1
|
Husile A, Wang Z, Guan J. Bimetallic effects in carbon dioxide electroreduction. Chem Sci 2025; 16:5413-5446. [PMID: 40083971 PMCID: PMC11901347 DOI: 10.1039/d5sc00670h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Accepted: 03/04/2025] [Indexed: 03/16/2025] Open
Abstract
As a clean and sustainable technology, electrocatalytic carbon dioxide reduction reaction (ECO2RR) occupies a central position in the global energy transformation and climate change strategy. Compared with single metallic catalysts, bimetallic catalysts have many advantages, such as the synergistic effect between bimetals, enhanced CO2 adsorption capacity, and lower reaction energy barriers, which make them widely used in the CO2RR for the generation of multi-carbon products. This review systematically summarizes the latest advances in bimetallic effects for the CO2RR. In this paper, we start with a classified introduction on the CO2RR mechanisms, followed by a comprehensive discussion of the structure-activity relationships of various bimetallic catalysts, including regulation of metal centers, regulation of the distance between metal sites, regulation of the coordination environment, interface engineering, and strain engineering. Next, we showcase the advantages of bimetallic catalysts in the CO2RR. Then, the research progress of typical bimetallic catalysts for the ECO2RR is discussed, including diatomic catalysts, bimetallic alloys, bimetallic MOFs and bimetallic COFs. Finally, we summarize the challenges faced today from the five aspects of product selectivity, catalyst stability, product purification, theoretical simulations and in situ characterization techniques and put forward the research direction to promote the industrialization process of CO2RR.
Collapse
Affiliation(s)
- Anaer Husile
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Institute of Physical Chemistry, College of Chemistry, Jilin University 2519 Jiefang Road Changchun 130021 P. R. China
| | - Zhenlu Wang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Institute of Physical Chemistry, College of Chemistry, Jilin University 2519 Jiefang Road Changchun 130021 P. R. China
| | - Jingqi Guan
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Institute of Physical Chemistry, College of Chemistry, Jilin University 2519 Jiefang Road Changchun 130021 P. R. China
| |
Collapse
|
2
|
Luo W, Li S, Shen Y, Zhang S, Li W, Li S. Modulating the Coordination Environment of Cu Sites for Highly Selective CO 2 Electroreduction to Ethylene. CHEM & BIO ENGINEERING 2024; 1:836-845. [PMID: 39974577 PMCID: PMC11835271 DOI: 10.1021/cbe.4c00021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/13/2024] [Accepted: 04/02/2024] [Indexed: 02/21/2025]
Abstract
Carbon dioxide (CO2) can be reduced to a variety of value-added products by the electrochemical reduction of CO2 (ERC). Modulating the coordination environment of the Cu sites can effectively optimize the selectivity and activity of the reduction process. In this work, we report a facile strategy to regulate the coordination environment of Cu sites for improving the Faradaic efficiency (FE) of ethylene. Room-temperature Ar plasma with different powers and treating times was employed to partially remove the 2,5-dihydroxyterephthalic moieties from the structure of Cu-MOF-74, thus resulting in more unsaturated coordinated Cu sites and lower oxidation state. The structure distortion and electron configuration change of Cu-MOF-74-P was observed from electron paramagnetic resonance (EPR). Meanwhile, the proportion of Cu+ in Cu-MOF-74-P has increased significantly. By combination of XAFS and in situ DRIFTS, it was shown that the coordination number of Cu-MOF-74-P has decreased from 2.7 to 1.6, thus facilitating the formation of more *CO intermediates on the surface during the reduction process. This modification strategy successfully increased the Faradaic efficiency of C2H4 in the product up to 48%, which was 3.2 times of its original performance. This work provides some guidance for the design of catalysts with tailored selectivity during CO2 electroreduction.
Collapse
Affiliation(s)
- Wenfu Luo
- Key
Laboratory of Biomass Chemical Engineering of the Ministry of Education,
Institute of Industrial Ecology and Environment, College of Chemical
and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Shijie Li
- Key
Laboratory of Biomass Chemical Engineering of the Ministry of Education,
Institute of Industrial Ecology and Environment, College of Chemical
and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Yao Shen
- Key
Laboratory of Microbial Technology for Industrial Pollution Control
of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Shihan Zhang
- Key
Laboratory of Microbial Technology for Industrial Pollution Control
of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Wei Li
- Key
Laboratory of Biomass Chemical Engineering of the Ministry of Education,
Institute of Industrial Ecology and Environment, College of Chemical
and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Sujing Li
- Key
Laboratory of Biomass Chemical Engineering of the Ministry of Education,
Institute of Industrial Ecology and Environment, College of Chemical
and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
3
|
Jia X, Yang B, Cheng Q, Li X, Xiang Z. Chemical Vapor Deposition Toward Efficient Bimetallic Atomically Dispersed Oxygen Reduction Catalysts. Macromol Rapid Commun 2024; 45:e2400442. [PMID: 39108052 DOI: 10.1002/marc.202400442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/13/2024] [Indexed: 11/09/2024]
Abstract
Non-precious metal-based nitrogen-doped carbon (M-Nx/C) shows great potential as a substitute for precious metal Pt-based catalysts. However, the conventional pyrolytic methods for forming M-Nx/C active sites are prone to issues such as the lack of synergistic interactions among bimetallic atoms and the potential encasement of active sites, leading to compromised catalytic efficiency and hindered mass transfer. In this work, a highly active FeCo-N-C@U-AC electrocatalyst is developed with a high density of active sites, adequate exposure of catalytic sites, and robust mass transfer capability using the chemical vapor-phase deposition (CVD) technique. The resulting catalyst demonstrates impressive oxygen reduction reaction (ORR) catalytic performance and stability, with half-wave potentials of 0.820 V (0.1 M HClO4) and 0.911 V (0.1 M KOH), respectively. It also exhibits significantly enhanced stability, retaining 93.25% and 98.38% of current after continuous 50 000 s of durability testing, surpassing the retention rates of Pt/C (80.31% in HClO4 and 84.96% in KOH electrolytes). Notably, when employed as a cathode catalyst in proton exchange membrane fuel cells (PEMFCs) and zinc-air flow batteries (ZAFBs), the FeCo-N-C@U-AC catalyst delivers peak power densities of 859 and 162 mW·cm-2, respectively, showcasing competitive performance comparable to benchmark Pt/C.
Collapse
Affiliation(s)
- Xudong Jia
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Bolong Yang
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Qian Cheng
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Xueli Li
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Zhonghua Xiang
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| |
Collapse
|
4
|
Zhou J, Liang Q, Huang P, Xu J, Niu T, Wang Y, Dong Y, Zhang J. Efficient CO 2 electroreduction to ethanol enabled by tip-curvature-induced local electric fields. NANOSCALE 2024; 16:13011-13018. [PMID: 38912545 DOI: 10.1039/d4nr01173b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/25/2024]
Abstract
Electrocatalytic reduction of CO2 into multicarbon (C2+) products offers a promising pathway for CO2 utilization. However, achieving high selectivity towards multicarbon alcohols, such as ethanol, remains a challenge. In this work, we present a novel CuO nanoflower catalyst with engineered tip curvature, achieving remarkable selectivity and efficiency in the electroreduction of CO2 to ethanol. This catalyst exhibits an ethanol faradaic efficiency (FEethanol) of 47% and a formation rate of 320 μmol h-1 cm-2, with an overall C2+ product faradaic efficiency (FEC2+) reaching ∼77.8%. We attribute this performance to the catalyst's sharp tip, which generates a strong local electric field, thereby accelerating CO2 activation and facilitating C-C coupling for deep CO2 reduction. In situ Raman spectroscopy reveals an increased *OH coverage under operating conditions, where the enhanced *OH adsorption facilitates the stabilization of *CHCOH intermediates through hydrogen bonding interaction, thus improving ethanol selectivity. Our findings demonstrate the pivotal role of local electric fields in altering reaction kinetics for CO2 electroreduction, presenting a new avenue for catalyst design aiming at converting CO2 to ethanol.
Collapse
Affiliation(s)
- Jing Zhou
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China.
- International Joint Research Center for Photoresponsive Molecules and Materials, Jiangnan University, Wuxi 214122, China
| | - Qianyue Liang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China.
- International Joint Research Center for Photoresponsive Molecules and Materials, Jiangnan University, Wuxi 214122, China
| | - Pu Huang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China.
- International Joint Research Center for Photoresponsive Molecules and Materials, Jiangnan University, Wuxi 214122, China
| | - Jing Xu
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Tengfei Niu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China.
| | - Yao Wang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China.
| | - Yuming Dong
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China.
| | - Jiawei Zhang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China.
- International Joint Research Center for Photoresponsive Molecules and Materials, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
5
|
Guo L, Zhou J, Liu F, Meng X, Ma Y, Hao F, Xiong Y, Fan Z. Electronic Structure Design of Transition Metal-Based Catalysts for Electrochemical Carbon Dioxide Reduction. ACS NANO 2024; 18:9823-9851. [PMID: 38546130 DOI: 10.1021/acsnano.4c01456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/10/2024]
Abstract
With the increasingly serious greenhouse effect, the electrochemical carbon dioxide reduction reaction (CO2RR) has garnered widespread attention as it is capable of leveraging renewable energy to convert CO2 into value-added chemicals and fuels. However, the performance of CO2RR can hardly meet expectations because of the diverse intermediates and complicated reaction processes, necessitating the exploitation of highly efficient catalysts. In recent years, with advanced characterization technologies and theoretical simulations, the exploration of catalytic mechanisms has gradually deepened into the electronic structure of catalysts and their interactions with intermediates, which serve as a bridge to facilitate the deeper comprehension of structure-performance relationships. Transition metal-based catalysts (TMCs), extensively applied in electrochemical CO2RR, demonstrate substantial potential for further electronic structure modulation, given their abundance of d electrons. Herein, we discuss the representative feasible strategies to modulate the electronic structure of catalysts, including doping, vacancy, alloying, heterostructure, strain, and phase engineering. These approaches profoundly alter the inherent properties of TMCs and their interaction with intermediates, thereby greatly affecting the reaction rate and pathway of CO2RR. It is believed that the rational electronic structure design and modulation can fundamentally provide viable directions and strategies for the development of advanced catalysts toward efficient electrochemical conversion of CO2 and many other small molecules.
Collapse
Affiliation(s)
- Liang Guo
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong SAR 999077, China
- Hong Kong Branch of National Precious Metals Material Engineering Research Center (NPMM), City University of Hong Kong, Kowloon, Hong Kong SAR 999077, China
| | - Jingwen Zhou
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong SAR 999077, China
- Hong Kong Branch of National Precious Metals Material Engineering Research Center (NPMM), City University of Hong Kong, Kowloon, Hong Kong SAR 999077, China
| | - Fu Liu
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong SAR 999077, China
| | - Xiang Meng
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong SAR 999077, China
- Hong Kong Branch of National Precious Metals Material Engineering Research Center (NPMM), City University of Hong Kong, Kowloon, Hong Kong SAR 999077, China
| | - Yangbo Ma
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong SAR 999077, China
| | - Fengkun Hao
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong SAR 999077, China
| | - Yuecheng Xiong
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong SAR 999077, China
- Hong Kong Branch of National Precious Metals Material Engineering Research Center (NPMM), City University of Hong Kong, Kowloon, Hong Kong SAR 999077, China
| | - Zhanxi Fan
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong SAR 999077, China
- Hong Kong Branch of National Precious Metals Material Engineering Research Center (NPMM), City University of Hong Kong, Kowloon, Hong Kong SAR 999077, China
- City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China
- Hong Kong Institute for Clean Energy (HKICE), City University of Hong Kong, Hong Kong 999077, China
| |
Collapse
|
6
|
Wang K, He S, Zhang B, Cao Z, Zhou T, He J, Chu G. Self-Supported 3D PtPdCu Nanowires Networks for Superior Glucose Electro-Oxidation Performance. Molecules 2023; 28:5834. [PMID: 37570804 PMCID: PMC10421379 DOI: 10.3390/molecules28155834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 07/05/2023] [Accepted: 07/20/2023] [Indexed: 08/13/2023] Open
Abstract
The development of non-enzymatic and highly active electrocatalysts for glucose oxidation with excellent durability for blood glucose sensors has aroused widespread concern. In this work, we report a fast, simple, and low-cost NaBH4 reduction method for preparing ultrafine ternary PtPdCu alloy nanowires (NWs) with a 3D network nanostructure. The PtPdCu NWs catalyst presents significant efficiency for glucose oxidation-reduction (GOR), reaching an oxidative peak-specific activity of 0.69 mA/cm2, 2.6 times that of the Pt/C catalyst (0.27 mA/cm2). Further reaction mechanism investigations show that the NWs have better conductivity and smaller electron transfer resistance. Density functional theory (DFT) calculations reveal that the alloying effect of PtPdCu could effectively enhance the adsorption energy of glucose and reduce the activation energy of GOR. The obtained NWs also show excellent stability over 3600 s through a chronoamperometry test. These self-supported ultrafine PtPdCu NWs with 3D networks provide a new functional material for building blood glucose sensors and direct glucose fuel cells.
Collapse
Affiliation(s)
- Kaili Wang
- Laboratory of Xinjiang Native Medicinal and Edible Plant Resources Chemistry, Kashi University, Kashi 844008, China; (K.W.); (B.Z.)
- College Chemistry & Chemistry Engineering, Weifang University, Weifang 261061, China; (Z.C.); (T.Z.)
- School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Shuang He
- Department of Nephrology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China;
| | - Bowen Zhang
- Laboratory of Xinjiang Native Medicinal and Edible Plant Resources Chemistry, Kashi University, Kashi 844008, China; (K.W.); (B.Z.)
| | - Zhen Cao
- College Chemistry & Chemistry Engineering, Weifang University, Weifang 261061, China; (Z.C.); (T.Z.)
| | - Tingting Zhou
- College Chemistry & Chemistry Engineering, Weifang University, Weifang 261061, China; (Z.C.); (T.Z.)
| | - Jia He
- School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Ganghui Chu
- Laboratory of Xinjiang Native Medicinal and Edible Plant Resources Chemistry, Kashi University, Kashi 844008, China; (K.W.); (B.Z.)
| |
Collapse
|
7
|
Zhang Q, Lian K, Liu Q, Qi G, Zhang S, Luo J, Liu X. High entropy alloy nanoparticles as efficient catalysts for alkaline overall seawater splitting and Zn-air batteries. J Colloid Interface Sci 2023; 646:844-854. [PMID: 37235930 DOI: 10.1016/j.jcis.2023.05.074] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/19/2023] [Accepted: 05/12/2023] [Indexed: 05/28/2023]
Abstract
High entropy alloys (HEAs) are those metallic materials that consist of five or more elements. Compared with conventional alloys, they have much more catalytic active sites due to unique structural characteristics such as high entropy effect and lattice distortion, endowing them with promising applications in the region of hydrolysis catalysts. Herein, we successfully loaded high-entropy alloys onto carbon nanotubes (FeNiCoMnRu@CNT) by hydrothermal means. It exhibits excellent HER and OER properties in alkaline seawater. To accomplish two-electrode total water splitting when constructed into Zn air cells, it only needed 1.6 V, and the timing voltage curve showed a steady current density of 10 mA cm-2 during constant electrolysis for more than 30 h in alkaline seawater. The remarkably high HER and OER activity of FeNiCoMnRu@CNT HEAs NPS indicates the potentially broad application prospect of HEAs for Zn air battery.
Collapse
Affiliation(s)
- Quan Zhang
- Institute for New Energy Materials & Low-Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Kang Lian
- Institute for New Energy Materials & Low-Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, China; State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China
| | - Qian Liu
- Institute for Advanced Study, Chengdu University, Chengdu 610106, Sichuan, China
| | - Gaocan Qi
- Tianjin Key Lab for Photoelectric Materials & Devices, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, China.
| | - Shusheng Zhang
- College of Chemistry, Zhengzhou University, Zhengzhou 450000, China
| | - Jun Luo
- Institute for New Energy Materials & Low-Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, China; ShenSi Lab, Shenzhen Institute for Advanced Study, University of Electronic Science and Technology of China, Longhua District, Shenzhen 518110, China
| | - Xijun Liu
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China.
| |
Collapse
|
8
|
Zhang W, Qin X, Wei T, Liu Q, Luo J, Liu X. Single atomic cerium sites anchored on nitrogen-doped hollow carbon spheres for highly selective electroreduction of nitric oxide to ammonia. J Colloid Interface Sci 2023; 638:650-657. [PMID: 36774878 DOI: 10.1016/j.jcis.2023.02.026] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 01/27/2023] [Accepted: 02/05/2023] [Indexed: 02/11/2023]
Abstract
Electrocatalytic nitric oxide reduction reaction (NORR) at ambient environments not only offers a promising strategy to yield ammonia (NH3) but also degrades the NO contaminant; however, its application depends on searching for high-performance catalysts. Herein, we present single atomic Ce sites anchored on nitrogen-doped hollow carbon spheres that are capable of electro-catalyzing NO reduction to NH3 in an acidic solution, achieving a maximal Faradaic efficiency of 91 % and a yield rate of 1023 μg h-1 mgcat.-1 at -0.7 V vs RHE for NH3 formation, both of which outperform these on Ce nanoclusters and approach the best-reported results. Meanwhile, the single atomic Ce catalyst shows good structural and electrochemical stability during the 30-h NO electrolysis. Furthermore, when the single atomic Ce catalyst was used as cathodic material in a proof-of-concept of Zn-NO battery, it delivers a maximal power density of 3.4 mW cm-2 and a high NH3 yield rate of 309 μg h-1 mgcat.-1. Theoretical simulations suggest that the Ce-N4 active moiety can not only activate NO molecules via a strong electronic interaction but also reduce the free energy barrier of *NO transition to *NOH intermediate as the limiting step, and therefore boosting the NORR kinetics and suppressing the competitive hydrogen evolution.
Collapse
Affiliation(s)
- Weiqing Zhang
- Department of Research, Guangxi Medical University Cancer Hospital, Nanning 530021, China.
| | - Xuhui Qin
- Department of Research, Guangxi Medical University Cancer Hospital, Nanning 530021, China
| | - Tianran Wei
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, School of Resource, Environments and Materials, Guangxi University, Nanning 530004, China
| | - Qian Liu
- Institute for Advanced Study, Chengdu University, Chengdu 610106, Sichuan, China
| | - Jun Luo
- ShenSi Lab, Shenzhen Institute for Advanced Study, University of Electronic Science and Technology of China, Longhua District, Shenzhen 518110, China
| | - Xijun Liu
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, School of Resource, Environments and Materials, Guangxi University, Nanning 530004, China.
| |
Collapse
|
9
|
Pérez-Sequera AC, Diaz-Perez MA, Lara Angulo MA, Holgado JP, Serrano-Ruiz JC. Facile Synthesis of Heterogeneous Indium Nanoparticles for Formate Production via CO 2 Electroreduction. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1304. [PMID: 37110888 PMCID: PMC10142922 DOI: 10.3390/nano13081304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/29/2023] [Accepted: 04/03/2023] [Indexed: 06/19/2023]
Abstract
In this study, a simple and scalable method to obtain heterogeneous indium nanoparticles and carbon-supported indium nanoparticles under mild conditions is described. Physicochemical characterization by X-ray diffraction (XRD), X-ray photoelectron microscopy (XPS), scanning electron microscopy (SEM) and transmission electron microscopy (TEM) revealed heterogeneous morphologies for the In nanoparticles in all cases. Apart from In0, XPS revealed the presence of oxidized In species on the carbon-supported samples, whereas these species were not observed for the unsupported samples. The best-in-class catalyst (In50/C50) exhibited a high formate Faradaic efficiency (FE) near the unit (above 97%) at -1.6 V vs. Ag/AgCl, achieving a stable current density around -10 mA·cmgeo-2, in a common H-cell. While In0 sites are the main active sites for the reaction, the presence of oxidized In species could play a role in the improved performance of the supported samples.
Collapse
Affiliation(s)
- Ana Cristina Pérez-Sequera
- Materials and Sustainability Group, Department of Engineering, Universidad Loyola Andalucía, Avda. de las Universidades s/n, 41704 Dos Hermanas, Spain
| | - Manuel Antonio Diaz-Perez
- Materials and Sustainability Group, Department of Engineering, Universidad Loyola Andalucía, Avda. de las Universidades s/n, 41704 Dos Hermanas, Spain
| | - Mayra Anabel Lara Angulo
- Materials and Sustainability Group, Department of Engineering, Universidad Loyola Andalucía, Avda. de las Universidades s/n, 41704 Dos Hermanas, Spain
| | - Juan P. Holgado
- Instituto de Ciencia de Materiales de Sevilla and Departamento de Química Inorgánica, CSIC-Univ de Sevilla, Av. Américo Vespucio, 49, 41092 Seville, Spain
| | - Juan Carlos Serrano-Ruiz
- Materials and Sustainability Group, Department of Engineering, Universidad Loyola Andalucía, Avda. de las Universidades s/n, 41704 Dos Hermanas, Spain
| |
Collapse
|
10
|
Lu G, Wang Z, Zhang S, Ding J, Luo J, Liu X. Cathode materials for halide-based aqueous redox flow batteries: recent progress and future perspectives. NANOSCALE 2023; 15:4250-4260. [PMID: 36756795 DOI: 10.1039/d2nr07291b] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
As the population increases sharply around the globe, huge shortages are occurring in energy resources. Renewable resources are urgently required to be developed to satisfy human demands. Unlike the lithium-ion batteries with safety and cost issues, the redox flow battery (RFB) is economical, stable, and convenient for the development of large-scale stationary electrical energy storage applications. Especially, the aqueous redox flow battery (ARFB) further exhibits a promising potential in larger power grids owing to its unique structural features of storing energy by filling the tank with electrolytes. The ARFB is capable of modulating battery parameters by controlling the volume and concentration of the electro-active species (EAS). Further, halogens show excellent properties, such as low cost and appropriate potential as an EAS for ARFB, further showing an efficient, safe, and affordable energy storage system (ESS). Moreover, to attain the demands of strong activity, high sensitivity, convenience as well as practicality, further attention needs to be paid to material (electrode) design and adjustment. In this mini-review, novel electrode materials, including their potential internal mechanisms and effective regulatory means, are summarized and applied in the zinc-halogen, hydrogen-halogen, and polysulfide-halogen ARFB systems, promoting the development of valuable material systems and the innovation of the energy storage/conversion technologies.
Collapse
Affiliation(s)
- Guolong Lu
- Chemistry and chemical engineering, Guangxi University, Nanning 530004, China.
| | - Zhigui Wang
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, School of Resource, Environments and Materials, Guangxi University, Nanning 530004, China
| | - Shusheng Zhang
- College of Chemistry, Zhengzhou University, Zhengzhou 450000, China
| | - Junyang Ding
- Institute for New Energy Materials & Low-Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, China.
| | - Jun Luo
- Institute for New Energy Materials & Low-Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, China.
- ShenSi Lab, Shenzhen Institute for Advanced Study, University of Electronic Science and Technology of China, Longhua District, Shenzhen 518110, China
| | - Xijun Liu
- Chemistry and chemical engineering, Guangxi University, Nanning 530004, China.
| |
Collapse
|
11
|
Ding J, Hou X, Qiu Y, Zhang S, Liu Q, Luo J, Liu X. Iron-doping strategy promotes electroreduction of nitrate to ammonia on MoS2 nanosheets. INORG CHEM COMMUN 2023. [DOI: 10.1016/j.inoche.2023.110621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
|