, they possess antioxidant, anti-inflammatory and antimicrobial properties which make them suitable candidates to target skin related disorders. OBJECTIVE This study is focused to explore the potential of polyphenols loaded nanovesicles for skin related disorders. The aim of the study is to review the applicability and efficacy of different vesicular systems encapsulated with various classes of polyphenols for skin related disorders, thus opening the opportunity for future studies based on these drug delivery systems. METHODS Web of Science, PubMed, Scopus database, and the search engine Google Scholar were accessed for the literature search. The results were then filtered based on the titles, abstracts, and accessibility of the complete texts. RESULTS The expository evaluation of the literature revealed that various nanovesicles like liposomes, niosomes, ethosomes and transferosomes incorporating polyphenol have been formulated to address issues pertaining to delivery across the skin. These developed nano vesicular systems have shown improvement in the physicochemical properties and pharmacological action. CONCLUSION Polyphenol based nano-vesicular formulations have proved to be an effective system for topical delivery and henceforth, they might curtail the use of other skin therapies having limited applicability.
Collapse
Affiliation(s)
- Anshu Singh
- Department of Pharmacy, Amity Institute of Pharmacy, Lucknow, Amity University Uttar Pradesh Lucknow, Noida, 201313, India
| | - Zeeshan Fatima
- Department of Pharmacy, Amity Institute of Pharmacy, Lucknow, Amity University Uttar Pradesh Lucknow, Noida, 201313, India
| | - Dipti Srivastava
- Hygia Institute of Pharmaceutical Education and Research, Lucknow, India
| |
Collapse
|
4
|
de Oliveira Bianchi JR, Fabrino DL, Quintão CMF, Dos Reis Coimbra JS, Santos IJB. Self-assembled α-lactalbumin nanostructures: encapsulation and controlled release of bioactive molecules in gastrointestinal in vitro model. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:9592-9602. [PMID: 39099556 DOI: 10.1002/jsfa.13784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 07/13/2024] [Accepted: 07/13/2024] [Indexed: 08/06/2024]
Abstract
BACKGROUND Implementing encapsulation techniques is pivotal in safeguarding bioactive molecules against environmental conditions for drug delivery systems. Moreover, the food-grade nanocarrier is a delivery system and food ingredient crucial in creating nutraceutical foods. Nano α-lactalbumin has been shown to be a promissory nanocarrier for hydrophobic molecules. Furthermore, the nanoprotein can enhance the tecno-functional properties of food such as foam and emulsion. The present study investigated the nanostructured α-lactalbumin protein (nano α-la) as a delivery and controlled release system for bioactive molecules in a gastric-intestinal in vitro mimic system. RESULTS The nano α-la was synthesized by a low self-assembly technique, changing the solution ionic strength by NaCl and obtaining nano α-la 191.10 ± 21.33 nm and a spherical shape. The nano α-la showed higher encapsulation efficiency and loading capacity for quercetin than riboflavin, a potential carrier for hydrophobic compounds. Thermal analysis of nano α-la resulted in a ΔH of -1480 J g-1 for denaturation at 57.44 °C. The nanostructure formed by self-assembly modifies the foam volume increment and stability. Also, differences between nano and native proteins in emulsion activity and stability were noticed. The release profile in vitro showed that the nano α-la could not hold the molecules in gastric fluid. The Weibull and Korsmeyer-Peppas model better fits the release profile behavior in the studied fluids. CONCLUSION The present study shows the possibility of nano α-la as an alternative to molecule delivery systems and nutraceutical foods' formulation because of the high capacity to encapsulate hydrophobic molecules and the improvement of techno-functional properties. However, the nanocarrier is not perfectly suitable for the sustainable delivery of molecules in the gastrointestinal fluid, demanding improvements in the nanocarrier. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Jhonatan Rafael de Oliveira Bianchi
- Department of Chemistry, Biotechnology and Bioprocess Engineering, Federal University of São João del Rei (UFSJ), Alto Paraopeba Campus, Ouro Branco, Brazil
| | - Daniela Leite Fabrino
- Department of Chemistry, Biotechnology and Bioprocess Engineering, Federal University of São João del Rei (UFSJ), Alto Paraopeba Campus, Ouro Branco, Brazil
| | - Cristiane Medina Finzi Quintão
- Department of Chemical Engineering, Federal University of São João del Rei (UFSJ), Alto Paraopeba Campus, Ouro Branco, Brazil
| | | | - Igor José Boggione Santos
- Department of Chemistry, Biotechnology and Bioprocess Engineering, Federal University of São João del Rei (UFSJ), Alto Paraopeba Campus, Ouro Branco, Brazil
| |
Collapse
|
5
|
Mahmutović L, Sezer A, Bilajac E, Hromić-Jahjefendić A, Uversky VN, Glamočlija U. Polyphenol stability and bioavailability in cell culture medium: Challenges, limitations and future directions. Int J Biol Macromol 2024; 279:135232. [PMID: 39218177 DOI: 10.1016/j.ijbiomac.2024.135232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 08/22/2024] [Accepted: 08/29/2024] [Indexed: 09/04/2024]
Abstract
Polyphenols are abundant natural plant micronutrients that commonly contribute to human health due to their anti-inflammatory, antioxidant, antiviral, anti-carcinogenic, anti-aging, anti-allergic, and other biological activities. Their therapeutic benefits mainly depend on the structure, stability, chemical interactions, and absorption, which ultimately affect the bioavailability of these compounds. The bioactivity of polyphenols is evaluated by in vitro and in vivo studies, sometimes yielding inconsistent results due to numerous differences between used models. Among the main differences is the production of reactive oxygen species (ROS) in cultured cell models, potentially leading to misinterpretation of the effects of polyphenolic compounds. Little attention is paid to the polyphenol stability in cell culture medium and the potential generation of artifacts due to their chemical instability. Stability tests of polyphenols are strongly advised to be performed in parallel with cell culture, to help avoid misleading conclusions. This review highlights the existing challenges with cell-based research, focusing on polyphenols' stability in the cell culture media. We also emphasize that new methods analyzing the molecular interactions of compounds with cell culture media supplements are essential to provide a comprehensive understanding of the polyphenols in in vitro models.
Collapse
Affiliation(s)
- Lejla Mahmutović
- Department of Genetics and Bioengineering, Faculty of Engineering and Natural Sciences, International University of Sarajevo, Hrasnička cesta 15, 71000 Sarajevo, Bosnia and Herzegovina.
| | - Abas Sezer
- Department of Genetics and Bioengineering, Faculty of Engineering and Natural Sciences, International University of Sarajevo, Hrasnička cesta 15, 71000 Sarajevo, Bosnia and Herzegovina.
| | - Esma Bilajac
- Department of Genetics and Bioengineering, Faculty of Engineering and Natural Sciences, International University of Sarajevo, Hrasnička cesta 15, 71000 Sarajevo, Bosnia and Herzegovina
| | - Altijana Hromić-Jahjefendić
- Department of Genetics and Bioengineering, Faculty of Engineering and Natural Sciences, International University of Sarajevo, Hrasnička cesta 15, 71000 Sarajevo, Bosnia and Herzegovina.
| | - Vladimir N Uversky
- Department of Molecular Medicine and USF Health Byrd Alzheimer's Institute, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA.
| | - Una Glamočlija
- Department of Pharmaceutical Biochemistry and Laboratory Diagnostics, University of Sarajevo - Faculty of Pharmacy, Zmaja od Bosne 8, 71000 Sarajevo, Bosnia and Herzegovina; Department of Histology and Embryology, School of Medicine, University of Mostar, Zrinskog Frankopana 34, 88000 Mostar, Bosnia and Herzegovina; Scientific Research Unit, Bosnalijek JSC, Jukićeva 53, Sarajevo 71000, Bosnia and Herzegovina.
| |
Collapse
|
6
|
Sallustio V, Rossi M, Mandrone M, Rossi F, Chiocchio I, Cerchiara T, Longo E, Fratini M, D'Amico L, Tromba G, Malucelli E, Protti M, Mercolini L, Di Blasio A, Aponte M, Blaiotta G, Abruzzo A, Bigucci F, Luppi B, Cappadone C. A promising eco-sustainable wound dressing based on cellulose extracted from Spartium junceum L. and impregnated with Glycyrrhiza glabra L extract: Design, production and biological properties. Int J Biol Macromol 2024; 272:132883. [PMID: 38838898 DOI: 10.1016/j.ijbiomac.2024.132883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 05/31/2024] [Accepted: 06/02/2024] [Indexed: 06/07/2024]
Abstract
Glycyrrhiza glabra extract is widely known for its antioxidant and anti-inflammatory properties and can improve the wound healing process. The aim of this work was to shorten the time of the healing process by using an eco-sustainable wound dressing based on Spanish broom flexible cellulosic fabric by impregnation with G. glabra extract-loaded ethosomes. Chemical analysis of G. glabra extract was performed by LC-DAD-MS/MS and its encapsulation into ethosomes was obtained using the ethanol injection method. Lipid vesicles were characterized in terms of size, polydispersity index, entrapment efficiency, zeta potential, and stability. In vitro release studies, biocompatibility, and scratch test on 3T3 fibroblasts were performed. Moreover, the structure of Spanish broom dressing and its ability to absorb wound exudate was characterized by Synchrotron X-ray phase contrast microtomography (SR-PCmicroCT). Ethosomes showed a good entrapment efficiency, nanometric size, good stability over time and a slow release of polyphenols compared to the free extract, and were not cytotoxic. Lastly, the results revealed that Spanish broom wound dressing loaded with G. glabra ethosomes is able to accelerate wound closure by reducing wound healing time. To sum up, Spanish broom wound dressing could be a potential new green tool for biomedical applications.
Collapse
Affiliation(s)
- V Sallustio
- Drug Delivery Research Lab., Department of Pharmacy and Biotechnology, Alma Mater Studiorum, University of Bologna, Via San Donato 19/2, 40127 Bologna, Italy.
| | - M Rossi
- Drug Delivery Research Lab., Department of Pharmacy and Biotechnology, Alma Mater Studiorum, University of Bologna, Via San Donato 19/2, 40127 Bologna, Italy; Center for Applied Biomedical Research (CRBA), Alma Mater Studiorum, University of Bologna, Via Massarenti 9, 40138 Bologna, Italy.
| | - M Mandrone
- Pharmaceutical Botany Lab., Department of Pharmacy and Biotechnology, Alma Mater Studiorum, University of Bologna, Via Irnerio 42, 40127 Bologna, Italy.
| | - F Rossi
- Pharmaceutical Biochemistry Lab., Department of Pharmacy and Biotechnology, Alma Mater Studiorum, University of Bologna, Via San Donato 19/2, 40127 Bologna, Italy; CRMBM, CNRS, Aix Marseille University, 13385 Marseille, France.
| | - I Chiocchio
- Pharmaceutical Botany Lab., Department of Pharmacy and Biotechnology, Alma Mater Studiorum, University of Bologna, Via Irnerio 42, 40127 Bologna, Italy.
| | - T Cerchiara
- Drug Delivery Research Lab., Department of Pharmacy and Biotechnology, Alma Mater Studiorum, University of Bologna, Via San Donato 19/2, 40127 Bologna, Italy.
| | - E Longo
- Elettra-Sincrotrone Trieste S.C.p.A 34149, Basovizza, Trieste, Italy.
| | - M Fratini
- CNR-Nanotec (Roma unit) c/o Department of Physics, La Sapienza University Piazzale Aldo Moro, 5-00185 Rome (Italy) & IRCCS Fondazione Santa Lucia, Via Ardeatina, 306-00179 Rome, Italy.
| | - L D'Amico
- Department of Physics, University of Trieste, Trieste, Italy.
| | - G Tromba
- Elettra-Sincrotrone Trieste S.C.p.A 34149, Basovizza, Trieste, Italy.
| | - E Malucelli
- Pharmaceutical Biochemistry Lab., Department of Pharmacy and Biotechnology, Alma Mater Studiorum, University of Bologna, Via San Donato 19/2, 40127 Bologna, Italy.
| | - M Protti
- Pharmaco-Toxicological Analysis (PTA Lab.), Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, Via Belmeloro 6, 40126 Bologna, Italy.
| | - L Mercolini
- Pharmaco-Toxicological Analysis (PTA Lab.), Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, Via Belmeloro 6, 40126 Bologna, Italy.
| | - A Di Blasio
- Department of Agricultural Sciences, University of Naples "Federico II", 80055 Portici, Italy.
| | - M Aponte
- Department of Agricultural Sciences, University of Naples "Federico II", 80055 Portici, Italy.
| | - G Blaiotta
- Department of Agricultural Sciences, University of Naples "Federico II", 80055 Portici, Italy.
| | - A Abruzzo
- Drug Delivery Research Lab., Department of Pharmacy and Biotechnology, Alma Mater Studiorum, University of Bologna, Via San Donato 19/2, 40127 Bologna, Italy.
| | - F Bigucci
- Drug Delivery Research Lab., Department of Pharmacy and Biotechnology, Alma Mater Studiorum, University of Bologna, Via San Donato 19/2, 40127 Bologna, Italy.
| | - B Luppi
- Drug Delivery Research Lab., Department of Pharmacy and Biotechnology, Alma Mater Studiorum, University of Bologna, Via San Donato 19/2, 40127 Bologna, Italy.
| | - C Cappadone
- Pharmaceutical Biochemistry Lab., Department of Pharmacy and Biotechnology, Alma Mater Studiorum, University of Bologna, Via San Donato 19/2, 40127 Bologna, Italy.
| |
Collapse
|
7
|
Dong H, Wang S, Fu C, Sun Y, Wei T, Ren D, Wang Q. Sodium alginate and chitosan co-modified fucoxanthin liposomes: preparation, bioaccessibility and antioxidant activity. J Microencapsul 2023; 40:649-662. [PMID: 37867421 DOI: 10.1080/02652048.2023.2274057] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 10/17/2023] [Indexed: 10/24/2023]
Abstract
To improve the stability of fucoxanthin, fucoxanthin liposomes (L) were prepared by the thin-film ultrasound method, and fucoxanthin liposomes were modified with sodium alginate and chitosan by an electrostatic deposition method. The release characteristics of fucoxanthin in different types of liposomes with in vitro gastrointestinal simulation were studied. Under the optimum conditions, the results showed that the encapsulation efficiency of prepared liposomes could reach 88.56 ± 1.40% (m/m), with an average particle size of 295.27 ± 7.28 nm, a Zeta potential of -21.53 ± 2.00 mV, a polydispersity index (PDI) of 0.323 ± 0.007 and a loading capacity of 33.3 ± 0.03% (m/m). Compared with L and chitosan modified fucoxanthin liposomes (CH), sodium alginate and chitosan modified fucoxanthin liposomes (SA-CH) exhibited higher storage stability, in vitro bioaccessibility and antioxidant activity after gastrointestinal digestion. Sodium alginate and chitosan co-modified liposomes can be developed as formulations for encapsulation and delivery of functional ingredients, providing a theoretical basis for developing new fucoxanthin series products.
Collapse
Affiliation(s)
- Hongchun Dong
- College of Food Science and Engineering, Dalian Ocean University, Dalian, PR China
| | - Siyuan Wang
- College of Food Science and Engineering, Dalian Ocean University, Dalian, PR China
| | - Cong Fu
- College of Food Science and Engineering, Dalian Ocean University, Dalian, PR China
| | - Yanxiaofan Sun
- College of Food Science and Engineering, Dalian Ocean University, Dalian, PR China
| | - Tuantuan Wei
- College of Food Science and Engineering, Dalian Ocean University, Dalian, PR China
| | - Dandan Ren
- College of Food Science and Engineering, Dalian Ocean University, Dalian, PR China
- National R & D Branch Center for Seaweed Processing, Dalian, PR China
- Key Laboratory of Aquatic Product Processing and Utilization of Liaoning Province, Dalian, PR China
| | - Qiukuan Wang
- College of Food Science and Engineering, Dalian Ocean University, Dalian, PR China
- National R & D Branch Center for Seaweed Processing, Dalian, PR China
- Key Laboratory of Aquatic Product Processing and Utilization of Liaoning Province, Dalian, PR China
| |
Collapse
|
8
|
Caddeo C, Tuberoso CIG, Floris S, Masala V, Sanna C, Pintus F. A Nanotechnological Approach to Exploit and Enhance the Bioactivity of an Extract from Onopordum illyricum L. Leaves. PLANTS (BASEL, SWITZERLAND) 2023; 12:1453. [PMID: 37050078 PMCID: PMC10096861 DOI: 10.3390/plants12071453] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/21/2023] [Accepted: 03/24/2023] [Indexed: 06/19/2023]
Abstract
Plant-derived products have been used for preventive and curative purposes from the ancient era to the present day. Several studies have demonstrated the efficacy of either multicomponent-based extracts, enriched fractions, or isolated bioactives. However, they often display low solubility and bioavailability, chemical instability, poor absorption, and even toxicity, which restrict application in therapy. The use of drug delivery systems, especially nanocarriers, can overcome these physicochemical and pharmacokinetic limitations. In this study, an extract from Onopordum illyricum leaves was produced by maceration in 80% ethanol, characterized by liquid chromatography coupled to mass spectrometry, and formulated in phospholipid vesicles with the aim of exploiting and possibly enhancing its bioactivity for skin delivery. The results showed that phenolic compounds were abundantly present in the extract, especially hydroxycinnamic acid and flavonol derivatives. The extract-loaded vesicles showed small size (<100 nm), high entrapment efficiency (even >90% for most phenolic compounds), and good long-term stability. Moreover, the extract-loaded vesicles exhibited remarkable antioxidant activity, as demonstrated by colorimetric assays and by enhanced reduction of intracellular reactive oxygen species (ROS) levels in cultured skin cells. Hence, our findings support the key role of nanotechnological approaches to promote the potential of plant extracts and strengthen their application in therapy.
Collapse
Affiliation(s)
- Carla Caddeo
- Department of Life and Environmental Sciences, University of Cagliari, SS 554—Bivio per Sestu, Monserrato, 09042 Cagliari, Italy
| | - Carlo Ignazio Giovanni Tuberoso
- Department of Life and Environmental Sciences, University of Cagliari, SS 554—Bivio per Sestu, Monserrato, 09042 Cagliari, Italy
| | - Sonia Floris
- Department of Life and Environmental Sciences, University of Cagliari, SS 554—Bivio per Sestu, Monserrato, 09042 Cagliari, Italy
| | - Valentina Masala
- Department of Life and Environmental Sciences, University of Cagliari, SS 554—Bivio per Sestu, Monserrato, 09042 Cagliari, Italy
| | - Cinzia Sanna
- Department of Life and Environmental Sciences, University of Cagliari, Via S. Ignazio da Laconi 13, 09123 Cagliari, Italy
| | - Francesca Pintus
- Department of Life and Environmental Sciences, University of Cagliari, SS 554—Bivio per Sestu, Monserrato, 09042 Cagliari, Italy
| |
Collapse
|
9
|
Furlan V, Bren U. Helichrysum italicum: From Extraction, Distillation, and Encapsulation Techniques to Beneficial Health Effects. Foods 2023; 12:802. [PMID: 36832877 PMCID: PMC9957194 DOI: 10.3390/foods12040802] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/08/2023] [Accepted: 02/11/2023] [Indexed: 02/16/2023] Open
Abstract
Helichrysum italicum (family Asteraceae), due to its various beneficial health effects, represents an important plant in the traditional medicine of Mediterranean countries. Currently, there is a renewed interest in this medicinal plant, especially in investigations involving the isolation and identification of its bioactive compounds from extracts and essential oils, as well as in experimental validation of their pharmacological activities. In this paper, we review the current knowledge on the beneficial health effects of Helichrysum italicum extracts, essential oils, and their major bioactive polyphenolic compounds, ranging from antioxidative, anti-inflammatory, and anticarcinogenic activities to their antiviral, antimicrobial, insecticidal, and antiparasitic effects. This review also provides an overview of the most promising extraction and distillation techniques for obtaining high-quality extracts and essential oils from Helichrysum italicum, as well as methods for determining their antioxidative, antimicrobial, anti-inflammatory, and anticarcinogenic activities. Finally, new ideas for in silico studies of molecular mechanisms of bioactive polyphenols from Helichrysum italicum, together with novel suggestions for their improved bioavailability through diverse encapsulation techniques, are introduced.
Collapse
Affiliation(s)
- Veronika Furlan
- Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova 17, SI-2000 Maribor, Slovenia
| | - Urban Bren
- Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova 17, SI-2000 Maribor, Slovenia
- Faculty of Mathematics, Natural Sciences and Information Technologies, University of Primorska, Glagoljaška 8, SI-6000 Koper, Slovenia
- Institute of Environmental Protection and Sensors, Beloruska Ulica 7, SI-2000 Maribor, Slovenia
| |
Collapse
|
10
|
Encapsulated-based films for bioactive compounds and their application in the food industry: A roadmap for food-derived functional and healthy ingredients. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
11
|
Šeremet D, Štefančić M, Petrović P, Kuzmić S, Doroci S, Mandura Jarić A, Vojvodić Cebin A, Pjanović R, Komes D. Development, Characterization and Incorporation of Alginate-Plant Protein Covered Liposomes Containing Ground Ivy ( Glechoma hederacea L.) Extract into Candies. Foods 2022; 11:foods11121816. [PMID: 35742016 PMCID: PMC9222263 DOI: 10.3390/foods11121816] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 06/13/2022] [Accepted: 06/17/2022] [Indexed: 02/04/2023] Open
Abstract
Ground ivy (Glechoma hederacea L.) has been known as a medicinal plant in folk medicine for generations and, as a member of the Lamiaceae family, is characterized with a high content of rosmarinic acid. The aim of the present study was to formulate delivery systems containing bioactive compounds from ground ivy in encapsulated form and incorporated into candies. Liposomes were examined as the encapsulation systems that were additionally coated with an alginate–plant protein gel to reduce leakage of the incorporated material. Bioactive characterization of the ground ivy extract showed a high content of total phenolics (1186.20 mg GAE/L) and rosmarinic acid (46.04 mg/L). The formulation of liposomes with the high encapsulation efficiency of rosmarinic acid (97.64%), with at least a double bilayer and with polydisperse particle size distribution was achieved. Alginate microparticles reinforced with rice proteins provided the highest encapsulation efficiency for rosmarinic acid (78.16%) and were therefore used for the successful coating of liposomes, as confirmed by FT-IR analysis. Coating liposomes with alginate–rice protein gel provided prolonged controlled release of rosmarinic acid during simulated gastro-intestinal digestion, and the same was noted when they were incorporated into candies.
Collapse
Affiliation(s)
- Danijela Šeremet
- Department of Food Engineering, Faculty of Food Technology and Biotechnology, University of Zagreb, Pierotti St 6, 10 000 Zagreb, Croatia; (D.Š.); (M.Š.); (S.D.); (A.M.J.); (A.V.C.)
| | - Martina Štefančić
- Department of Food Engineering, Faculty of Food Technology and Biotechnology, University of Zagreb, Pierotti St 6, 10 000 Zagreb, Croatia; (D.Š.); (M.Š.); (S.D.); (A.M.J.); (A.V.C.)
| | - Predrag Petrović
- Department of Chemical Engineering, Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, 11 000 Belgrade, Serbia; (P.P.); (R.P.)
| | - Sunčica Kuzmić
- Forensic Science Centre “Ivan Vučetić” Zagreb, Forensic Science Office, University of Zagreb, Ilica 335, 10 000 Zagreb, Croatia;
| | - Shefkije Doroci
- Department of Food Engineering, Faculty of Food Technology and Biotechnology, University of Zagreb, Pierotti St 6, 10 000 Zagreb, Croatia; (D.Š.); (M.Š.); (S.D.); (A.M.J.); (A.V.C.)
| | - Ana Mandura Jarić
- Department of Food Engineering, Faculty of Food Technology and Biotechnology, University of Zagreb, Pierotti St 6, 10 000 Zagreb, Croatia; (D.Š.); (M.Š.); (S.D.); (A.M.J.); (A.V.C.)
| | - Aleksandra Vojvodić Cebin
- Department of Food Engineering, Faculty of Food Technology and Biotechnology, University of Zagreb, Pierotti St 6, 10 000 Zagreb, Croatia; (D.Š.); (M.Š.); (S.D.); (A.M.J.); (A.V.C.)
| | - Rada Pjanović
- Department of Chemical Engineering, Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, 11 000 Belgrade, Serbia; (P.P.); (R.P.)
| | - Draženka Komes
- Department of Food Engineering, Faculty of Food Technology and Biotechnology, University of Zagreb, Pierotti St 6, 10 000 Zagreb, Croatia; (D.Š.); (M.Š.); (S.D.); (A.M.J.); (A.V.C.)
- Correspondence: ; Tel.: +385-1-4605-183
| |
Collapse
|
12
|
Jøraholmen MW, Damdimopoulou P, Acharya G, Škalko-Basnet N. Toxicity Assessment of Resveratrol Liposomes-in-Hydrogel Delivery System by EpiVaginal TM Tissue Model. Pharmaceutics 2022; 14:pharmaceutics14061295. [PMID: 35745867 PMCID: PMC9231258 DOI: 10.3390/pharmaceutics14061295] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/14/2022] [Accepted: 06/16/2022] [Indexed: 11/16/2022] Open
Abstract
The natural polyphenol resveratrol (RES) has shown great potential as an antimicrobial, including against microbes associated with vaginal infections. To fully exploit the activities of RES, an all-natural ingredients formulation for RES delivery at vaginal site has been developed, namely liposomes loaded with RES, incorporated into a chitosan hydrogel as secondary vehicle. Although considered non-toxic and safe on their own, the compatibility of the final formulation must be evaluated for its biocompatibility and non-irritancy to the vaginal mucosa. As a preclinical safety assessment, the impact of RES formulation on the tissue viability, the effect on barrier function and cell monolayer integrity, and cytotoxicity were evaluated using the cell-based vaginal tissue model, the EpiVaginal™ tissue. RES liposomes-in-hydrogel formulations neither affected the mitochondrial activity, nor the integrity of the cell monolayer in RES concentration up to 60 µg/mL. Moreover, the barrier function was maintained to a greater extent by RES in formulation, emphasizing the benefits of the delivery system. Additionally, none of the tested formulations expressed an increase in lactate dehydrogenase activity compared to the non-treated tissues. The evaluation of the RES delivery system suggests that it is non-irritant and biocompatible with vaginal tissue in vitro in the RES concentrations considered as therapeutic.
Collapse
Affiliation(s)
- May Wenche Jøraholmen
- Drug Transport and Delivery Research Group, Department of Pharmacy, Faculty of Health Sciences, UiT The Arctic University of Norway, Universitetsveien 57, 9037 Tromsø, Norway;
- Division of Obstetrics and Gynecology, Department of Clinical Science, Intervention and Technology, Karolinska Institutet and Karolinska University Hospital, SE-14186 Stockholm, Sweden; (P.D.); (G.A.)
- Correspondence: ; Tel.: +47-776-23376
| | - Pauliina Damdimopoulou
- Division of Obstetrics and Gynecology, Department of Clinical Science, Intervention and Technology, Karolinska Institutet and Karolinska University Hospital, SE-14186 Stockholm, Sweden; (P.D.); (G.A.)
| | - Ganesh Acharya
- Division of Obstetrics and Gynecology, Department of Clinical Science, Intervention and Technology, Karolinska Institutet and Karolinska University Hospital, SE-14186 Stockholm, Sweden; (P.D.); (G.A.)
- Women’s Health and Perinatology Research Group, Department of Clinical Medicine, UiT The Arctic University of Norway and Department of Obstetrics and Gynecology, University Hospital of North Norway, Sykehusveien 38, 9019 Tromsø, Norway
| | - Nataša Škalko-Basnet
- Drug Transport and Delivery Research Group, Department of Pharmacy, Faculty of Health Sciences, UiT The Arctic University of Norway, Universitetsveien 57, 9037 Tromsø, Norway;
| |
Collapse
|
13
|
Sallustio V, Chiocchio I, Mandrone M, Cirrincione M, Protti M, Farruggia G, Abruzzo A, Luppi B, Bigucci F, Mercolini L, Poli F, Cerchiara T. Extraction, Encapsulation into Lipid Vesicular Systems, and Biological Activity of Rosa canina L. Bioactive Compounds for Dermocosmetic Use. Molecules 2022; 27:molecules27093025. [PMID: 35566374 PMCID: PMC9104920 DOI: 10.3390/molecules27093025] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 05/01/2022] [Accepted: 05/06/2022] [Indexed: 11/28/2022] Open
Abstract
Valorization of wild plants to obtain botanical ingredients could be a strategy for sustainable production of cosmetics. This study aimed to select the rosehip extract containing the greatest amounts of bioactive compounds and to encapsulate it in vesicular systems capable of protecting their own antioxidant activity. Chemical analysis of Rosa canina L. extracts was performed by LC-DAD-MS/MS and 1H-NMR and vitamins, phenolic compounds, sugars, and organic acids were detected as the main compounds of the extracts. Liposomes, prepared by the film hydration method, together with hyalurosomes and ethosomes, obtained by the ethanol injection method, were characterized in terms of vesicle size, polydispersity index, entrapment efficiency, zeta potential, in vitro release and biocompatibility on WS1 fibroblasts. Among all types of vesicular systems, ethosomes proved to be the most promising nanocarriers showing nanometric size (196 ± 1 nm), narrow polydispersity (0.20 ± 0.02), good entrapment efficiency (92.30 ± 0.02%), and negative zeta potential (−37.36 ± 0.55 mV). Moreover, ethosomes showed good stability over time, a slow release of polyphenols compared with free extract, and they were not cytotoxic. In conclusion, ethosomes could be innovative carriers for the encapsulation of rosehip extract.
Collapse
Affiliation(s)
- Valentina Sallustio
- Drug Delivery Research Lab., Department of Pharmacy and Biotechnology, Alma Mater Studiorum, University of Bologna, Via San Donato 19/2, 40127 Bologna, Italy; (V.S.); (A.A.); (B.L.); (F.B.)
| | - Ilaria Chiocchio
- Pharmaceutical Botany Lab., Department of Pharmacy and Biotechnology, Alma Mater Studiorum, University of Bologna, Via Irnerio 42, 40127 Bologna, Italy; (I.C.); (M.M.); (F.P.)
| | - Manuela Mandrone
- Pharmaceutical Botany Lab., Department of Pharmacy and Biotechnology, Alma Mater Studiorum, University of Bologna, Via Irnerio 42, 40127 Bologna, Italy; (I.C.); (M.M.); (F.P.)
| | - Marco Cirrincione
- Pharmaco-Toxicological Analysis (PTA Lab.), Department of Pharmacy and Biotechnology, Alma Mater Studiorum, University of Bologna, Via Belmeloro 6, 40126 Bologna, Italy; (M.C.); (M.P.); (L.M.)
| | - Michele Protti
- Pharmaco-Toxicological Analysis (PTA Lab.), Department of Pharmacy and Biotechnology, Alma Mater Studiorum, University of Bologna, Via Belmeloro 6, 40126 Bologna, Italy; (M.C.); (M.P.); (L.M.)
| | - Giovanna Farruggia
- Pharmaceutical Biochemistry Lab., Department of Pharmacy and Biotechnology, Alma Mater Studiorum, University of Bologna, Via San Donato 19/2, 40127 Bologna, Italy;
| | - Angela Abruzzo
- Drug Delivery Research Lab., Department of Pharmacy and Biotechnology, Alma Mater Studiorum, University of Bologna, Via San Donato 19/2, 40127 Bologna, Italy; (V.S.); (A.A.); (B.L.); (F.B.)
| | - Barbara Luppi
- Drug Delivery Research Lab., Department of Pharmacy and Biotechnology, Alma Mater Studiorum, University of Bologna, Via San Donato 19/2, 40127 Bologna, Italy; (V.S.); (A.A.); (B.L.); (F.B.)
| | - Federica Bigucci
- Drug Delivery Research Lab., Department of Pharmacy and Biotechnology, Alma Mater Studiorum, University of Bologna, Via San Donato 19/2, 40127 Bologna, Italy; (V.S.); (A.A.); (B.L.); (F.B.)
| | - Laura Mercolini
- Pharmaco-Toxicological Analysis (PTA Lab.), Department of Pharmacy and Biotechnology, Alma Mater Studiorum, University of Bologna, Via Belmeloro 6, 40126 Bologna, Italy; (M.C.); (M.P.); (L.M.)
| | - Ferruccio Poli
- Pharmaceutical Botany Lab., Department of Pharmacy and Biotechnology, Alma Mater Studiorum, University of Bologna, Via Irnerio 42, 40127 Bologna, Italy; (I.C.); (M.M.); (F.P.)
| | - Teresa Cerchiara
- Drug Delivery Research Lab., Department of Pharmacy and Biotechnology, Alma Mater Studiorum, University of Bologna, Via San Donato 19/2, 40127 Bologna, Italy; (V.S.); (A.A.); (B.L.); (F.B.)
- Correspondence: ; Tel.: +39-0512095615
| |
Collapse
|
14
|
Nanomaterials for Membranes, Membrane Reactors, and Catalyst Systems. NANOMATERIALS 2022; 12:nano12060964. [PMID: 35335777 PMCID: PMC8952564 DOI: 10.3390/nano12060964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 03/03/2022] [Indexed: 02/05/2023]
|
15
|
Vidović BB, Milinčić DD, Marčetić MD, Djuriš JD, Ilić TD, Kostić AŽ, Pešić MB. Health Benefits and Applications of Goji Berries in Functional Food Products Development: A Review. Antioxidants (Basel) 2022; 11:248. [PMID: 35204130 PMCID: PMC8868247 DOI: 10.3390/antiox11020248] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 01/24/2022] [Accepted: 01/25/2022] [Indexed: 11/28/2022] Open
Abstract
Goji berries have long been used for their nutritional value and medicinal purposes in Asian countries. In the last two decades, goji berries have become popular around the world and are consumed as a functional food due to wide-range bioactive compounds with health-promoting properties. In addition, they are gaining increased research attention as a source of functional ingredients with potential industrial applications. This review focuses on the antioxidant properties of goji berries, scientific evidence on their health effects based on human interventional studies, safety concerns, goji berry processing technologies, and applications of goji berry-based ingredients in developing functional food products.
Collapse
Affiliation(s)
- Bojana B. Vidović
- Department of Bromatology, Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, 11221 Belgrade, Serbia;
| | - Danijel D. Milinčić
- Department of Chemistry and Biochemistry, Faculty of Agriculture, University of Belgrade, Nemanjina 6, 11080 Belgrade, Serbia; (D.D.M.); (A.Ž.K.); (M.B.P.)
| | - Mirjana D. Marčetić
- Department of Pharmacognosy, Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, 11221 Belgrade, Serbia;
| | - Jelena D. Djuriš
- Department of Pharmaceutical Technology and Cosmetology, Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, 11221 Belgrade, Serbia;
| | - Tijana D. Ilić
- Department of Bromatology, Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, 11221 Belgrade, Serbia;
| | - Aleksandar Ž. Kostić
- Department of Chemistry and Biochemistry, Faculty of Agriculture, University of Belgrade, Nemanjina 6, 11080 Belgrade, Serbia; (D.D.M.); (A.Ž.K.); (M.B.P.)
| | - Mirjana B. Pešić
- Department of Chemistry and Biochemistry, Faculty of Agriculture, University of Belgrade, Nemanjina 6, 11080 Belgrade, Serbia; (D.D.M.); (A.Ž.K.); (M.B.P.)
| |
Collapse
|
16
|
Lei Z, Chen X, Cao F, Guo Q, Wang J. Phytochemicals and bioactivities of Goji (
Lycium barbarum
L. and
Lycium chinense
Mill.) leaves and their potential applications in the food industry: a review. Int J Food Sci Technol 2021. [DOI: 10.1111/ijfs.15507] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Zilun Lei
- Department of Food Science and Engineering College of Light Industry and Food Engineering Nanjing Forestry University Nanjing 210037 China
| | - Xianqiang Chen
- Department of Food Science and Engineering College of Light Industry and Food Engineering Nanjing Forestry University Nanjing 210037 China
| | - Fuliang Cao
- Co‐innovation Center for the Sustainable Forestry in Southern China College of Forestry Nanjing Forestry University Nanjing 210037 China
| | - Qirong Guo
- Co‐innovation Center for the Sustainable Forestry in Southern China College of Forestry Nanjing Forestry University Nanjing 210037 China
| | - Jiahong Wang
- Department of Food Science and Engineering College of Light Industry and Food Engineering Nanjing Forestry University Nanjing 210037 China
- Co‐innovation Center for the Sustainable Forestry in Southern China College of Forestry Nanjing Forestry University Nanjing 210037 China
| |
Collapse
|
17
|
Mishra D, Khare P, Singh DK, Yadav V, Luqman S, Kumar PA, Shanker K. Synthesis of Ocimum extract encapsulated cellulose nanofiber/chitosan composite for improved antioxidant and antibacterial activities. CARBOHYDRATE POLYMER TECHNOLOGIES AND APPLICATIONS 2021. [DOI: 10.1016/j.carpta.2021.100152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|