1
|
Gupta KK, Routray W. Cold plasma: A nonthermal pretreatment, extraction, and solvent activation technique for obtaining bioactive compounds from agro-food industrial biomass. Food Chem 2025; 472:142960. [PMID: 39842194 DOI: 10.1016/j.foodchem.2025.142960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 12/27/2024] [Accepted: 01/16/2025] [Indexed: 01/24/2025]
Abstract
The present review provides a comprehensive overview of cold plasma treatment and its applications in solvent activation and bioactive component extraction. The study has summarized the principles, types, uses, and mechanisms of cold plasma treatment in activating various solvents, extracting biomolecules, and affecting the characteristics of the extracted compound. This review also explores the environmental benefits of implementing this sustainable technology, highlighting the influence of key parameters such as gas type, treatment time, voltage, and plasma flow rate on the extraction process, providing insights into optimizing these conditions for maximum efficiency. In addition, future trends and research needs for advancing cold plasma-assisted extraction have also been proposed. All biomolecules exhibit specific characteristics; still, the influence of cold plasma treatment varies depending on treatment parameters and product properties, including the source material utilized in the extraction process. Most research has shown that cold plasma treatment can cause cell disruption due to reactive species generation and enhances solvent penetration; thereby, it helps in improving extraction yield with negligible effects on characteristics. With the growing demand for natural bioactive compounds in the nutraceutical, pharmaceutical, and food sectors, cold plasma offers a promising alternative to conventional thermal and chemical extraction techniques. This review concisely discusses the benefits and challenges of cold plasma treatment and the need for additional research.
Collapse
Affiliation(s)
- Kishan Kishor Gupta
- Department of Food Process Engineering, National Institute of Technology, Rourkela, Odisha 769008, India
| | - Winny Routray
- Department of Food Process Engineering, National Institute of Technology, Rourkela, Odisha 769008, India.
| |
Collapse
|
2
|
Wang S, Liu Z, Li X, Guo H, Zhang Z, Pang B, Gao Y, Cullen PJ, Zhou R. Development of pilot-scale plasma bubble reactors for efficient antibiotics removal in wastewater. ENVIRONMENTAL RESEARCH 2025; 264:120310. [PMID: 39521258 DOI: 10.1016/j.envres.2024.120310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 10/21/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024]
Abstract
Plasma bubble (PB) is a promising technology to control antibiotic wastewater pollution. However, the practical implementation of PB technology at the industrial-scale is still underdeveloped. In addition, the influence of different discharge modes for PB on wastewater treatment is largely unknown. This study designed pilot-scale PB reactors with different discharge modes to investigate the degradation effect of norfloxacin (NOR) and tetracycline (TC) in bulk tap water. Results indicate that the dielectric barrier discharge (DBD) mode with low average discharge power demonstrates superior degradation ability and higher production of O3(g) and .O2-(aq) compared to the spark mode which exhibits the high-intensity spark discharge in the tip area of the tube. After 40 min of treatment in a Double DBD reactor, 97.4% and 100% of NOR and TC are removed from 2 L tap water, attributed to the accumulation of antibiotic molecules by PBs and the in-situ generation of O3(g) and .O2-(aq) produced by plasma. Furthermore, a larger-scale PB reactor is developed by creating an array of four DBD reactors, effectively degrading 8 L mixed antibiotics solution. This study provides valuable insights for PB reactor design and the degradation performance of antibiotic wastewater, which will contribute to the further development of synergistic systems for plasma degradation.
Collapse
Affiliation(s)
- Sitao Wang
- State Key Laboratory of Electrical Insulation and Power Equipment, Centre for Plasma Biomedicine, School of Electrical Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, People's Republic of China
| | - Zhijie Liu
- State Key Laboratory of Electrical Insulation and Power Equipment, Centre for Plasma Biomedicine, School of Electrical Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, People's Republic of China.
| | - Xin Li
- State Key Laboratory of Electrical Insulation and Power Equipment, Centre for Plasma Biomedicine, School of Electrical Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, People's Republic of China
| | - Hezhi Guo
- State Key Laboratory of Electrical Insulation and Power Equipment, Centre for Plasma Biomedicine, School of Electrical Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, People's Republic of China
| | - Zekai Zhang
- State Key Laboratory of Electrical Insulation and Power Equipment, Centre for Plasma Biomedicine, School of Electrical Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, People's Republic of China
| | - Bolun Pang
- State Key Laboratory of Electrical Insulation and Power Equipment, Centre for Plasma Biomedicine, School of Electrical Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, People's Republic of China
| | - Yuting Gao
- State Key Laboratory of Electrical Insulation and Power Equipment, Centre for Plasma Biomedicine, School of Electrical Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, People's Republic of China
| | - Patrick J Cullen
- School of Chemical and Biomolecular Engineering, University of Sydney, Sydney, NSW, 2006, Australia
| | - Renwu Zhou
- State Key Laboratory of Electrical Insulation and Power Equipment, Centre for Plasma Biomedicine, School of Electrical Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, People's Republic of China.
| |
Collapse
|
3
|
Stavrinou A, Theodoropoulou MA, Aggelopoulos CA, Tsakiroglou CD. Phenanthrene sorption studies on coffee waste- and diatomaceous earth-based adsorbents, and adsorbent regeneration with cold atmospheric plasma. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:39884-39906. [PMID: 37166734 PMCID: PMC11511722 DOI: 10.1007/s11356-023-27381-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 04/28/2023] [Indexed: 05/12/2023]
Abstract
Phenanthrene (PHE) is a polycyclic aromatic hydrocarbon categorized as a high priority organic pollutant being toxic for the ecosystem and human health, and its sorption on natural organic or inorganic substances seems a well-promising method for its removal from water streams. The goals of the present work are (i) to assess the capacity of low-cost adsorbents fabricated by treating coffee wastes and diatomaceous earth to remove PHE from water; (ii) to elucidate the role of the pore structure on PHE sorption dynamics; and (iii) to assess the potential to regenerate adsorbents loaded with PHE, by using the novel technology of cold atmospheric plasma (CAP). Diatomaceous earth (DE) and DE pre-treated with sodium hydroxide (NaOH) or phosphoric acid (H3PO4) were chosen as inorganic adsorbents. Coffee waste (CW) and activated carbons (AC) produced from its pyrolysis at 800 °C (CWAC), either untreated (CWAC-800) or pre-treated with NaOH (CWAC-NaOH-800) and H3PO4 (CWAC-H3PO4-800), were chosen as organic adsorbents. The adsorbents were characterized with nitrogen adsorption-desorption isotherms, attenuated total reflectance-Fourier transform infrared spectroscopy, Raman spectroscopy, scanning electron microscopy, and mercury intrusion porosimetry. Based on the PHE sorption capacity and pore structure/surface characteristics, the CWAC-NaOH-800 was chosen as the most efficient adsorbent for further equilibrium and kinetic sorption studies. The multi-compartment model was used to describe the PHE sorption dynamics in CWAC-NaOH-800 by accounting for the pore/surface diffusion and instantaneous sorption. The CWAC-NaOH-800 exhibited remarkable values for (i) the specific surface area (SBET = 676.5 m2/g) and meso- and micro-pore volume determined by nitrogen sorption (VLN2 = 0.415 cm3/g); (ii) the macro- and meso-pore volume determined by mercury intrusion porosimetry (VMIP = 3.134 cm3/g); and (iii) the maximum PHE sorption capacity (qmax = 142 mg/g). The percentage of adsorbent recovery after its regeneration with CAP was found to be ~ 35%. From the simulation of sorption dynamics, it was found that at early times, the sorption kinetics is governed by the film diffusion towards the external surface of grains, but at late times, most of the adsorbed mass is transferred primarily to meso-/macro-pores via diffusion, and secondarily to micro-porosity via surface diffusion. Based on the adsorbent characteristics, effect of pH on sorption efficiency, and numerical analysis of sorption dynamics, it was concluded that probably the dominant adsorption mechanism is the π-π interactions between hydrophobic PHE aromatic rings and CWAC-NaOH-800 graphene layers. The high PHE removal efficiency of CWAC-NaOH-800, the successful interpretation of sorption dynamics with the multi-compartment model, and the potential to regenerate PHE-loaded adsorbents with the green and economic technology of CAP motivate a strategy for testing CWACs towards the adsorption of other PAHs, application of adsorbents to real wastewaters, and scaling-up to pilot units.
Collapse
Affiliation(s)
- Anastasia Stavrinou
- Institute of Chemical Engineering Sciences, Foundation for Research and Technology Hellas, Stadiou Str, Platani, 26504, Patras, Greece
- Department of Physics, University of Patras, 26504, Patras, Greece
| | - Maria A Theodoropoulou
- Institute of Chemical Engineering Sciences, Foundation for Research and Technology Hellas, Stadiou Str, Platani, 26504, Patras, Greece
- Hellenic Open University, 26335, Patras, Greece
| | - Christos A Aggelopoulos
- Institute of Chemical Engineering Sciences, Foundation for Research and Technology Hellas, Stadiou Str, Platani, 26504, Patras, Greece
| | - Christos D Tsakiroglou
- Institute of Chemical Engineering Sciences, Foundation for Research and Technology Hellas, Stadiou Str, Platani, 26504, Patras, Greece.
| |
Collapse
|
4
|
Heydari M, Carbone K, Gervasi F, Parandi E, Rouhi M, Rostami O, Abedi-Firoozjah R, Kolahdouz-Nasiri A, Garavand F, Mohammadi R. Cold Plasma-Assisted Extraction of Phytochemicals: A Review. Foods 2023; 12:3181. [PMID: 37685115 PMCID: PMC10486403 DOI: 10.3390/foods12173181] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 08/13/2023] [Accepted: 08/18/2023] [Indexed: 09/10/2023] Open
Abstract
In recent years, there has been growing interest in bioactive plant compounds for their beneficial effects on health and for their potential in reducing the risk of developing certain diseases such as cancer, cardiovascular diseases, and neurodegenerative disorders. The extraction techniques conventionally used to obtain these phytocompounds, however, due to the use of toxic solvents and high temperatures, tend to be supplanted by innovative and unconventional techniques, in line with the demand for environmental and economic sustainability of new chemical processes. Among non-thermal technologies, cold plasma (CP), which has been successfully used for some years in the food industry as a treatment to improve food shelf life, seems to be one of the most promising solutions in green extraction processes. CP is characterized by its low environmental impact, low cost, and better extraction yield of phytochemicals, saving time, energy, and solvents compared with other classical extraction processes. In light of these considerations, this review aims to provide an overview of the potential and critical issues related to the use of CP in the extraction of phytochemicals, particularly polyphenols and essential oils. To review the current knowledge status and future insights of CP in this sector, a bibliometric study, providing quantitative information on the research activity based on the available published scientific literature, was carried out by the VOSviewer software (v. 1.6.18). Scientometric analysis has seen an increase in scientific studies over the past two years, underlining the growing interest of the scientific community in this natural substance extraction technique. The literature studies analyzed have shown that, in general, the use of CP was able to increase the yield of essential oil and polyphenols. Furthermore, the composition of the phytoextract obtained with CP would appear to be influenced by process parameters such as intensity (power and voltage), treatment time, and the working gas used. In general, the studies analyzed showed that the best yields in terms of total polyphenols and the antioxidant and antimicrobial properties of the phytoextracts were obtained using mild process conditions and nitrogen as the working gas. The use of CP as a non-conventional extraction technique is very recent, and further studies are needed to better understand the optimal process conditions to be adopted, and above all, in-depth studies are needed to better understand the mechanisms of plasma-plant matrix interaction to verify the possibility of any side reactions that could generate, in a highly oxidative environment, potentially hazardous substances, which would limit the exploitation of this technique at the industrial level.
Collapse
Affiliation(s)
- Mahshid Heydari
- Student Research Committee, Department of Food Science and Technology, School of Nutrition Sciences and Food Technology, Kermanshah University of Medical Sciences, Kermanshah 6719851552, Iran; (M.H.)
| | - Katya Carbone
- CREA Research Centre for Olive, Fruit and Citrus Crops, Via di Fioranello 52, 00134 Rome, Italy;
| | - Fabio Gervasi
- CREA Research Centre for Olive, Fruit and Citrus Crops, Via di Fioranello 52, 00134 Rome, Italy;
| | - Ehsan Parandi
- Department of Food Science & Technology, Faculty of Agricultural Engineering and Technology, University of Tehran, Karaj 3158777871, Iran
| | - Milad Rouhi
- Department of Food Science and Technology, School of Nutrition Sciences and Food Technology, Research Center for Environmental Determinants of Health (RCEDH), Health Institute, Kermanshah University of Medical Sciences, Kermanshah 6719851552, Iran
| | - Omid Rostami
- Student Research Committee, Department of Food Science and Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Sciences, Food Science and Technology, Shahid Beheshti University of Medical Sciences, Tehran 1981619573, Iran
| | - Reza Abedi-Firoozjah
- Student Research Committee, Department of Food Science and Technology, School of Nutrition Sciences and Food Technology, Kermanshah University of Medical Sciences, Kermanshah 6719851552, Iran; (M.H.)
| | - Azin Kolahdouz-Nasiri
- Student Research Committee, Department of Food Science and Technology, School of Nutrition Sciences and Food Technology, Kermanshah University of Medical Sciences, Kermanshah 6719851552, Iran; (M.H.)
| | - Farhad Garavand
- Department of Food Chemistry & Technology, Teagasc Moorepark Food Research Centre, Fermoy, Co., P61 C996 Cork, Ireland
| | - Reza Mohammadi
- Department of Food Science and Technology, School of Nutrition Sciences and Food Technology, Research Center for Environmental Determinants of Health (RCEDH), Health Institute, Kermanshah University of Medical Sciences, Kermanshah 6719851552, Iran
| |
Collapse
|
5
|
Silva PAP, Oréfice RL. Bio-sorbent from castor oil polyurethane foam containing cellulose-halloysite nanocomposite for removal of manganese, nickel and cobalt ions from water. JOURNAL OF HAZARDOUS MATERIALS 2023; 454:131433. [PMID: 37146336 DOI: 10.1016/j.jhazmat.2023.131433] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/31/2023] [Accepted: 04/15/2023] [Indexed: 05/07/2023]
Abstract
In order to mitigate the contamination of water with heavy metals, caused by mining dam failures in Brumadinho and Mariana in Brazil, eco-friendly bio-based castor oil polyurethane foams, containing a cellulose-halloysite green nanocomposite were prepared. Polyurethane foams containing none (PUF-0), 5%wt (PUF-5), and 10%wt (PUF-10) of the nanocomposite were obtained. The application of the material in aqueous media was verified through an investigation of the efficiency of adsorption, the adsorption capacity, and the adsorption kinetics in pH= 2 and pH= 6.5 for manganese, nickel, and cobalt ions. An increase of 5.47 times in manganese adsorption capacity was found after only 30 min in contact with a solution having this ion at pH= 6.5 for PUF-5 and 11.38 times for PUF-10 when both were compared with PUF-0. Adsorption efficiency was respectively 68.17% at pH= 2 for PUF-5% and 100% for PUF-10 after 120 h, while for the control foam, PUF-0, the adsorption efficiency was only 6.90%.
Collapse
Affiliation(s)
- Philipe Augusto Pocidonio Silva
- Department of Metallurgical, Materials Engineering, Federal University of Minas Gerais (UFMG), Av. Antônio Carlos, 6627 - Campus da UFMG, Pampulha, Belo Horizonte, MG, Brazil
| | - Rodrigo Lambert Oréfice
- Department of Metallurgical, Materials Engineering, Federal University of Minas Gerais (UFMG), Av. Antônio Carlos, 6627 - Campus da UFMG, Pampulha, Belo Horizonte, MG, Brazil.
| |
Collapse
|
6
|
Aggelopoulos CA. Nanostructured Materials and Advanced Processes for Application in Water Purification. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:654. [PMID: 36839021 PMCID: PMC9960090 DOI: 10.3390/nano13040654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/01/2023] [Accepted: 02/06/2023] [Indexed: 06/18/2023]
Abstract
Water pollution is a major environmental problem that has a significant impact on human and animal health and the ecosystem [...].
Collapse
Affiliation(s)
- Christos A Aggelopoulos
- Laboratory of Cold Plasma and Advanced Techniques for Improving Environmental Systems, Institute of Chemical Engineering Sciences, Foundation for Research and Technology Hellas (FORTH/ICE-HT), 26 504 Patras, Greece
| |
Collapse
|