1
|
Barlow BR, Kim J. Next generation gold nanomaterials for photoacoustic imaging. Nanomedicine (Lond) 2025:1-15. [PMID: 40356229 DOI: 10.1080/17435889.2025.2504330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2025] [Accepted: 05/07/2025] [Indexed: 05/15/2025] Open
Abstract
Photoacoustic (PA) imaging integrates ultrasound with the molecular contrast afforded by optical imaging, enabling noninvasive, real-time visualization of tissue structures and contrasts. Gold nanoparticles (GNPs) have been extensively studied as contrast agents for PA imaging due to their strong optical absorption derived from localized surface plasmon resonance, particularly when engineered to absorb in the near-infrared (NIR) region to enhance tissue penetration. However, the use of conventional anisotropic nanoparticles that absorb the NIR wavelengths is limited by their poor photostability under pulsed lasing conditions, which restricts their applicability in longitudinal in vivo imaging studies. This review first outlines the fundamental principles of PA imaging and introduces conventional GNP-based contrast agents, emphasizing their applications and inherent limitations. Subsequently, recent advances in GNP engineering are discussed, with particular focus on strategies to improve photostability, and a future perspective on the development of GNP-based PA contrast agents is provided.
Collapse
Affiliation(s)
- Brendan R Barlow
- Department of Surgery, School of Medicine, University of California, Davis, Sacramento, CA, USA
- Department of Biomedical Engineering, University of California, Davis, Davis, CA, USA
| | - Jinhwan Kim
- Department of Surgery, School of Medicine, University of California, Davis, Sacramento, CA, USA
- Department of Biomedical Engineering, University of California, Davis, Davis, CA, USA
| |
Collapse
|
2
|
Perry CC, Schulte RW, Fuller RN, Wall NR, Nick KE, Wegrzyn M, Milligan JR. Integrating gold nanostars into condensed DNA. Biochim Biophys Acta Gen Subj 2025; 1869:130793. [PMID: 40086767 DOI: 10.1016/j.bbagen.2025.130793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2025] [Revised: 03/02/2025] [Accepted: 03/06/2025] [Indexed: 03/16/2025]
Abstract
X-irradiation has extensive applications in therapy and considerable attention has been devoted to the radiosensitizing properties of nanoparticles composed of high atomic number elements, particularly gold. Low energy electrons and/or heterogenous catalysis are widely suspected to be involved in radiosensitization, but there is uncertainty about their contributions. Because of their greater surface area to volume ratio relative to spherical particles per unit mass of gold, nanostars permit more low energy electrons to escape and possess an increased catalytic activity. Condensed DNA represents a highly useful model for mammalian chromatin, particularly with respect to the types and yields of DNA damage produced by ionizing radiation. Here we describe the incorporation of spherical gold nanoparticles and of gold nanostars into a condensed DNA model system. The resulting self-assembled micron-sized co-aggregates involve an intimate association between gold and DNA, maximizing the opportunity for the production of DNA damage. After increasing the ionic strength, the co-condensate becomes disaggregated and the DNA is available for subsequent assays. This model system provides a previously unavailable tool for examining the mechanisms of radiosensitization of DNA damage by gold nanoparticles with implications for possible applications in radiotherapy.
Collapse
Affiliation(s)
- Christopher C Perry
- Department of Basic Science, School of Medicine, Loma Linda University, 11175 Campus Street, Loma Linda, CA 92350, USA.
| | - Reinhard W Schulte
- Department of Basic Science, School of Medicine, Loma Linda University, 11175 Campus Street, Loma Linda, CA 92350, USA.
| | - Ryan N Fuller
- Department of Biology, California Baptist University, 8432 Magnolia Avenue, Riverside, CA 92504, USA.
| | - Nathan R Wall
- Department of Basic Science, School of Medicine, Loma Linda University, 11175 Campus Street, Loma Linda, CA 92350, USA.
| | - Kevin E Nick
- Department of Basic Science, School of Medicine, Loma Linda University, 11175 Campus Street, Loma Linda, CA 92350, USA.
| | - Magdalena Wegrzyn
- Department of Systems Biology and Engineering, Silesian University of Technology, Akademicka Street 16, 44-100 Gliwice, Poland.
| | - Jamie R Milligan
- Department of Basic Science, School of Medicine, Loma Linda University, 11175 Campus Street, Loma Linda, CA 92350, USA.
| |
Collapse
|
3
|
Upadhyaya AK, Agarwala P, Sharma C, Sasmal DK. Synthesis and Characterization of N-Doped Carbon Quantum Dots and its Application for Efficient Delivery of Curcumin in Live Cell. Chemphyschem 2025; 26:e202400855. [PMID: 39714983 DOI: 10.1002/cphc.202400855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 12/17/2024] [Accepted: 12/17/2024] [Indexed: 12/25/2024]
Abstract
To improve bioavailability, enhance the solubility and stability of the hydrophobic drug curcumin, nanoparticles such as carbon quantum dots (CQDs) are unique choices. In this study, we present a simple, cost-effective, and eco-friendly method for synthesizing nitrogen-doped carbon quantum dots (N-CQDs) and their application in the efficient delivery of hydrophobic drugs curcumin into live cancer cells. The N-CQDs produced in this study exhibit excellent water solubility, remarkable stability, and high biocompatibility. To synthesize the N-CQD, we use a carbon source found naturally (lemon juice) and for doping, we use N-rich doping agents such as ethylene diamine and urea by using eco-friendly chemical oxidation methods. The resulting N-CQDs, with particle sizes under 10 nm, exhibit a good quantum yield, reinforcing their utility for biomedical applications. N-CQDs and drug-loaded particles are evaluated using various techniques like UV-Vis, Fluorescence Spectroscopy, Dynamic Light Scattering (DLS), and Atomic Force Microscopy (AFM) as well. Additionally, we report a remarkable method to use N-CQDs as carriers for the anticancer drug curcumin, significantly enhancing the solubility in live cells. Our research also delved into the application of N-CQDs in in vivo bioimaging and drug release studies within live cancer cells, with a particular focus on their pH-dependence behavior.
Collapse
Affiliation(s)
- Arun K Upadhyaya
- Department of Chemistry, Indian Institute of Technology Jodhpur, Jodhpur, Rajasthan, 343037, India
| | - Pratibha Agarwala
- Department of Chemistry, Indian Institute of Technology Jodhpur, Jodhpur, Rajasthan, 343037, India
| | - Chanchal Sharma
- Department of Chemistry, Indian Institute of Technology Jodhpur, Jodhpur, Rajasthan, 343037, India
| | - Dibyendu K Sasmal
- Department of Chemistry, Indian Institute of Technology Jodhpur, Jodhpur, Rajasthan, 343037, India
| |
Collapse
|
4
|
Rosario-Berríos DN, Pang A, Liu LP, Maidment PSN, Kim J, Yoon S, Nieves LM, Mossburg KJ, Adezio A, Noël PB, Lennon EM, Cormode DP. The Effect of the Size of Gold Nanoparticle Contrast Agents on CT Imaging of the Gastrointestinal Tract and Inflammatory Bowel Disease. Bioconjug Chem 2025; 36:233-244. [PMID: 39786354 PMCID: PMC11839313 DOI: 10.1021/acs.bioconjchem.4c00507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
Ulcerative colitis (UC) is a chronic inflammatory bowel disease (IBD). CT imaging with contrast agents is commonly used for visualizing the gastrointestinal (GI) tract in UC patients. Contrast agents that provide enhanced imaging performance are highly valuable in this field. Recent studies have made significant progress in developing better contrast agents for imaging the gastrointestinal tract using nanoparticles. However, the impact of nanoparticle size on this application remains unexplored. Gold nanoparticles (AuNPs) serve as an ideal model to investigate the effect of nanoparticle size on imaging of the gastrointestinal tract due to their controllable synthesis across a broad size range. In this study, we synthesized AuNPs with core sizes ranging from 5 to 75 nm to examine the effect of the size in this setting. AuNPs were coated with poly(ethylene glycol) (PEG) to enhance stability and biocompatibility. In vitro tests show that gold nanoparticles are cytocompatible with macrophage cells (∼100% cell viability) and remain stable under acidic conditions, with no significant size changes over time. Phantom imaging studies using a clinical CT scanner indicated that there was no effect of nanoparticle size on CT contrast production, as previously demonstrated. In vivo imaging using a mouse model of acute colitis revealed a strong contrast generation throughout the GI tract for all agents tested. For the most part, in vivo contrast was independent of AuNP size, although AuNP outperformed iopamidol (a clinically approved control agent). In addition, differences in attenuation trends were observed between healthy and colitis mice. We also observed almost complete clearance at 24 h of all formulations tested (less than 0.7% ID/g was retained), supporting their value as a model platform for studying nanoparticle behavior in imaging. In conclusion, this study highlights the potential of nanoparticles as effective contrast agents for CT imaging of the gastrointestinal tract (GIT) in the UC. Further systemic research is needed to explore contrast agents that can specifically image disease processes in this disease setting.
Collapse
Affiliation(s)
- Derick N Rosario-Berríos
- Biochemistry and Molecular Biophysics, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Amanda Pang
- Department of Radiology, University of Pennsylvania, 3400 Spruce St, 1 SilversteinPhiladelphia, Pennsylvania 19104, United States
| | - Leening P Liu
- Department of Radiology, University of Pennsylvania, 3400 Spruce St, 1 SilversteinPhiladelphia, Pennsylvania 19104, United States
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Portia S N Maidment
- Department of Radiology, University of Pennsylvania, 3400 Spruce St, 1 SilversteinPhiladelphia, Pennsylvania 19104, United States
| | - Johoon Kim
- Department of Radiology, University of Pennsylvania, 3400 Spruce St, 1 SilversteinPhiladelphia, Pennsylvania 19104, United States
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Seokyoung Yoon
- Department of Radiology, University of Pennsylvania, 3400 Spruce St, 1 SilversteinPhiladelphia, Pennsylvania 19104, United States
| | - Lenitza M Nieves
- Biochemistry and Molecular Biophysics, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Katherine J Mossburg
- Department of Radiology, University of Pennsylvania, 3400 Spruce St, 1 SilversteinPhiladelphia, Pennsylvania 19104, United States
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Andrew Adezio
- Department of Clinical Sciences and Advanced Medicine, University of Pennsylvania, School of Veterinary Medicine, Philadelphia 19104, United States
| | - Peter B Noël
- Department of Radiology, University of Pennsylvania, 3400 Spruce St, 1 SilversteinPhiladelphia, Pennsylvania 19104, United States
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Elizabeth M Lennon
- Department of Clinical Sciences and Advanced Medicine, University of Pennsylvania, School of Veterinary Medicine, Philadelphia 19104, United States
| | - David P Cormode
- Biochemistry and Molecular Biophysics, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Department of Radiology, University of Pennsylvania, 3400 Spruce St, 1 SilversteinPhiladelphia, Pennsylvania 19104, United States
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
5
|
Vincely VD, Zhong X, Huda K, Katakam SP, Kays JC, Dennis AM, Bayer CL. Bornite (Cu 5FeS 4) nanocrystals as an ultrasmall biocompatible NIR-II contrast agent for photoacoustic imaging. PHOTOACOUSTICS 2024; 40:100649. [PMID: 39347465 PMCID: PMC11439559 DOI: 10.1016/j.pacs.2024.100649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 09/09/2024] [Accepted: 09/15/2024] [Indexed: 10/01/2024]
Abstract
In this study, we demonstrate the potential of the bornite crystal structure (Cu5FeS4) of copper iron sulfide as a second near infrared (NIR-II) photoacoustic (PA) contrast agent. Bornite exhibits comparable dose-dependent biocompatibility to copper sulfide nanoparticles in a cell viability study with HepG2 cells, while exhibiting a 10-fold increase in PA amplitude. In comparison to other benchmark contrast agents at similar mass concentrations, bornite demonstrated a 10× increase in PA amplitude compared to indocyanine green (ICG) and a 5× increase compared to gold nanorods (AuNRs). PA signal was detectable with a light pathlength greater than 5 cm in porcine tissue phantoms at bornite concentrations where in vitro cell viability was maintained. In vivo imaging of mice vasculature resulted in a 2× increase in PA amplitude compared to AuNRs. In summary, bornite is a promising NIR-II contrast agent for deep tissue PA imaging.
Collapse
Affiliation(s)
- Vinoin Devpaul Vincely
- Department of Biomedical Engineering, Tulane University, 6823 St. Charles Ave, New Orleans, LA 70118, United States
| | - Xingjian Zhong
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, United States
- Department of Chemical Engineering, Northeastern University, 360 Huntington Ave, Boston, MA 02115, United States
| | - Kristie Huda
- Department of Biomedical Engineering, Tulane University, 6823 St. Charles Ave, New Orleans, LA 70118, United States
| | - Swathi P. Katakam
- Department of Biomedical Engineering, Tulane University, 6823 St. Charles Ave, New Orleans, LA 70118, United States
| | - Joshua C. Kays
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, United States
| | - Allison M. Dennis
- Department of Chemical Engineering, Northeastern University, 360 Huntington Ave, Boston, MA 02115, United States
- Department of Bioengineering, Northeastern University, 360 Huntington Ave, Boston, MA 02115, United States
| | - Carolyn L. Bayer
- Department of Biomedical Engineering, Tulane University, 6823 St. Charles Ave, New Orleans, LA 70118, United States
| |
Collapse
|
6
|
Abu Serea ES, Berganza LB, Lanceros-Méndez S, Reguera J. Cu 2+-Assisted Synthesis of Ultrasharp and Sub-10 nm Gold Nanostars. Applications in Catalysis, Sensing, and Photothermia. ACS APPLIED NANO MATERIALS 2024; 7:19416-19426. [PMID: 39206353 PMCID: PMC11348798 DOI: 10.1021/acsanm.4c03310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 07/30/2024] [Accepted: 08/07/2024] [Indexed: 09/04/2024]
Abstract
Gold nanostars have shown enormous potential as the main enablers of advanced applications ranging from biomedicine to sensing or catalysis. Their unique anisotropic structure featuring sharp spikes that grow from a central core offers enhanced optical capabilities and spectral tunability. Although several synthesis methods yield NSs of different morphologies and sizes up to several hundred nanometers, obtaining small NSs, while maintaining their plasmonic properties in the near-infrared, has proven challenging and elusive. Here, we show that Cu2+ addition during NS synthesis in polyvinylpyrrolidone/dimethylformamide generates more crystallographic defects and promotes the directional growth, giving rise to NSs with a larger number of much sharper spikes. They are also formed at smaller volumes, enabling the generation of ultrasmall nanostars, with a volume as small as 421 nm3 (i.e., 9.2 nm of volume-equivalent diameter), while maintaining a plasmon resonance in the near-infrared. To this end, we systematically evaluate the influence of synthesis parameters on the nanostar size and optical characteristics and demonstrate their properties for applications in catalysis, surface-enhanced Raman spectroscopy sensing, and hyperthermia. The ultrasmall nanostars show excellent attributes in all of them, leveraging their small size to enhance properties related to a higher surface-to-volume ratio or colloidal diffusivity.
Collapse
Affiliation(s)
- Esraa Samy Abu Serea
- BCMaterials, Basque Center for Materials, Applications, and Nanostructures, UPV/EHU Science Park, Leioa 48940, Spain
| | - Leixuri B Berganza
- BCMaterials, Basque Center for Materials, Applications, and Nanostructures, UPV/EHU Science Park, Leioa 48940, Spain
| | - Senentxu Lanceros-Méndez
- BCMaterials, Basque Center for Materials, Applications, and Nanostructures, UPV/EHU Science Park, Leioa 48940, Spain
- Ikerbasque, Basque Foundation for Science, Bilbao 48009 Bilbao, Spain
| | - Javier Reguera
- BCMaterials, Basque Center for Materials, Applications, and Nanostructures, UPV/EHU Science Park, Leioa 48940, Spain
- Department Condensed Matter Physics, University of Valladolid, Bioforge, Pso. de Belén 19, 47011 Valladolid, Spain
| |
Collapse
|
7
|
Zhang S, Kong N, Wang Z, Zhang Y, Ni C, Li L, Wang H, Yang M, Yang W, Yan F. Nanochemistry of gold: from surface engineering to dental healthcare applications. Chem Soc Rev 2024; 53:3656-3686. [PMID: 38502089 DOI: 10.1039/d3cs00894k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
Advancements in nanochemistry have led to the development of engineered gold nanostructures (GNSs) with remarkable potential for a variety of dental healthcare applications. These innovative nanomaterials offer unique properties and functionalities that can significantly improve dental diagnostics, treatment, and overall oral healthcare applications. This review provides an overview of the latest advancements in the design, synthesis, and application of GNSs for dental healthcare applications. Engineered GNSs have emerged as versatile tools, demonstrating immense potential across different aspects of dentistry, including enhanced imaging and diagnosis, prevention, bioactive coatings, and targeted treatment of oral diseases. Key highlights encompass the precise control over GNSs' size, crystal structure, shape, and surface functionalization, enabling their integration into sensing, imaging diagnostics, drug delivery systems, and regenerative therapies. GNSs, with their exceptional biocompatibility and antimicrobial properties, have demonstrated efficacy in combating dental caries, periodontitis, peri-implantitis, and oral mucosal diseases. Additionally, they show great promise in the development of advanced sensing techniques for early diagnosis, such as nanobiosensor technology, while their role in targeted drug delivery, photothermal therapy, and immunomodulatory approaches has opened new avenues for oral cancer therapy. Challenges including long-term toxicity, biosafety, immune recognition, and personalized treatment are under rigorous investigation. As research at the intersection of nanotechnology and dentistry continues to thrive, this review highlights the transformative potential of engineered GNSs in revolutionizing dental healthcare, offering accurate, personalized, and minimally invasive solutions to address the oral health challenges of the modern era.
Collapse
Affiliation(s)
- Shuang Zhang
- Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Institute of Stomatology, Nanjing University, Nanjing, China.
| | - Na Kong
- School of Life and Environmental Science, Centre for Sustainable Bioproducts, Deakin University, Geelong, VIC, Australia.
- Hainan Provincial Key Laboratory of Natural Rubber Processing, Agricultural Products Processing Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, China
| | - Zezheng Wang
- Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Institute of Stomatology, Nanjing University, Nanjing, China.
| | - Yangheng Zhang
- Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Institute of Stomatology, Nanjing University, Nanjing, China.
| | - Can Ni
- Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Institute of Stomatology, Nanjing University, Nanjing, China.
| | - Lingjun Li
- Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Institute of Stomatology, Nanjing University, Nanjing, China.
| | - Hongbin Wang
- School of Chemistry and Environment, Yunnan Minzu University, Kunming, China
| | - Min Yang
- School of Chemistry and Environment, Yunnan Minzu University, Kunming, China
| | - Wenrong Yang
- School of Life and Environmental Science, Centre for Sustainable Bioproducts, Deakin University, Geelong, VIC, Australia.
| | - Fuhua Yan
- Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Institute of Stomatology, Nanjing University, Nanjing, China.
| |
Collapse
|
8
|
Wang X, Wang D, Lu H, Wang X, Wang X, Su J, Xia G. Strategies to Promote the Journey of Nanoparticles Against Biofilm-Associated Infections. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2305988. [PMID: 38178276 DOI: 10.1002/smll.202305988] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 10/08/2023] [Indexed: 01/06/2024]
Abstract
Biofilm-associated infections are one of the most challenging healthcare threats for humans, accounting for 80% of bacterial infections, leading to persistent and chronic infections. The conventional antibiotics still face their dilemma of poor therapeutic effects due to the high tolerance and resistance led by bacterial biofilm barriers. Nanotechnology-based antimicrobials, nanoparticles (NPs), are paid attention extensively and considered as promising alternative. This review focuses on the whole journey of NPs against biofilm-associated infections, and to clarify it clearly, the journey is divided into four processes in sequence as 1) Targeting biofilms, 2) Penetrating biofilm barrier, 3) Attaching to bacterial cells, and 4) Translocating through bacterial cell envelope. Through outlining the compositions and properties of biofilms and bacteria cells, recent advances and present the strategies of each process are comprehensively discussed to combat biofilm-associated infections, as well as the combined strategies against these infections with drug resistance, aiming to guide the rational design and facilitate wide application of NPs in biofilm-associated infections.
Collapse
Affiliation(s)
- Xiaobo Wang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, P. R. China
| | - Dan Wang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, P. R. China
| | - Hongwei Lu
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, P. R. China
| | - Xiaowei Wang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, P. R. China
| | - Xuelei Wang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, P. R. China
| | - Jiayi Su
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, P. R. China
| | - Guimin Xia
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, P. R. China
| |
Collapse
|
9
|
Sui J, Hou Y, Chen M, Zheng Z, Meng X, Liu L, Huo S, Liu S, Zhang H. Nanomaterials for Anti-Infection in Orthopedic Implants: A Review. COATINGS 2024; 14:254. [DOI: 10.3390/coatings14030254] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Postoperative implant infection is a severe complication in orthopedic surgery, often leading to implant failure. Current treatment strategies mainly rely on systemic antibiotic therapies, despite contributing to increasing bacterial resistance. In recent years, nanomaterials have gained attention for their potential in anti-infection methods. They exhibit more substantial bactericidal effects and lower drug resistance than conventional antimicrobial agents. Nanomaterials also possess multiple bactericidal mechanisms, such as physico-mechanical interactions. Additionally, they can serve as carriers for localized antimicrobial delivery. This review explores recent applications of nanomaterials with different morphologies in post-orthopedic surgery infections and categorizes their bactericidal mechanisms.
Collapse
Affiliation(s)
- Junhao Sui
- Department of Orthopedics, Changhai Hospital, Navy Medical University, Shanghai 200433, China
| | - Yijin Hou
- School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Mengchen Chen
- Department of Orthopedics, Changhai Hospital, Navy Medical University, Shanghai 200433, China
| | - Zhong Zheng
- Department of Orthopedics, Changhai Hospital, Navy Medical University, Shanghai 200433, China
| | - Xiangyu Meng
- Department of Orthopedics, Changhai Hospital, Navy Medical University, Shanghai 200433, China
| | - Lu Liu
- Department of Orthopedics, Changhai Hospital, Navy Medical University, Shanghai 200433, China
| | - Shicheng Huo
- Department of Orthopedic Surgery, Spine Center, Changzheng Hospital, Navy Medical University, Shanghai 200003, China
| | - Shu Liu
- Department of Spine Surgery, Changhai Hospital, Navy Medical University, Shanghai 200433, China
| | - Hao Zhang
- Department of Orthopedics, Changhai Hospital, Navy Medical University, Shanghai 200433, China
| |
Collapse
|
10
|
Monteiro MS, Mesquita MS, Garcia LM, Dos Santos PR, de Marangoni de Viveiros CC, da Fonseca RD, Xavier MA, de Mendonça GW, Rosa SS, Silva SL, Paterno LG, Morais PC, Báo SN. Radiofrequency driving antitumor effect of graphene oxide-based nanocomposites: a Hill model analysis. Nanomedicine (Lond) 2024; 19:397-412. [PMID: 38112257 DOI: 10.2217/nnm-2023-0312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023] Open
Abstract
Aim: This report proposes using the Hill model to assess the benchmark dose, the 50% lethal dose, the cooperativity and the dissociation constant while analyzing cell viability data using nanomaterials to evaluate the antitumor potential while combined with radiofrequency therapy. Materials & methods: A nanocomposite was synthesized (graphene oxide-polyethyleneimine-gold) and the viability was evaluated using two tumor cell lines, namely LLC-WRC-256 and B16-F10. Results: Our findings demonstrated that while the nanocomposite is biocompatible against the LLC-WRC-256 and B16-F10 cancer cell lines in the absence of radiofrequency, the application of radiofrequency enhances the cell toxicity by orders of magnitude. Conclusion: This result points to prospective studies with the tested cell lines using tumor animal models.
Collapse
Affiliation(s)
- Melissa S Monteiro
- Department of Cell Biology, Institute of Biological Sciences, University of Brasília, Brasília, Distrito Federal, 70910-900, Brazil
| | - Marina S Mesquita
- Department of Cell Biology, Institute of Biological Sciences, University of Brasília, Brasília, Distrito Federal, 70910-900, Brazil
| | - Leidiane M Garcia
- Department of Cell Biology, Institute of Biological Sciences, University of Brasília, Brasília, Distrito Federal, 70910-900, Brazil
| | - Paulo R Dos Santos
- Porto Velho Calama Campus, Federal Institute of Rondônia, Porto Velho, Rondônia, 76820-441, Brazil
| | | | - Ronei D da Fonseca
- PRC/DIMAT, University of Brasília, Brasília, Distrito Federal, 70910-900, Brazil
| | - Mary A Xavier
- Faculty of Agronomy & Veterinary, University of Brasília, Brasília, Distrito Federal, 70910-900, Brazil
| | | | - Suélia Srf Rosa
- Faculty of Gama, University of Brasília, Brasília, Distrito Federal, 72444-240, Brazil
| | - Saulo Lp Silva
- Institute of Chemistry, University of Brasília, Brasília, Distrito Federal, 70910-900, Brazil
| | - Leonardo G Paterno
- Institute of Chemistry, University of Brasília, Brasília, Distrito Federal, 70910-900, Brazil
| | - Paulo C Morais
- Institute of Physics, University of Brasília, Brasília, Distrito Federal, 70910-900, Brazil
- Biotechnology & Genomic Sciences, Catholic University of Brasília, Brasília, Distrito Federal, 70790-160, Brazil
| | - Sônia N Báo
- Department of Cell Biology, Institute of Biological Sciences, University of Brasília, Brasília, Distrito Federal, 70910-900, Brazil
| |
Collapse
|
11
|
Sridharan B, Lim HG. Advances in photoacoustic imaging aided by nano contrast agents: special focus on role of lymphatic system imaging for cancer theranostics. J Nanobiotechnology 2023; 21:437. [PMID: 37986071 PMCID: PMC10662568 DOI: 10.1186/s12951-023-02192-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 11/03/2023] [Indexed: 11/22/2023] Open
Abstract
Photoacoustic imaging (PAI) is a successful clinical imaging platform for management of cancer and other health conditions that has seen significant progress in the past decade. However, clinical translation of PAI based methods are still under scrutiny as the imaging quality and clinical information derived from PA images are not on par with other imaging methods. Hence, to improve PAI, exogenous contrast agents, in the form of nanomaterials, are being used to achieve better image with less side effects, lower accumulation, and improved target specificity. Nanomedicine has become inevitable in cancer management, as it contributes at every stage from diagnosis to therapy, surgery, and even in the postoperative care and surveillance for recurrence. Nanocontrast agents for PAI have been developed and are being explored for early and improved cancer diagnosis. The systemic stability and target specificity of the nanomaterials to render its theranostic property depends on various influencing factors such as the administration route and physico-chemical responsiveness. The recent focus in PAI is on targeting the lymphatic system and nodes for cancer diagnosis, as they play a vital role in cancer progression and metastasis. This review aims to discuss the clinical advancements of PAI using nanoparticles as exogenous contrast agents for cancer theranostics with emphasis on PAI of lymphatic system for diagnosis, cancer progression, metastasis, PAI guided tumor resection, and finally PAI guided drug delivery.
Collapse
Affiliation(s)
- Badrinathan Sridharan
- Department of Biomedical Engineering, Pukyong National University, Busan, 48513, Republic of Korea
| | - Hae Gyun Lim
- Department of Biomedical Engineering, Pukyong National University, Busan, 48513, Republic of Korea.
| |
Collapse
|
12
|
Ding Z, Xu B, Zhang H, Wang Z, Sun L, Tang M, Ding M, Zhang T, Shi S. Norcantharidin-Encapsulated C60-Modified Nanomicelles: A Potential Approach to Mitigate Cytotoxicity in Renal Cells and Simultaneously Enhance Anti-Tumor Activity in Hepatocellular Carcinoma Cells. Molecules 2023; 28:7609. [PMID: 38005331 PMCID: PMC10673410 DOI: 10.3390/molecules28227609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 11/03/2023] [Accepted: 11/11/2023] [Indexed: 11/26/2023] Open
Abstract
OBJECTIVE The objective of this study was to examine the preparation process of DSPE-PEG-C60/NCTD micelles and assess the impact of fullerenol (C60)-modified micelles on the nephrotoxicity and antitumor activity of NCTD. METHOD The micelles containing NCTD were prepared using the ultrasonic method and subsequently optimized and characterized. The cytotoxicity of micelles loaded with NCTD was assessed using the CCK-8 method on human hepatoma cell lines HepG2 and BEL-7402, as well as normal cell lines HK-2 and L02. Acridine orange/ethidium bromide (AO/EB) double staining and flow cytometry were employed to assess the impact of NCTD-loaded micelles on the apoptosis of the HK-2 cells and the HepG2 cells. Additionally, JC-1 fluorescence was utilized to quantify the alterations in mitochondrial membrane potential. The generation of reactive oxygen species (ROS) following micelle treatment was determined through 2',7'-dichlorofluorescein diacetate (DCFDA) staining. RESULTS The particle size distribution of the DSPE-PEG-C60/NCTD micelles was determined to be 91.57 nm (PDI = 0.231). The zeta potential of the micelles was found to be -13.8 mV. The encapsulation efficiency was measured to be 91.9%. The in vitro release behavior of the micelles followed the Higuchi equation. Cellular experiments demonstrated a notable decrease in the toxicity of the C60-modified micelles against the HK-2 cells, accompanied by an augmented inhibitory effect on cancer cells. Compared to the free NCTD group, the DSPE-PEG-C60 micelles exhibited a decreased apoptosis rate (12%) for the HK-2 cell line, lower than the apoptosis rate observed in the NCTD group (36%) at an NCTD concentration of 75 μM. The rate of apoptosis in the HepG2 cells exhibited a significant increase (49%), surpassing the apoptosis rate observed in the NCTD group (24%) at a concentration of 150 μM NCTD. The HK-2 cells exhibited a reduction in intracellular ROS and an increase in mitochondrial membrane potential (ΔψM) upon exposure to C60-modified micelles compared to the NCTD group. CONCLUSIONS The DSPE-PEG-C60/NCTD micelles, as prepared in this study, demonstrated the ability to decrease cytotoxicity and ROS levels in normal renal cells (HK-2) in vitro. Additionally, these micelles showed an enhanced antitumor activity against human hepatocellular carcinoma cells (HepG2, BEL-7402).
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Senlin Shi
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 311400, China; (Z.D.); (B.X.); (H.Z.); (Z.W.); (L.S.); (M.T.); (M.D.); (T.Z.)
| |
Collapse
|
13
|
Aili M, Zhou K, Zhan J, Zheng H, Luo F. Anti-inflammatory role of gold nanoparticles in the prevention and treatment of Alzheimer's disease. J Mater Chem B 2023; 11:8605-8621. [PMID: 37615596 DOI: 10.1039/d3tb01023f] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/25/2023]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease that causes memory and cognitive dysfunction and reduces a person's decision-making and reasoning functions. AD is the leading cause of dementia in the elderly. Patients with AD have increased expression of pro-inflammatory cytokines in the nervous system, and the sustained inflammatory response impairs neuronal function. Meanwhile, long-term use of anti-inflammatory drugs can reduce the incidence of AD to some extent. This confirms that anti-neuroinflammation may be an effective treatment for AD. Gold nanoparticles (AuNPs) are an emerging nanomaterial with promising physicochemical properties, anti-inflammatory and antioxidant. AuNPs reduce neuroinflammation by inducing macrophage polarization toward the M2 phenotype, reducing pro-inflammatory cytokine expression, blocking leukocyte adhesion, and decreasing oxidative stress. Therefore, AuNPs are gradually attracting the interest of scholars and are used for treating inflammatory diseases and drug delivery. Herein, we explored the role and mechanism of AuNPs in treating neuroinflammation in AD. The use of AuNPs for treating AD is a topic worth exploring in the future, not only to help solve a global public health problem but also to provide a reference for treating other neuroinflammatory diseases.
Collapse
Affiliation(s)
- Munire Aili
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu 610041, China.
| | - Kebing Zhou
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu 610041, China.
| | - Jun Zhan
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu 610041, China
| | - Huaping Zheng
- Department of Dermatology, Rare Diseases Center, Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Feng Luo
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu 610041, China.
- Department of Prosthodontics, West China School of Stomatology, Sichuan University, No. 14, Section 3, Renmin Nanlu, Chengdu 610041, China
| |
Collapse
|
14
|
Antoine R. Self-Assembly of Atomically Precise Nanoclusters: From Irregular Assembly to Crystalline Assembly. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2551. [PMID: 37764580 PMCID: PMC10535127 DOI: 10.3390/nano13182551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023]
Abstract
The persistent efforts toward achieving superior properties for assembled nanoscale particles have been held back due to the resulting polydispersity associated with colloidal routes of synthesis [...].
Collapse
Affiliation(s)
- Rodolphe Antoine
- Institut Lumière Matière UMR 5306, Université Claude Bernard Lyon 1, CNRS, Université Lyon, F-69100 Villeurbanne, France
| |
Collapse
|
15
|
Beraza-Millor M, Rodríguez-Castejón J, Miranda J, Del Pozo-Rodríguez A, Rodríguez-Gascón A, Solinís MÁ. Novel Golden Lipid Nanoparticles with Small Interference Ribonucleic Acid for Substrate Reduction Therapy in Fabry Disease. Pharmaceutics 2023; 15:1936. [PMID: 37514122 PMCID: PMC10385692 DOI: 10.3390/pharmaceutics15071936] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 06/28/2023] [Accepted: 07/07/2023] [Indexed: 07/30/2023] Open
Abstract
Substrate reduction therapy (SRT) has been proposed as a new gene therapy for Fabry disease (FD) to prevent the formation of globotriaosylceramide (Gb3). Nanomedicines containing different siRNA targeted to Gb3 synthase (Gb3S) were designed. Formulation factors, such as the composition, solid lipid nanoparticles (SLNs) preparation method and the incorporation of different ligands, such as gold nanoparticles (GNs), protamine (P) and polysaccharides, were evaluated. The new siRNA-golden LNPs were efficiently internalized in an FD cell model (IMFE-1), with GNs detected in the cytoplasm and in the nucleus. Silencing efficacy (measured by RT-qPCR) depended on the final composition and method of preparation, with silencing rates up to 90% (expressed as the reduction in Gb3S-mRNA). GNs conferred a higher system efficacy and stability without compromising cell viability and hemocompatibility. Immunocytochemistry assays confirmed Gb3S silencing for at least 15 days with the most effective formulations. Overall, these results highlight the potential of the new siRNA-golden LNP system as a promising nanomedicine to address FD by specific SRT.
Collapse
Affiliation(s)
- Marina Beraza-Millor
- Pharmacokinetic, Nanotechnology and Gene Therapy Group (Pharma Nano Gene), Faculty of Pharmacy, Centro de Investigación Lascaray Ikergunea, University of Basque Country UPV/EHU, 01006 Vitoria-Gasteiz, Spain
- Bioaraba, Microbiology, Infectious Disease, Antimicrobial Agents and Gene Therapy, 01006 Vitoria-Gasteiz, Spain
| | - Julen Rodríguez-Castejón
- Pharmacokinetic, Nanotechnology and Gene Therapy Group (Pharma Nano Gene), Faculty of Pharmacy, Centro de Investigación Lascaray Ikergunea, University of Basque Country UPV/EHU, 01006 Vitoria-Gasteiz, Spain
- Bioaraba, Microbiology, Infectious Disease, Antimicrobial Agents and Gene Therapy, 01006 Vitoria-Gasteiz, Spain
| | - Jonatan Miranda
- GLUTEN3S Research Group, Faculty of Pharmacy, University of Basque Country UPV/EHU, 01006 Vitoria-Gasteiz, Spain
- Bioaraba, Nutrition and Food Safety, 01006 Vitoria-Gasteiz, Spain
| | - Ana Del Pozo-Rodríguez
- Pharmacokinetic, Nanotechnology and Gene Therapy Group (Pharma Nano Gene), Faculty of Pharmacy, Centro de Investigación Lascaray Ikergunea, University of Basque Country UPV/EHU, 01006 Vitoria-Gasteiz, Spain
- Bioaraba, Microbiology, Infectious Disease, Antimicrobial Agents and Gene Therapy, 01006 Vitoria-Gasteiz, Spain
| | - Alicia Rodríguez-Gascón
- Pharmacokinetic, Nanotechnology and Gene Therapy Group (Pharma Nano Gene), Faculty of Pharmacy, Centro de Investigación Lascaray Ikergunea, University of Basque Country UPV/EHU, 01006 Vitoria-Gasteiz, Spain
- Bioaraba, Microbiology, Infectious Disease, Antimicrobial Agents and Gene Therapy, 01006 Vitoria-Gasteiz, Spain
| | - María Ángeles Solinís
- Pharmacokinetic, Nanotechnology and Gene Therapy Group (Pharma Nano Gene), Faculty of Pharmacy, Centro de Investigación Lascaray Ikergunea, University of Basque Country UPV/EHU, 01006 Vitoria-Gasteiz, Spain
- Bioaraba, Microbiology, Infectious Disease, Antimicrobial Agents and Gene Therapy, 01006 Vitoria-Gasteiz, Spain
| |
Collapse
|
16
|
Chi XK, Xu XL, Chen BY, Su J, Du YZ. Combining nanotechnology with monoclonal antibody drugs for rheumatoid arthritis treatments. J Nanobiotechnology 2023; 21:105. [PMID: 36964609 PMCID: PMC10039584 DOI: 10.1186/s12951-023-01857-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 03/15/2023] [Indexed: 03/26/2023] Open
Abstract
Rheumatoid arthritis (RA) is a systemic immune disease characterized by synovial inflammation. Patients with RA commonly experience significant damage to their hand and foot joints, which can lead to joint deformities and even disability. Traditional treatments have several clinical drawbacks, including unclear pharmacological mechanisms and serious side effects. However, the emergence of antibody drugs offers a promising approach to overcome these limitations by specifically targeting interleukin-1 (IL-1), interleukin-6 (IL-6), tumor necrosis factor-alpha (TNF-α), and other cytokines that are closely related to the onset of RA. This approach reduces the incidence of adverse effects and contributes to significant therapeutic outcomes. Furthermore, combining these antibody drugs with drug delivery nanosystems (DDSs) can improve their tissue accumulation and bioavailability.Herein, we provide a summary of the pathogenesis of RA, the available antibody drugs and DDSs that improve the efficacy of these drugs. However, several challenges need to be addressed in their clinical applications, including patient compliance, stability, immunogenicity, immunosupression, target and synergistic effects. We propose strategies to overcome these limitations. In summary, we are optimistic about the prospects of treating RA with antibody drugs, given their specific targeting mechanisms and the potential benefits of combining them with DDSs.
Collapse
Affiliation(s)
- Xiao-Kai Chi
- College of Pharmacy, Jiamusi University, 258 Xuefu Road, Jiamusi, 154007, China
- Shulan International Medical College, Zhejiang Shuren University), 8 Shuren Street, Hangzhou, 310015, China
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, 866 Yu-Hang-Tang Road, Hangzhou, 310058, China
| | - Xiao-Ling Xu
- Shulan International Medical College, Zhejiang Shuren University), 8 Shuren Street, Hangzhou, 310015, China.
| | - Bang-Yao Chen
- Shulan International Medical College, Zhejiang Shuren University), 8 Shuren Street, Hangzhou, 310015, China
| | - Jin Su
- College of Pharmacy, Jiamusi University, 258 Xuefu Road, Jiamusi, 154007, China.
| | - Yong-Zhong Du
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, 866 Yu-Hang-Tang Road, Hangzhou, 310058, China.
| |
Collapse
|
17
|
A Gold Nanoparticle Bioconjugate Delivery System for Active Targeted Photodynamic Therapy of Cancer and Cancer Stem Cells. Cancers (Basel) 2022; 14:cancers14194558. [PMID: 36230480 PMCID: PMC9559518 DOI: 10.3390/cancers14194558] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/11/2022] [Accepted: 09/15/2022] [Indexed: 11/17/2022] Open
Abstract
Cancer stem cells (CSCs), also called tumor-initiating cells, are a subpopulation of cancer cells believed to be the leading cause of cancer initiation, growth, metastasis, and recurrence. Presently there are no effective treatments targeted at eliminating CSCs. Hence, an urgent need to develop measures to target CSCs to eliminate potential recurrence and metastasis associated with CSCs. Cancer stem cells have inherent and unique features that differ from other cancer cells, which they leverage to resist conventional therapies. Targeting such features with photodynamic therapy (PDT) could be a promising treatment for drug-resistant cancer stem cells. Photodynamic therapy is a light-mediated non-invasive treatment modality. However, PDT alone is unable to eliminate cancer stem cells effectively, hence the need for a targeted approach. Gold nanoparticle bioconjugates with PDT could be a potential approach for targeted photodynamic therapy of cancer and CSCs. This approach has the potential for enhanced drug delivery, selective and specific attachment to target tumor cells/CSCs, as well as the ability to efficiently generate ROS. This review examines the impact of a smart gold nanoparticle bioconjugate coupled with a photosensitizer (PS) in promoting targeted PDT of cancer and CSC.
Collapse
|