1
|
Liu H, Zhao J, Ly TH. Clean Transfer of Two-Dimensional Materials: A Comprehensive Review. ACS NANO 2024; 18:11573-11597. [PMID: 38655635 DOI: 10.1021/acsnano.4c01000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
The growth of two-dimensional (2D) materials through chemical vapor deposition (CVD) has sparked a growing interest among both the industrial and academic communities. The interest stems from several key advantages associated with CVD, including high yield, high quality, and high tunability. In order to harness the application potentials of 2D materials, it is often necessary to transfer them from their growth substrates to their desired target substrates. However, conventional transfer methods introduce contamination that can adversely affect the quality and properties of the transferred 2D materials, thus limiting their overall application performance. This review presents a comprehensive summary of the current clean transfer methods for 2D materials with a specific focus on the understanding of interaction between supporting layers and 2D materials. The review encompasses various aspects, including clean transfer methods, post-transfer cleaning techniques, and cleanliness assessment. Furthermore, it analyzes and compares the advances and limitations of these clean transfer techniques. Finally, the review highlights the primary challenges associated with current clean transfer methods and provides an outlook on future prospects.
Collapse
Affiliation(s)
- Haijun Liu
- Department of Chemistry and Center of Super-Diamond & Advanced Films (COSDAF), City University of Hong Kong, Kowloon, Hong Kong 999077, China
- City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China
| | - Jiong Zhao
- Department of Applied Physics, The Hong Kong Polytechnic University, Kowloon, Hong Kong 999077, China
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen 518057, China
| | - Thuc Hue Ly
- Department of Chemistry and Center of Super-Diamond & Advanced Films (COSDAF), City University of Hong Kong, Kowloon, Hong Kong 999077, China
- City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China
- State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong 999077, China
| |
Collapse
|
2
|
Guglielmotti V, Fuhry E, Neubert TJ, Kuhl M, Pallarola D, Balasubramanian K. Real-Time Monitoring of Cell Adhesion onto a Soft Substrate by a Graphene Impedance Biosensor. ACS Sens 2024; 9:101-109. [PMID: 38141037 DOI: 10.1021/acssensors.3c01705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2023]
Abstract
Soft substrates are interesting for many applications, ranging from mimicking the cellular microenvironment to implants. Conductive electrodes on such substrates allow the realization of flexible, elastic, and transparent sensors. Single-layer graphene as a candidate for such electrodes brings the advantage that the active area of the sensor is transparent and conformal to the underlying substrate. Here, we overcome several challenges facing the routine realization of graphene cell sensors on a canonical soft substrate, namely, poly(dimethylsiloxane) (PDMS). We have systematically studied the effect of surface energy before, during, and after the transfer of graphene. Thus, we have identified a suitable support polymer, optimal substrate (pre)treatment, and an appropriate solvent for the removal of the support. Using this procedure, we can reproducibly obtain stable and intact graphene sensors on a millimeter scale on PDMS, which can withstand continuous measurements in cell culture media for several days. From local nanomechanical measurements, we infer that the softness of the substrate is slightly affected after the graphene transfer. However, we can modulate the stiffness using PDMS with differing compositions. Finally, we show that graphene sensors on PDMS can be successfully used as soft electrodes for real-time monitoring of the cell adhesion kinetics. The routine availability of single-layer graphene electrodes on a soft substrate with tunable stiffness will open a new avenue for studies, where the PDMS-liquid interface is made conducting with minimal alteration of the intrinsic material properties such as softness, flexibility, elasticity, and transparency.
Collapse
Affiliation(s)
- Victoria Guglielmotti
- Department of Chemistry, School of Analytical Sciences Adlershof (SALSA) & IRIS Adlershof, Humboldt-Universität zu Berlin, Berlin 10099, Germany
- Instituto de Nanosistemas, Universidad Nacional de General San Martín, San Martín 1650, Provincia de Buenos Aires, Argentina
| | - Emil Fuhry
- Department of Chemistry, School of Analytical Sciences Adlershof (SALSA) & IRIS Adlershof, Humboldt-Universität zu Berlin, Berlin 10099, Germany
| | - Tilmann J Neubert
- Department of Chemistry, School of Analytical Sciences Adlershof (SALSA) & IRIS Adlershof, Humboldt-Universität zu Berlin, Berlin 10099, Germany
| | - Michel Kuhl
- Department of Chemistry, School of Analytical Sciences Adlershof (SALSA) & IRIS Adlershof, Humboldt-Universität zu Berlin, Berlin 10099, Germany
| | - Diego Pallarola
- Instituto de Nanosistemas, Universidad Nacional de General San Martín, San Martín 1650, Provincia de Buenos Aires, Argentina
| | - Kannan Balasubramanian
- Department of Chemistry, School of Analytical Sciences Adlershof (SALSA) & IRIS Adlershof, Humboldt-Universität zu Berlin, Berlin 10099, Germany
| |
Collapse
|
3
|
Rodriguez RD, Fatkullin M, Garcia A, Petrov I, Averkiev A, Lipovka A, Lu L, Shchadenko S, Wang R, Sun J, Li Q, Jia X, Cheng C, Kanoun O, Sheremet E. Laser-Engineered Multifunctional Graphene-Glass Electronics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2206877. [PMID: 36038983 DOI: 10.1002/adma.202206877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/25/2022] [Indexed: 06/15/2023]
Abstract
Glass electronics inspire the emergence of smart functional surfaces. To evolve this concept to the next level, developing new strategies for scalable, inexpensive, and electrically conductive glass-based robust nanocomposites is crucial. Graphene is an attractive material as a conductive filler; however, integrating it firmly into a glass with no energy-intensive sintering, melting, or harsh chemicals has not been possible until now. Moreover, these methods have very limited capability for fabricating robust patterns for electronic circuits. In this work, a conductive (160 OΩ sq-1 ) and resilient nanocomposite between glass and graphene is achieved via single-step laser-induced backward transfer (LIBT). Beyond conventional LIBT involving mass transfer, this approach simultaneously drives chemical transformations in glass including silicon compound formation and graphene oxide (GO) reduction. These processes take place together with the generation and transfer of the highest-quality laser-reduced GO (rGO) reported to date (Raman intensity ratio ID /IG = 0.31) and its integration into the glass. The rGO-LIBT nanocomposite is further functionalized with silver to achieve a highly sensitive (10-9 m) dual-channel plasmonic optical and electrochemical sensor. Besides the electrical circuit demonstration, an electrothermal heater is fabricated that reaches temperatures above 300 °C and continuously operates for over 48 h.
Collapse
Affiliation(s)
- Raul D Rodriguez
- Tomsk Polytechnic University, Lenin ave. 30, Tomsk, 634050, Russia
| | - Maxim Fatkullin
- Tomsk Polytechnic University, Lenin ave. 30, Tomsk, 634050, Russia
| | - Aura Garcia
- Tomsk Polytechnic University, Lenin ave. 30, Tomsk, 634050, Russia
| | - Ilia Petrov
- Tomsk Polytechnic University, Lenin ave. 30, Tomsk, 634050, Russia
| | - Andrey Averkiev
- Tomsk Polytechnic University, Lenin ave. 30, Tomsk, 634050, Russia
| | - Anna Lipovka
- Tomsk Polytechnic University, Lenin ave. 30, Tomsk, 634050, Russia
| | - Liliang Lu
- School of Chemistry and Chemical Engineering/Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, Key Laboratory of Materials-Oriented Chemical Engineering of Xinjiang Uygur Autonomous Region, Engineering Research Center of Materials-Oriented Chemical Engineering of Xinjiang Bingtuan, Shihezi University, Shihezi, 832003, P. R. China
| | | | - Ranran Wang
- The State Key Lab of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, China
| | - Jing Sun
- The State Key Lab of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, China
| | - Qiu Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Xin Jia
- School of Chemistry and Chemical Engineering/Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, Key Laboratory of Materials-Oriented Chemical Engineering of Xinjiang Uygur Autonomous Region, Engineering Research Center of Materials-Oriented Chemical Engineering of Xinjiang Bingtuan, Shihezi University, Shihezi, 832003, P. R. China
| | - Chong Cheng
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Olfa Kanoun
- Professorship Measurement and Sensor Technology, Chemnitz University of Technology, 09111, Chemnitz, Germany
| | | |
Collapse
|
4
|
Integrated wafer-scale ultra-flat graphene by gradient surface energy modulation. Nat Commun 2022; 13:5410. [PMID: 36109519 PMCID: PMC9477858 DOI: 10.1038/s41467-022-33135-w] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 09/02/2022] [Indexed: 11/11/2022] Open
Abstract
The integration of large-scale two-dimensional (2D) materials onto semiconductor wafers is highly desirable for advanced electronic devices, but challenges such as transfer-related crack, contamination, wrinkle and doping remain. Here, we developed a generic method by gradient surface energy modulation, leading to a reliable adhesion and release of graphene onto target wafers. The as-obtained wafer-scale graphene exhibited a damage-free, clean, and ultra-flat surface with negligible doping, resulting in uniform sheet resistance with only ~6% deviation. The as-transferred graphene on SiO2/Si exhibited high carrier mobility reaching up ~10,000 cm2 V−1 s−1, with quantum Hall effect (QHE) observed at room temperature. Fractional quantum Hall effect (FQHE) appeared at 1.7 K after encapsulation by h-BN, yielding ultra-high mobility of ~280,000 cm2 V−1 s−1. Integrated wafer-scale graphene thermal emitters exhibited significant broadband emission in near-infrared (NIR) spectrum. Overall, the proposed methodology is promising for future integration of wafer-scale 2D materials in advanced electronics and optoelectronics. Defect-free integration of 2D materials onto semiconductor wafers is desired to implement heterogeneous electronic devices. Here, the authors report a method to transfer high-quality graphene on target wafers via gradient surface energy modulation, leading to improved structural and electronic properties.
Collapse
|
5
|
Carbon-Related Materials: Graphene and Carbon Nanotubes in Semiconductor Applications and Design. MICROMACHINES 2022; 13:mi13081257. [PMID: 36014179 PMCID: PMC9412642 DOI: 10.3390/mi13081257] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/05/2022] [Accepted: 07/29/2022] [Indexed: 12/04/2022]
Abstract
As the scaling technology in the silicon-based semiconductor industry is approaching physical limits, it is necessary to search for proper materials to be utilized as alternatives for nanoscale devices and technologies. On the other hand, carbon-related nanomaterials have attracted so much attention from a vast variety of research and industry groups due to the outstanding electrical, optical, mechanical and thermal characteristics. Such materials have been used in a variety of devices in microelectronics. In particular, graphene and carbon nanotubes are extraordinarily favorable substances in the literature. Hence, investigation of carbon-related nanomaterials and nanostructures in different ranges of applications in science, technology and engineering is mandatory. This paper reviews the basics, advantages, drawbacks and investigates the recent progress and advances of such materials in micro and nanoelectronics, optoelectronics and biotechnology.
Collapse
|