1
|
Yang J, Ye Z, Xue Q, Li D, Liang M, Li G, Liu H, Yi L, Hu B, Yin P, Ge G, Dmitriy K, Maciuk A, Figadere B. Dynamic Liquid Integrated Single-Cell SERS Platform Based on the Twisted Mixing Microfluidic Chip and Multi-Modified Nanoprobe for the Label-Free Detection of Cancer Cells. Anal Chem 2025; 97:7789-7798. [PMID: 40185683 DOI: 10.1021/acs.analchem.4c06051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2025]
Abstract
Surface-enhanced Raman scattering (SERS) has emerged as a potent spectroscopic technique for the detection of single cells. However, it is difficult to achieve label-free detection at the single-cell level in dynamic liquids because nanoprobe aggregation in biological fluids and the low combination of nanoprobes and cells reduce the sensitivity of SERS detection. Herein, a dynamic liquid integrated single-cell SERS (DLISC-SERS) platform is developed for the label-free detection of single cancer cells. DLISC-SERS consists of three components, including a twisted mixing microfluidic chip to achieve an efficient combination of nanoprobes and cells, a commercial coaxial needle to accomplish 3D dynamic liquid focusing by annular sheath flow, and a quartz capillary to offer a SERS detection area with low noise. The mixing intensity of the twisted mixing microfluidic chip is almost 3.67-fold higher than that of straight mixing. The multifunctionally modified nanoprobe, Ag NSs@PEG@3COOH, can be stably dispersed in biological fluids for at least 30 min. The segment weighting similarity-based KNN model can classify single-cell spectra with sensitivity, specificity, and accuracy up to 100, 99.4, and 99.5%, respectively. The accuracy of the model for three-way classification is 95.2%. The DLISC-SERS platform is a powerful tool for detecting cancer cells at the single-cell level.
Collapse
Affiliation(s)
- Jiaqi Yang
- School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710126, China
| | - Ziyun Ye
- School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710126, China
| | - Qilu Xue
- School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710126, China
| | - Dandan Li
- School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710126, China
| | - Minghui Liang
- School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710126, China
| | - Guoqian Li
- School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710126, China
| | - Huanhuan Liu
- School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710126, China
| | - Langlang Yi
- School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710126, China
| | - Bo Hu
- School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710126, China
- School of Mathematics and Physics Science and Engineering, Hebei University of Engineering, Handan, Hebei 056038, China
- Xi'an Intelligent Precision Diagnosis and Treatment International Science and Technology Cooperation Base, Xi'an, Shaanxi 710126, China
| | - Pengju Yin
- School of Mathematics and Physics Science and Engineering, Hebei University of Engineering, Handan, Hebei 056038, China
| | - Guanqun Ge
- Department of Breast Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P. R. China
| | - Klyuyev Dmitriy
- Institute of Life Sciences, Karaganda Medical University,100008 Karaganda, Kazakhstan
| | | | - Bruno Figadere
- BioCIS, CNRS, Université Paris-Saclay, Orsay 91400, France
| |
Collapse
|
2
|
Barshutina M, Arsenin A, Volkov V. SERS analysis of single cells and subcellular components: A review. Heliyon 2024; 10:e37396. [PMID: 39315187 PMCID: PMC11417266 DOI: 10.1016/j.heliyon.2024.e37396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 08/12/2024] [Accepted: 09/03/2024] [Indexed: 09/25/2024] Open
Abstract
SERS is a rapidly advancing and non-destructive technique that has been proven to be more reliable and convenient than other traditional analytical methods. Due to its sensitivity and specificity, this technique is earning its place as a routine and powerful tool in biological and medical studies, especially for the analysis of living cells and subcellular components. This paper reviewed the research progress of single-cell SERS that has been made in the last few years and discussed challenges and future perspectives of this technique. The reviewed SERS platforms have been categorized according to their nature into the following types: (1) colloid-based, substrate-based, or hybrid; (2) ligand-based or ligand-free, and (3) label-based or label-free. The advantages and disadvantages of each type and their potential applications in various fields are thoroughly discussed.
Collapse
Affiliation(s)
- M. Barshutina
- Center for Photonics and 2D Materials, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - A. Arsenin
- Center for Photonics and 2D Materials, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
- Laboratory of Advanced Functional Materials, Yerevan State University, Yerevan, Armenia
| | - V. Volkov
- Laboratory of Advanced Functional Materials, Yerevan State University, Yerevan, Armenia
- Emerging Technologies Research Center, XPANCEO, Dubai, United Arab Emirates
| |
Collapse
|
3
|
Kneipp J, Seifert S, Gärber F. SERS microscopy as a tool for comprehensive biochemical characterization in complex samples. Chem Soc Rev 2024; 53:7641-7656. [PMID: 38934892 DOI: 10.1039/d4cs00460d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2024]
Abstract
Surface enhanced Raman scattering (SERS) spectra of biomaterials such as cells or tissues can be used to obtain biochemical information from nanoscopic volumes in these heterogeneous samples. This tutorial review discusses the factors that determine the outcome of a SERS experiment in complex bioorganic samples. They are related to the SERS process itself, the possibility to selectively probe certain regions or constituents of a sample, and the retrieval of the vibrational information in order to identify molecules and their interaction. After introducing basic aspects of SERS experiments in the context of biocompatible environments, spectroscopy in typical microscopic settings is exemplified, including the possibilities to combine SERS with other linear and non-linear microscopic tools, and to exploit approaches that improve lateral and temporal resolution. In particular the great variation of data in a SERS experiment calls for robust data analysis tools. Approaches will be introduced that have been originally developed in the field of bioinformatics for the application to omics data and that show specific potential in the analysis of SERS data. They include the use of simulated data and machine learning tools that can yield chemical information beyond achieving spectral classification.
Collapse
Affiliation(s)
- Janina Kneipp
- Department of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Str. 2, 12489 Berlin, Germany.
| | - Stephan Seifert
- Hamburg School of Food Science, Department of Chemistry, Universität Hamburg, Grindelallee 117, 20146 Hamburg, Germany
| | - Florian Gärber
- Hamburg School of Food Science, Department of Chemistry, Universität Hamburg, Grindelallee 117, 20146 Hamburg, Germany
| |
Collapse
|
4
|
Abstract
Hydrogel-based three-dimensional (3D) cell culture systems mimic the salient elements of extracellular matrices and promote native cell function. However, high-resolution 3D cell imaging that can provide biological information about multiple features of individual cells is yet to be realized. In this context, we incorporated plasmonic gold nanoparticles (AuNPs) into an alginate/gelatin hydrogel to produce surface-enhanced Raman spectroscopy (SERS)-active hydrogel inks for the 3D printing and culturing of Vero cells. Dense incorporation of AuNPs enables production of a printed 3D grid structure with 3D SERS performance, but with no measurable adverse effects on cell growth. Label-free SERS spectra were collected within a hydrogel, and a random forest binary classifier was developed to discriminate Vero cell signals from the hydrogel background with an accuracy of 87.5%. The results suggest that SERS signals from cellular components, such as proteins, lipids, and carbohydrates, account for this discrimination. We demonstrate visualization of cell shape, location, and density by combining predicted binary maps with peak feature intensity maps in 2D and 3D. SERS images with a resolution of ≈3 μm match well with the microscopy images and show clear increases in intensity with incubation time. We suggest that 3D SERS cell imaging is a promising means to examine the effect of external cell stimuli on cellular behavior for diagnostic purposes.
Collapse
Affiliation(s)
- Wei Wang
- Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, Virginia 24061, United States
- Virginia Tech Institute of Critical Technology and Applied Science (ICTAS) Sustainable Nanotechnology Center (VTSuN), Blacksburg, Virginia 24061, United States
| | - Peter J Vikesland
- Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, Virginia 24061, United States
- Virginia Tech Institute of Critical Technology and Applied Science (ICTAS) Sustainable Nanotechnology Center (VTSuN), Blacksburg, Virginia 24061, United States
| |
Collapse
|
5
|
Mao W, Bui HTD, Cho W, Yoo HS. Spectroscopic techniques for monitoring stem cell and organoid proliferation in 3D environments for therapeutic development. Adv Drug Deliv Rev 2023; 201:115074. [PMID: 37619771 DOI: 10.1016/j.addr.2023.115074] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 07/22/2023] [Accepted: 08/20/2023] [Indexed: 08/26/2023]
Abstract
Spectroscopic techniques for monitoring stem cell and organoid proliferation have gained significant attention in therapeutic development. Spectroscopic techniques such as fluorescence, Raman spectroscopy, and infrared spectroscopy offer noninvasive and real-time monitoring of biochemical and biophysical changes that occur during stem cell and organoid proliferation. These techniques provide valuable insight into the underlying mechanisms of action of potential therapeutic agents, allowing for improved drug discovery and screening. This review highlights the importance of spectroscopic monitoring of stem cell and organoid proliferation and its potential impact on therapeutic development. Furthermore, this review discusses recent advances in spectroscopic techniques and their applications in stem cell and organoid research. Overall, this review emphasizes the importance of spectroscopic techniques as valuable tools for studying stem cell and organoid proliferation and their potential to revolutionize therapeutic development in the future.
Collapse
Affiliation(s)
- Wei Mao
- Department of Biomedical Materials Engineering, Kangwon National University, Chuncheon 24341, Republic of Korea; Institute for Molecular Science and Fusion Technology, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Hoai-Thuong Duc Bui
- Department of Biomedical Materials Engineering, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Wanho Cho
- Department of Biomedical Materials Engineering, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Hyuk Sang Yoo
- Department of Biomedical Materials Engineering, Kangwon National University, Chuncheon 24341, Republic of Korea; Institute for Molecular Science and Fusion Technology, Kangwon National University, Chuncheon 24341, Republic of Korea; Institue of Biomedical Science, Kangwon National University, Chuncheon 24341, Republic of Korea; Kangwon Radiation Convergence Research Support Center, Kangwon National University, Chuncheon 24341, Republic of Korea.
| |
Collapse
|
6
|
Yan X, Zhao H, Shi X, Yang Z, Ma J. Dual Function of 4-Aminothiophene in Surface-Enhanced Raman Scattering Application as an Internal Standard and Adsorbent for Controlling Au Nanocrystal Morphology. ACS APPLIED MATERIALS & INTERFACES 2023; 15:13427-13438. [PMID: 36857292 DOI: 10.1021/acsami.2c19390] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The sensitivity and quantitative accuracy of surface-enhanced Raman scattering (SERS) are the main factors that restrict its application. Here, novel Au nanoscale convex polyhedrons (Au NCPs) were designed and fabricated to solve these problems via an embedded standard, including eight pods and six small protrusions. Spherical Au seeds regrew into different sizes of Au NCPs with a face-centered cubic structure. This morphology is due to the dual mechanism of the 4-aminothiophene (4-ATP) molecule that serves as an internal standard and a surface ligand regulator combined with the regulatory role of hexadecyl trimethyl ammonium chloride. The results show that Au NCPs were enclosed by high-index {12 9 1} facets, which greatly improved the local plasma resonance and reduced the lowest SERS detectable concentration of pyrene in standard seawater to 0.5 nM. An effective reference was produced by embedding 4-ATP with a relative standard deviation value less than 2.97% (in the same batch) and 3.92% (between different batches). Our research offers a new strategy for morphological regulation of metal nanocrystals, which is useful for the preparation of highly sensitive SERS substrates and trace analysis.
Collapse
Affiliation(s)
- Xia Yan
- Optics and Optoelectronics Laboratory, Ocean University of China, Qingdao 266100, P. R. China
- Department of Physics, Lyuliang University, Lyuliang 033000, P. R. China
| | - Hang Zhao
- Optics and Optoelectronics Laboratory, Ocean University of China, Qingdao 266100, P. R. China
| | - Xiaofeng Shi
- Optics and Optoelectronics Laboratory, Ocean University of China, Qingdao 266100, P. R. China
| | - Zhiyuan Yang
- Optics and Optoelectronics Laboratory, Ocean University of China, Qingdao 266100, P. R. China
| | - Jun Ma
- Optics and Optoelectronics Laboratory, Ocean University of China, Qingdao 266100, P. R. China
| |
Collapse
|
7
|
Novikov SM. Hybrid Plasmonic Nanostructures and Their Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:4293. [PMID: 36500916 PMCID: PMC9739200 DOI: 10.3390/nano12234293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 11/30/2022] [Indexed: 06/17/2023]
Abstract
The hybrid nanostructures, i [...].
Collapse
Affiliation(s)
- Sergey M Novikov
- Center for Photonics and 2D Materials, Moscow Institute of Physics and Technology (MIPT), 9 Institutsky Lane, Dolgoprudny 141700, Russia
| |
Collapse
|
8
|
Yan X, Zhao H, Song H, Ma J, Shi X. Ultra-trace and quantitative SERS detection of polycyclic aromatic hydrocarbons based on Au nanoscale convex polyhedrons with embedded probe molecules. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 281:121566. [PMID: 35841855 DOI: 10.1016/j.saa.2022.121566] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 06/22/2022] [Accepted: 06/25/2022] [Indexed: 06/15/2023]
Abstract
Surface-enhanced Raman scattering (SERS) has great potential for the detection of marine pollutants, but it is still restricted in ultra-trace and quantitative analysis. Here, a strategy for the detection of polycyclic aromatic hydrocarbons (PAHs) was proposed based on Au nanoscale convex polyhedrons (Au NCPs) coated with high-energy facets and embedded with 4-ATP as a probe molecule. Au NCPs acted as SERS substrates and led to limits of detection (LODs) for six common PAHs that reached 0.01 nM. Using internal calibration, the relative standard deviations (RSD) of the spectral stability and reproducibility were as low as 3.36% and 5.11%, respectively. The maximum mean relative errors (AREs) of the predicted and true values were 6.28%. The results indicate that the resulting Au NCPs improved the ultra-trace and quantitative detection of SERS, thus suggesting that the Au NCPs have practical application value in SERS.
Collapse
Affiliation(s)
- Xia Yan
- Optics and Optoelectronics Laboratory, Ocean University of China, Qingdao 266100, China
| | - Hang Zhao
- Optics and Optoelectronics Laboratory, Ocean University of China, Qingdao 266100, China.
| | - Hongyan Song
- Optics and Optoelectronics Laboratory, Ocean University of China, Qingdao 266100, China
| | - Jun Ma
- Optics and Optoelectronics Laboratory, Ocean University of China, Qingdao 266100, China.
| | - Xiaofeng Shi
- Optics and Optoelectronics Laboratory, Ocean University of China, Qingdao 266100, China
| |
Collapse
|
9
|
Spedalieri C, Kneipp J. Surface enhanced Raman scattering for probing cellular biochemistry. NANOSCALE 2022; 14:5314-5328. [PMID: 35315478 PMCID: PMC8988265 DOI: 10.1039/d2nr00449f] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Accepted: 03/15/2022] [Indexed: 06/12/2023]
Abstract
Surface enhanced Raman scattering (SERS) from biomolecules in living cells enables the sensitive, but also very selective, probing of their biochemical composition. This minireview discusses the developments of SERS probing in cells over the past years from the proof-of-principle to observe a biochemical status to the characterization of molecule-nanostructure and molecule-molecule interactions and cellular processes that involve a wide variety of biomolecules and cellular compartments. Progress in applying SERS as a bioanalytical tool in living cells, to gain a better understanding of cellular physiology and to harness the selectivity of SERS, has been achieved by a combination of live cell SERS with several different approaches. They range from organelle targeting, spectroscopy of relevant molecular models, and the optimization of plasmonic nanostructures to the application of machine learning and help us to unify the information from defined biomolecules and from the cell as an extremely complex system.
Collapse
Affiliation(s)
- Cecilia Spedalieri
- Humboldt-Universität zu Berlin, Department of Chemistry, Brook-Taylor-Str. 2, 12489 Berlin, Germany.
| | - Janina Kneipp
- Humboldt-Universität zu Berlin, Department of Chemistry, Brook-Taylor-Str. 2, 12489 Berlin, Germany.
| |
Collapse
|