1
|
Yang S, Yin Z, Chen X, Geng Z, Wang B, Zhou J, Wang L. Sulfolane as a Solvent for Nano-MOF Synthesis: Enabling Prolonged Nucleation and Controlled Growth. Inorg Chem 2025. [PMID: 40378295 DOI: 10.1021/acs.inorgchem.5c01354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2025]
Abstract
Conventional methods for synthesizing nano-sized metal-organic frameworks (nano-MOFs) often rely on additives or extra conditions, overlooking the critical role of solvents. Here, we highlight tetramethylene sulfone (TMS, or sulfolane) as a versatile solvent for nano-MOF synthesis. TMS forms strong solvation structures with metal ions and inhibits ligand deprotonation, enabling control over particle size. Using TMS, we synthesized ZIF-65 [Zn(2-nIm)2, 2-nIm = 2-nitroimidazole], ZIF-8 [Zn(2-mIm)2, 2-mIm = 2-methylimidazole], UiO-66 [Zr6O4(OH)4(BDC)6, BDC = 1,4-dicarboxybenzene acid], and MOF-199 [Cu3(BTC)2, BTC = 1,3,5-benzenetricarboxylic acid] with significantly smaller particle sizes compared to traditional solvents like ethanol (EtOH). Systematic analysis on the growth of ZIF-65 revealed distinct growth behaviors: in TMS, slower kinetics allowed the coexistence of nucleation and growth over an extended period, leading to an increase in particle number while maintaining relatively constant size; in contrast, EtOH promoted rapid growth followed by Ostwald ripening, resulting in larger particles and reduced particle number over time. By adjusting reactant concentration, metal-to-ligand ratio, and reaction temperature, we achieved facile size modulation of ZIF-65 nanoparticles. This work underscores the importance of solvents in nano-MOF synthesis and offers a robust strategy for tailoring MOF particle size, advancing applications in catalysis, biomedicine, and beyond.
Collapse
Affiliation(s)
- Saiyu Yang
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science, Ministry of Education, Frontiers Science Center for High Energy Material, Advanced Technology Research Institute (Jinan), School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, PR China
| | - Zicheng Yin
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science, Ministry of Education, Frontiers Science Center for High Energy Material, Advanced Technology Research Institute (Jinan), School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, PR China
| | - Xianchun Chen
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science, Ministry of Education, Frontiers Science Center for High Energy Material, Advanced Technology Research Institute (Jinan), School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, PR China
| | - Zhide Geng
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science, Ministry of Education, Frontiers Science Center for High Energy Material, Advanced Technology Research Institute (Jinan), School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, PR China
| | - Bo Wang
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science, Ministry of Education, Frontiers Science Center for High Energy Material, Advanced Technology Research Institute (Jinan), School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, PR China
| | - Junwen Zhou
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science, Ministry of Education, Frontiers Science Center for High Energy Material, Advanced Technology Research Institute (Jinan), School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, PR China
| | - Lu Wang
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science, Ministry of Education, Frontiers Science Center for High Energy Material, Advanced Technology Research Institute (Jinan), School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, PR China
| |
Collapse
|
2
|
Pereira D, Sardo M, Vieira R, Marín-Montesinos I, Mafra L. Enhancing CO 2 Capture Via Fast Microwave-Assisted Synthesis of the CALF-20 Metal-Organic Framework. Inorg Chem 2025; 64:3302-3310. [PMID: 39919730 PMCID: PMC11863388 DOI: 10.1021/acs.inorgchem.4c04727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 12/16/2024] [Accepted: 12/27/2024] [Indexed: 02/09/2025]
Abstract
Metal-organic frameworks (MOFs) are promising porous materials for CO2 adsorption due to their high surface area, tunable properties, and selective adsorption capabilities. The recently reported Calgary Framework 20 (CALF-20) MOF has very appealing CO2 capture properties: high uptake capacity; low regeneration energy; durability (>450 000 cycles) under steam and wet acid gases; simple and scalable synthesis. This study investigates the microwave (MW)-assisted synthesis of CALF-20, which reduces reaction time 12-fold while enhancing the synthesis yield to 97%. Structural analysis confirmed that MW-synthesized CALF-20 retains its crystallographic structure and shows improved CO2 capture performance, exhibiting higher adsorption capacity (∼20% higher), selectivity, and lower regeneration energy. This method provides a rapid and efficient alternative for producing the CALF-20 adsorbent for CO2 capture and separation applications.
Collapse
Affiliation(s)
- Daniel Pereira
- CICECO−Aveiro Institute
of Materials, Department of Chemistry, University
of Aveiro, 3810-193 Aveiro, Portugal
| | - Mariana Sardo
- CICECO−Aveiro Institute
of Materials, Department of Chemistry, University
of Aveiro, 3810-193 Aveiro, Portugal
| | - Ricardo Vieira
- CICECO−Aveiro Institute
of Materials, Department of Chemistry, University
of Aveiro, 3810-193 Aveiro, Portugal
| | - Ildefonso Marín-Montesinos
- CICECO−Aveiro Institute
of Materials, Department of Chemistry, University
of Aveiro, 3810-193 Aveiro, Portugal
| | - Luís Mafra
- CICECO−Aveiro Institute
of Materials, Department of Chemistry, University
of Aveiro, 3810-193 Aveiro, Portugal
| |
Collapse
|
3
|
Puscalau C, Desai AV, Lizundia E, Ettlinger R, Adam M, Morris RE, Armstrong AR, Tokay B, Laybourn A. Rapid gram-scale microwave-assisted synthesis of organic anodes for sodium-ion batteries with environmental impact assessment. GREEN CHEMISTRY : AN INTERNATIONAL JOURNAL AND GREEN CHEMISTRY RESOURCE : GC 2025; 27:2035-2045. [PMID: 39850126 PMCID: PMC11749190 DOI: 10.1039/d4gc05530f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 12/20/2024] [Indexed: 01/25/2025]
Abstract
Development of sustainable synthesis methods of organic electrode materials (OEMs) for sodium (Na)-ion batteries must take hold rapidly in large scale-synthesis if subsequent commercialisation is to occur. We report a facile and rapid gram-scale synthesis method based on microwave irradiation for disodium naphthalene-2,6-dicarboxylate (Na-NDC) and mono/disodium benzene-1,4-dicarboxylate (Na-BDC) as model compounds. Phase purity and formation of materials was confirmed by various characterisation techniques. The electrochemical performance was tested in both half and full cell formats and compared to material obtained via smaller scale synthesis, revealing state-of-the art performance in terms of capacity retention and cyclability. The environmental impacts upon organic anode synthesis were quantified according to cradle-to-gate life cycle assessment (LCA). The results allow for the identification of environmental hotspots during production, indicating areas for future process optimisation. Interestingly, remarkably reduced impacts are obtained compared to conventional syntheses at milligram scale. Additionally, this work suggests potential significant improvements upon additional upscaling and solvent recycling.
Collapse
Affiliation(s)
- Constantin Puscalau
- Advanced Materials Research Group, Faculty of Engineering, University of Nottingham Nottingham NG7 2RD UK
| | - Aamod V Desai
- EaStCHEM School of Chemistry, University of St Andrews North Haugh St Andrews KY16 9ST UK
- The Faraday Institution, Quad One Harwell Science and Innovation Campus Didcot UK
| | - Erlantz Lizundia
- Life Cycle Thinking Group, Department of Graphic Design and Engineering Projects. University of the Basque Country (UPV/EHU) Plaza Ingeniero Torres Quevedo 1 Bilbao 48013 Biscay Spain
- BCMaterials, Basque Center for Materials, Applications and Nanostructures, Edif. Martina Casiano Pl. 3 Parque Científico UPV/EHU Barrio Sarriena Leioa 48940 Biscay Spain
| | - Romy Ettlinger
- EaStCHEM School of Chemistry, University of St Andrews North Haugh St Andrews KY16 9ST UK
- TUM School of Natural Sciences, Department of Chemistry, Technical University of Munich Lichtenbergstrasse 4 85748 Garching Germany
| | - Mohamed Adam
- Advanced Materials Research Group, Faculty of Engineering, University of Nottingham Nottingham NG7 2RD UK
| | - Russell E Morris
- EaStCHEM School of Chemistry, University of St Andrews North Haugh St Andrews KY16 9ST UK
- The Faraday Institution, Quad One Harwell Science and Innovation Campus Didcot UK
| | - A Robert Armstrong
- EaStCHEM School of Chemistry, University of St Andrews North Haugh St Andrews KY16 9ST UK
- The Faraday Institution, Quad One Harwell Science and Innovation Campus Didcot UK
| | - Begum Tokay
- Advanced Materials Research Group, Faculty of Engineering, University of Nottingham Nottingham NG7 2RD UK
| | - Andrea Laybourn
- Advanced Materials Research Group, Faculty of Engineering, University of Nottingham Nottingham NG7 2RD UK
- Institute of Process Research and Development &School of Chemistry, University of Leeds Leeds LS2 9JT UK
| |
Collapse
|
4
|
Nadeem TB, Imran M, Tandis E. Applications of MOF-Based Nanocomposites in Heat Exchangers: Innovations, Challenges, and Future Directions. NANOMATERIALS (BASEL, SWITZERLAND) 2025; 15:205. [PMID: 39940181 PMCID: PMC11820813 DOI: 10.3390/nano15030205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 01/23/2025] [Accepted: 01/24/2025] [Indexed: 02/14/2025]
Abstract
Metal-organic frameworks (MOFs) have garnered significant attention in recent years for their potential to revolutionize heat exchanger performance, thanks to their high surface area, tunable porosity, and exceptional adsorption capabilities. This review focuses on the integration of MOFs into heat exchangers to enhance heat transfer efficiency, improve moisture management, and reduce energy consumption in Heating, Ventilation and Air Conditioning (HVAC) and related systems. Recent studies demonstrate that MOF-based coatings can outperform traditional materials like silica gel, achieving superior water adsorption and desorption rates, which is crucial for applications in air conditioning and dehumidification. Innovations in synthesis techniques, such as microwave-assisted and surface functionalization methods, have enabled more cost-effective and scalable production of MOFs, while also enhancing their thermal stability and mechanical strength. However, challenges related to the high costs of MOF synthesis, stability under industrial conditions, and large-scale integration remain significant barriers. Future developments in hybrid nanocomposites and collaborative efforts between academia and industry will be key to advancing the practical adoption of MOFs in heat exchanger technologies. This review aims to provide a comprehensive understanding of current advancements, challenges, and opportunities, with the goal of guiding future research toward more sustainable and efficient thermal management solutions.
Collapse
Affiliation(s)
- Talha Bin Nadeem
- Department of Mechatronics and Biomedical Engineering, College of Engineering and Physical Sciences, Aston University, Birmingham B4 7ET, UK or (T.B.N.); (E.T.)
- Department of Mechanical Engineering, NED University of Engineering and Technology, Karachi 75270, Pakistan
| | - Muhammad Imran
- Department of Mechatronics and Biomedical Engineering, College of Engineering and Physical Sciences, Aston University, Birmingham B4 7ET, UK or (T.B.N.); (E.T.)
- Energy Systems Group, Energy and Bioproduct Research Institute, College of Engineering and Physical Sciences, Aston University, Birmingham B4 7ET, UK
| | - Emad Tandis
- Department of Mechatronics and Biomedical Engineering, College of Engineering and Physical Sciences, Aston University, Birmingham B4 7ET, UK or (T.B.N.); (E.T.)
| |
Collapse
|
5
|
Mohammed Ameen SS, Bedair A, Hamed M, R Mansour F, Omer KM. Recent Advances in Metal-Organic Frameworks as Oxidase Mimics: A Comprehensive Review on Rational Design and Modification for Enhanced Sensing Applications. ACS APPLIED MATERIALS & INTERFACES 2025; 17:110-129. [PMID: 39772422 DOI: 10.1021/acsami.4c17397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
Metal-organic frameworks (MOFs) have emerged as innovative nanozyme mimics, particularly in the area of oxidase catalysis, outperforming traditional MOF-based peroxidase and other nanomaterial-based oxidase systems. This review explores the various advantages that MOFs offer in terms of catalytic activity, low-cost, stability, and structural versatility. With a primary focus on their application in biochemical sensing, MOF-based oxidases have demonstrated remarkable utility, prompting a thorough exploration of their design and modification strategies. Moreover, the review aims to provide a comprehensive analysis of the strategies employed in the rational design and modification of MOF structures to optimize key parameters such as sensitivity, selectivity, and stability in the context of biochemical sensors. Through an exhaustive examination of recent research and developments, this article seeks to offer insights into the nuanced interplay between MOF structures and their catalytic performance, shedding light on the mechanisms that underpin their effectiveness as nanozyme mimics. Finally, this review addresses challenges and opportunities associated with MOF-based oxidase mimics, aiming to drive further advancements in MOF structure design and the development of highly effective biochemical sensors for diverse applications.
Collapse
Affiliation(s)
- Sameera Sh Mohammed Ameen
- Department of Chemistry, College of Science, University of Zakho, 46002 Zakho, Kurdistan Region, Iraq
| | - Alaa Bedair
- Department of Analytical Chemistry, Faculty of Pharmacy, University of Sadat City, Sadat City 32958, Egypt
| | - Mahmoud Hamed
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Misr International University, Km 28 Ismailia Road, Cairo 44971, Egypt
| | - Fotouh R Mansour
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Tanta University, Tanta 31111, Egypt
| | - Khalid M Omer
- Department of Chemistry, College of Science, University of Sulaimani, Qliasan St., 46002 Sulaymaniyah, Kurdistan Region, Iraq
| |
Collapse
|
6
|
Han Z, Yang Y, Rushlow J, Huo J, Liu Z, Hsu YC, Yin R, Wang M, Liang R, Wang KY, Zhou HC. Development of the design and synthesis of metal-organic frameworks (MOFs) - from large scale attempts, functional oriented modifications, to artificial intelligence (AI) predictions. Chem Soc Rev 2025; 54:367-395. [PMID: 39582426 DOI: 10.1039/d4cs00432a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2024]
Abstract
Owing to the exceptional porous properties of metal-organic frameworks (MOFs), there has recently been a surge of interest, evidenced by a plethora of research into their design, synthesis, properties, and applications. This expanding research landscape has driven significant advancements in the precise regulation of MOF design and synthesis. Initially dominated by large-scale synthesis approaches, this field has evolved towards more targeted functional modifications. Recently, the integration of computational science, particularly through artificial intelligence predictions, has ushered in a new era of innovation, enabling more precise and efficient MOF design and synthesis methodologies. The objective of this review is to provide readers with an extensive overview of the development process of MOF design and synthesis, and to present visions for future developments.
Collapse
Affiliation(s)
- Zongsu Han
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, USA.
| | - Yihao Yang
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, USA.
| | - Joshua Rushlow
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, USA.
| | - Jiatong Huo
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, USA.
| | - Zhaoyi Liu
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, USA.
| | - Yu-Chuan Hsu
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, USA.
| | - Rujie Yin
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, Texas 77843, USA
| | - Mengmeng Wang
- Institute of Condensed Matter and Nanosciences, Molecular Chemistry, Materials and Catalysis (IMCN/MOST), Université catholique de Louvain, 1348 Louvain-laNeuve, Belgium
| | - Rongran Liang
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, USA.
| | - Kun-Yu Wang
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, USA.
| | - Hong-Cai Zhou
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, USA.
| |
Collapse
|
7
|
Kayani KF, Shatery OBA, Mohammed SJ, Ahmed HR, Hamarawf RF, Mustafa MS. Synthesis and applications of luminescent metal organic frameworks (MOFs) for sensing dipicolinic acid in biological and water samples: a review. NANOSCALE ADVANCES 2024; 7:13-41. [PMID: 39583129 PMCID: PMC11579904 DOI: 10.1039/d4na00652f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 11/05/2024] [Indexed: 11/26/2024]
Abstract
The detection of trace quantities of 2,6-dipicolinic acid (DPA) in real-world samples is crucial for early disease diagnosis and routine health monitoring. Metal-organic frameworks (MOFs), recognized for their diverse structural architectures, have emerged as advanced multifunctional hybrid materials. One of the most notable properties of MOFs is their luminescence (L), which can arise from structural ligands, guest molecules, and emissive metal ions. Luminescent MOFs have shown significant promise as platforms for sensor design. This review highlights the application of luminescent MOFs in the detection of DPA in biological and aqueous environments. It provides a comprehensive discussion of the various detection strategies employed in luminescent MOF-based DPA sensors. Additionally, it explores the origins of L in MOFs, their synthesis, and the mechanisms underlying their sensing capabilities. The article also addresses key challenges and limitations in this field, offering practical insights for the development of efficient luminescent MOFs for DPA detection.
Collapse
Affiliation(s)
- Kawan F Kayani
- Department of Chemistry, College of Science, Charmo University Peshawa Street, Chamchamal Sulaimani City 46023 Iraq
- Department of Chemistry, College of Science, University of Sulaimani Qliasan St 46002 Sulaimani City Kurdistan Region Iraq
| | - Omer B A Shatery
- Department of Chemistry, College of Science, University of Sulaimani Qliasan St 46002 Sulaimani City Kurdistan Region Iraq
| | - Sewara J Mohammed
- Department of Anesthesia, College of Health Sciences, Cihan University Sulaimaniya Sulaymaniyah City Kurdistan Iraq
- Research and Development Center, University of Sulaimani Qlyasan Street, Kurdistan Regional Government Sulaymaniyah 46001 Iraq
| | - Harez Rashid Ahmed
- Department of Chemistry, College of Science, University of Sulaimani Qliasan St 46002 Sulaimani City Kurdistan Region Iraq
| | - Rebaz F Hamarawf
- Department of Chemistry, College of Science, University of Sulaimani Qliasan St 46002 Sulaimani City Kurdistan Region Iraq
| | - Muhammad S Mustafa
- Department of Chemistry, College of Science, University of Sulaimani Qliasan St 46002 Sulaimani City Kurdistan Region Iraq
| |
Collapse
|
8
|
Farwa U, Sandhu ZA, Kiran A, Raza MA, Ashraf S, Gulzarab H, Fiaz M, Malik A, Al-Sehemi AG. Revolutionizing environmental cleanup: the evolution of MOFs as catalysts for pollution remediation. RSC Adv 2024; 14:37164-37195. [PMID: 39569125 PMCID: PMC11578092 DOI: 10.1039/d4ra05642f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Accepted: 10/19/2024] [Indexed: 11/22/2024] Open
Abstract
The global problem of ecological safety and public health necessitates, the development of new sustainable ideas for pollution remediation. In recent development, metal-organic frameworks (MOF) are the emerging technology with remarkable potential, which have been employed in environmental remediation. MOFs are networks that are created by the coordination of metals or polyanions with ligands and contain organic components that can be customized. The interesting features of MOFs are a large surface area, tuneable porosity, functional diversity, and high predictability of pollutant adsorption, catalysis, and degradation. It is a solid material that occupies a unique position in the war against environmental pollutants. One of the main benefits of MOFs is that they exhibit selective adsorption of a wide range of pollutants, including heavy metals, organics, greenhouse gases, water and soil. Only particles with the right combination of pore size and chemical composition will achieve this selectivity, derived from the high level of specificity. Besides, they possess high catalytic ability for the removal of pollutants by means of different methods such as photocatalysis, Fenton-like reactions, and oxidative degradation. By generating mobile active sites within the framework of MOFs, we can not only ensure high affinity for pollutants but also effective transformation of toxic chemicals into less harmful or even inert end products. However, the long-term stability of MOFs is becoming more important as eco-friendly parts are replaced with those that can be used repeatedly, and systems based on MOFs that can remove pollutants in more than one way are fabricated. MOFs can reduce waste production, energy consumption as compared to the other removal process. With its endless capacities, MOF technology brings a solution to the environmental cleansing problem, working as a flexible problem solver from one field to another. The investigation of MOF synthesis and principles will allow researchers to fully understand the potential of MOFs in environmental problem solving, making the world a better place for all of us.
Collapse
Affiliation(s)
- Umme Farwa
- Department of Chemistry, Faculty of Science, University of Gujrat, Hafiz Hayat Campus Gujrat 50700 Pakistan
| | - Zeshan Ali Sandhu
- Department of Chemistry, Faculty of Science, University of Gujrat, Hafiz Hayat Campus Gujrat 50700 Pakistan
| | - Azwa Kiran
- Department of Chemistry, Faculty of Science, University of Engineering and Technology Lahore Lahore Pakistan
| | - Muhammad Asam Raza
- Department of Chemistry, Faculty of Science, University of Gujrat, Hafiz Hayat Campus Gujrat 50700 Pakistan
| | - Sufyan Ashraf
- Department of Chemistry, Faculty of Science, University of Gujrat, Hafiz Hayat Campus Gujrat 50700 Pakistan
| | - Hamza Gulzarab
- Department of Chemistry, Faculty of Science, University of Gujrat, Hafiz Hayat Campus Gujrat 50700 Pakistan
| | - Muhammad Fiaz
- Department of Chemistry, University of Texas at Austin USA
| | - Adnan Malik
- Department of Physics and Chemistry, Faculty of Applied Science and Technology, University Tun Hussein Onn Malaysia Pagoh Campus Malaysia
| | | |
Collapse
|
9
|
Suganthi S, Ahmad K, Oh TH. Progress in MOFs and MOFs-Integrated MXenes as Electrode Modifiers for Energy Storage and Electrochemical Sensing Applications. Molecules 2024; 29:5373. [PMID: 39598761 PMCID: PMC11597046 DOI: 10.3390/molecules29225373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 11/11/2024] [Accepted: 11/12/2024] [Indexed: 11/29/2024] Open
Abstract
The global energy demand and environmental pollution are the two major challenges of the present scenario. Recently, researchers focused on the preparation and investigation of catalysts for their capacitive properties for energy storage devices. Thus, supercapacitors have received extensive interest from researchers due to their promising energy storage features and decent cyclic stability/performance. The performance of the supercapacitors are significantly influenced by the physicochemical properties of the electrocatalyst. In this review article, we have compiled the previous reports on the fabrication of MOFs-based composite materials with MXenes for energy storage and electrochemical sensing applications. The metallic and bimetallic MOFs and MOFs/MXenes materials for supercapacitor applications are reviewed. In addition, MOFs/MXenes-based hybrid composites are also compiled towards the determination of various toxic/hazardous materials, such as metal ions like copper ions, mercury ions, and picric acid. We believe that present review article may benefit the researchers working on the preparation of MOFs-based catalysts for supercapacitor and electrochemical sensing applications.
Collapse
Affiliation(s)
| | - Khursheed Ahmad
- School of Chemical Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan 38541, Republic of Korea
| | - Tae Hwan Oh
- School of Chemical Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan 38541, Republic of Korea
| |
Collapse
|
10
|
Wang D, Yao H, Ye J, Gao Y, Cong H, Yu B. Metal-Organic Frameworks (MOFs): Classification, Synthesis, Modification, and Biomedical Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2404350. [PMID: 39149999 DOI: 10.1002/smll.202404350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 08/02/2024] [Indexed: 08/17/2024]
Abstract
Metal-organic frameworks (MOFs) are a new variety of solid crystalline porous functional materials. As an extension of inorganic porous materials, it has made important progress in preparation and application. MOFs are widely used in various fields such as gas adsorption storage, drug delivery, sensing, and biological imaging due to their high specific surface area, porosity, adjustable pore size, abundant active sites, and functional modification by introducing groups. In this paper, the types of MOFs are classified, and the synthesis methods and functional modification mechanisms of MOFs materials are summarized. Finally, the application prospects and challenges of metal-organic framework materials in the biomedical field are discussed, hoping to promote their application in multidisciplinary fields.
Collapse
Affiliation(s)
- Dayang Wang
- College of Chemistry and Chemical Engineering, College of Life Sciences, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao, 266071, China
| | - Huanchen Yao
- College of Chemistry and Chemical Engineering, College of Life Sciences, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao, 266071, China
| | - Jiashuo Ye
- College of Chemistry and Chemical Engineering, College of Life Sciences, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao, 266071, China
| | - Yan Gao
- College of Chemistry and Chemical Engineering, College of Life Sciences, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao, 266071, China
| | - Hailin Cong
- College of Chemistry and Chemical Engineering, College of Life Sciences, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao, 266071, China
- State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao, 266071, China
- School of Materials Science and Engineering, Shandong University of Technology, Zibo, 255000, China
| | - Bing Yu
- College of Chemistry and Chemical Engineering, College of Life Sciences, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao, 266071, China
- State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao, 266071, China
| |
Collapse
|
11
|
Bauza M, Leo P, Palomino Cabello C, Martin A, Orcajo G, Turnes Palomino G, Martinez F. Catalytic Advantages of SO 3H-Modified UiO-66(Zr) Materials Obtained via Microwave Synthesis in Friedel-Crafts Acylation Reaction. Inorg Chem 2024; 63:17460-17468. [PMID: 39225690 PMCID: PMC11423395 DOI: 10.1021/acs.inorgchem.4c01792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/29/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024]
Abstract
The catalytic activity and stability of sulfonic-based UiO-66(Zr) materials were tested in the Friedel-Crafts acylation of anisole with acetic anhydride. The materials were prepared using microwave-assisted synthesis, producing microporous materials with remarkable crystallinity and physicochemical features as acid catalysts. Different ratios between both organic ligands, terephthalic acid (H2BDC) and monosodium 2-sulfoterephthalic acid (H2BDC-SO3Na), were used for the synthesis to modulate the sulfonic content. The sulfonic-based UiO-66(Zr) material synthesized with a H2BDC/H2BDC-SO3Na molar ratio of 40/60 exhibited the best catalytic performance in the acidic-catalyzed Friedel-Crafts acylation reaction. This ratio balanced the number of sulfonic acid sites and their accessibility within the UiO-66 microporous structure. The catalytic performance of this material increased remarkably at 200 °C, outperforming reference acids and commercial heterogeneous catalysts such as Nafion-SAC-13 and Amberlyst-70. Additionally, the best sulfonic-based UiO-66(Zr) material proved to be stable in four successive reaction cycles, maintaining both its catalytic activity and its structural integrity.
Collapse
Affiliation(s)
- Marta Bauza
- Department
of Chemistry, University of the Balearic
Islands, Cra. de Valldemossa, Palma de Mallorca 07122, Spain
| | - Pedro Leo
- Chemical
and Environmental Engineering Group. ESCET, Universidad Rey Juan Carlos. c/Tulipán s/n, Móstoles 28933, Spain
| | - Carlos Palomino Cabello
- Department
of Chemistry, University of the Balearic
Islands, Cra. de Valldemossa, Palma de Mallorca 07122, Spain
| | - Antonio Martin
- Chemical
and Environmental Engineering Group. ESCET, Universidad Rey Juan Carlos. c/Tulipán s/n, Móstoles 28933, Spain
| | - Gisela Orcajo
- Chemical
and Environmental Engineering Group. ESCET, Universidad Rey Juan Carlos. c/Tulipán s/n, Móstoles 28933, Spain
| | - Gemma Turnes Palomino
- Department
of Chemistry, University of the Balearic
Islands, Cra. de Valldemossa, Palma de Mallorca 07122, Spain
| | - Fernando Martinez
- Chemical
and Environmental Engineering Group. ESCET, Universidad Rey Juan Carlos. c/Tulipán s/n, Móstoles 28933, Spain
- Instituto
de Tecnologías para la Sostenibilidad. Universidad Rey Juan
Carlos. C/Tulipán s/n, Móstoles 28933, Spain
| |
Collapse
|
12
|
Khafaga DSR, El-Morsy MT, Faried H, Diab AH, Shehab S, Saleh AM, Ali GAM. Metal-organic frameworks in drug delivery: engineering versatile platforms for therapeutic applications. RSC Adv 2024; 14:30201-30229. [PMID: 39315019 PMCID: PMC11418013 DOI: 10.1039/d4ra04441j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 08/30/2024] [Indexed: 09/25/2024] Open
Abstract
Recently, metal-organic frameworks (MOFs) have attracted much attention as versatile materials for drug delivery and personalized medicine. MOFs are porous structures made up of metal ions coupled with organic ligands. This review highlights the synthesis techniques used to design MOFs with specific features such as surface area and pore size, and the drug encapsulation within MOFs not only improves their stability and solubility but also allows for controlled release kinetics, which improves therapeutic efficacy and minimizes adverse effects. Furthermore, it discusses the challenges and potential advantages of MOF-based drug delivery, such as MOF stability, biocompatibility, and scale-up production. With further advancements in MOF synthesis, functionalization techniques, and understanding of their interactions using biological systems, MOFs can have significant promise for expanding the area of personalized medicine and improving patient outcomes.
Collapse
Affiliation(s)
- Doaa S R Khafaga
- Health Sector, Faculty of Science, Galala University New Galala City 43511 Suez Egypt
| | - Manar T El-Morsy
- Bionanotechnology Department, Faculty of Nanotechnology, Cairo University Giza 12613 Egypt
| | - Habiba Faried
- Biotechnology Department, Faculty of Science, Cairo University Giza 12613 Egypt
| | - Ayah H Diab
- Biotechnology Department, Faculty of Science, Cairo University Giza 12613 Egypt
| | - Shaimaa Shehab
- Biotechnology Department, Faculty of Science, Cairo University Giza 12613 Egypt
| | - Ahmed M Saleh
- Bionanotechnology Department, Faculty of Nanotechnology, Cairo University Giza 12613 Egypt
| | - Gomaa A M Ali
- College of Marine Science and Aquatic Biology, University of Khorfakkan 18119 Sharjah United Arab Emirates
- Faculty of Science, Galala University 43511 Suez Egypt
- Chemistry Department, Faculty of Science, Al-Azhar University Assiut 71524 Egypt
| |
Collapse
|
13
|
Peng J, Xiao Q, Wang Z, Zhou F, Yu J, Chi R, Xiao C. Mechanistic investigation of Pb 2+ adsorption on biochar modified with sodium alginate composite zeolitic imidazolate framework-8. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:31605-31618. [PMID: 38637484 DOI: 10.1007/s11356-024-33320-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 04/10/2024] [Indexed: 04/20/2024]
Abstract
For the serious situation of heavy metal pollution, the use of cheap, clean, and efficient biochar to immobilize heavy metals is a good treatment method. In this paper, SA@ZIF-8/BC was prepared for the adsorption of Pb2+ in solution using sodium alginate (SA) and zeolitic imidazolate framework-8 (ZIF-8) modified corn cob biochar. The results showed that the specific surface area of modified biochar was greatly improved, with good adsorption capacity for Pb2+, strong anti-interference ability, and good economy. At the optimal adsorption pH of 5, the adsorption model of Pb2+ by SA@ZIF-8/BC was more consistent with the pseudo-second-order kinetic model and Langmuir isotherm model. This indicates that the adsorption of Pb2+ by SA@ZIF-8/BC is chemisorption and monolayer adsorption. The maximum adsorption of modified biochar was 300 mg g-1, which was 2.38 times higher than that of before modified BC (126 mg g-1). The shift in binding energy of functional groups before and after adsorption of SA@ZIF-8/BC was studied by XPS, and it was found that hydroxyl and carboxyl groups played an important role in the adsorption of Pb2+. It was demonstrated that this novel adsorbent can be effectively used for the treatment of Pb pollution in wastewater.
Collapse
Affiliation(s)
- Jun Peng
- Key Laboratory of Novel Biomass-Based Environmental and Energy Materials in Petroleum and Chemical Industry, School of Environmental Ecology and Biological Engineering, Donghu New & High Technology Development Zone, Wuhan Institute of Technology, No. 206, Guanggu 1st Road, Wuhan, 430205, Hubei Province, People's Republic of China
| | - Qian Xiao
- Key Laboratory of Novel Biomass-Based Environmental and Energy Materials in Petroleum and Chemical Industry, School of Environmental Ecology and Biological Engineering, Donghu New & High Technology Development Zone, Wuhan Institute of Technology, No. 206, Guanggu 1st Road, Wuhan, 430205, Hubei Province, People's Republic of China
| | - Ziwei Wang
- Key Laboratory of Novel Biomass-Based Environmental and Energy Materials in Petroleum and Chemical Industry, School of Environmental Ecology and Biological Engineering, Donghu New & High Technology Development Zone, Wuhan Institute of Technology, No. 206, Guanggu 1st Road, Wuhan, 430205, Hubei Province, People's Republic of China
| | - Fang Zhou
- Key Laboratory of Novel Biomass-Based Environmental and Energy Materials in Petroleum and Chemical Industry, School of Environmental Ecology and Biological Engineering, Donghu New & High Technology Development Zone, Wuhan Institute of Technology, No. 206, Guanggu 1st Road, Wuhan, 430205, Hubei Province, People's Republic of China
| | - Junxia Yu
- Key Laboratory of Novel Biomass-Based Environmental and Energy Materials in Petroleum and Chemical Industry, School of Environmental Ecology and Biological Engineering, Donghu New & High Technology Development Zone, Wuhan Institute of Technology, No. 206, Guanggu 1st Road, Wuhan, 430205, Hubei Province, People's Republic of China
| | - Ruan Chi
- Key Laboratory of Novel Biomass-Based Environmental and Energy Materials in Petroleum and Chemical Industry, School of Environmental Ecology and Biological Engineering, Donghu New & High Technology Development Zone, Wuhan Institute of Technology, No. 206, Guanggu 1st Road, Wuhan, 430205, Hubei Province, People's Republic of China
- Hubei Three Gorges Laboratory, Yichang, 443007, China
| | - Chunqiao Xiao
- Key Laboratory of Novel Biomass-Based Environmental and Energy Materials in Petroleum and Chemical Industry, School of Environmental Ecology and Biological Engineering, Donghu New & High Technology Development Zone, Wuhan Institute of Technology, No. 206, Guanggu 1st Road, Wuhan, 430205, Hubei Province, People's Republic of China.
- Hubei Three Gorges Laboratory, Yichang, 443007, China.
| |
Collapse
|
14
|
Gupta DK, Kumar S, Wani MY. MOF magic: zirconium-based frameworks in theranostic and bio-imaging applications. J Mater Chem B 2024; 12:2691-2710. [PMID: 38419476 DOI: 10.1039/d3tb02562d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
Over the past two decades, metal-organic frameworks (MOFs) have garnered substantial scientific interest across diverse fields, spanning gas storage, catalysis, biotechnology, and more. Zirconium, abundant in nature and biologically relevant, offers an appealing combination of high content and low toxicity. Consequently, Zr-based MOFs have emerged as promising materials with significant potential in biomedical applications. These MOFs serve as effective nanocarriers for controlled drug delivery, particularly for challenging antitumor and retroviral drugs in cancer and AIDS treatment. Additionally, they exhibit prowess in bio-imaging applications. Beyond drug delivery, Zr-MOFs are notable for their mechanical, thermal, and chemical stability, making them increasingly relevant in engineering. The rising demand for stable, non-toxic Zr-MOFs facilitating facile nanoparticle formation, especially in drug delivery and imaging, is noteworthy. This review focuses on biocompatible zirconium-based metal-organic frameworks (Zr-MOFs) for controlled delivery in treating diseases like cancer and AIDS. These MOFs play a key role in theranostic approaches, integrating diagnostics and therapy. Additionally, their utility in bio-imaging underscores their versatility in advancing medical applications.
Collapse
Affiliation(s)
- Dinesh K Gupta
- Department of Chemistry, School of Science, U.P. Rajarshi Tandon Open University, Prayagraj-211021, UP, India
| | - Santosh Kumar
- Functional Polymer Material Lab, Department of Chemistry, Harcourt Butler Technical University, Kanpur-208002, UP, India.
| | - Mohmmad Younus Wani
- Department of Chemistry, College of Science, University of Jeddah, 21589 Jeddah, Saudi Arabia.
| |
Collapse
|
15
|
Habibi B, Pashazadeh A, Pashazadeh S, Saghatforoush LA. A new method for the preparation of MgAl layered double hydroxide-copper metal-organic frameworks structures: application to electrocatalytic oxidation of formaldehyde. Sci Rep 2024; 14:5222. [PMID: 38433243 PMCID: PMC10909854 DOI: 10.1038/s41598-024-55770-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 02/27/2024] [Indexed: 03/05/2024] Open
Abstract
In this research, we present a novel design protocol for the in-situ synthesis of MgAl layered double hydroxide-copper metal-organic frameworks (LDH-MOFs) nanocomposite based on the electrocoagulation process and chemical method. The overall goal in this project is the primary synthesis of para-phthalic acid (PTA) intercalated MgAl-LDH with Cu (II) ions to produce the paddle-wheel like Cu-(PTA) MOFs nanocrystals on/in the MgAl-LDH structure. The physicochemical properties of final product; Cu-(PTA) MOFs/MgAl-LDH, were characterized by the surface analysis and chemical identification methods (SEM, EDX, TEM, XRD, BET, FTIR, CHN, DLS, etc.). The Cu-(PTA) MOFs/MgAl-LDH nanocomposite was used to modification of the carbon paste electrode (CPE); Cu-(PTA) MOFs/MgAl-LDH/CPE. The electrochemical performance of Cu-(PTA) MOFs/MgAl-LDH/CPE was demonstrated through the utilization of electrochemical methods. The results show a stable redox behavior of the Cu (III)/Cu (II) at the surface of Cu-(PTA) MOFs/MgAl-LDH/CPE in alkaline medium (aqueous 0.1 M NaOH electrolyte). Then, the Cu-(PTA) MOFs/MgAl-LDH/CPE was used as a new electrocatalyst toward the oxidation of formaldehyde (FA). Electrochemical data show that the Cu-(PTA) MOFs/MgAl-LDH/CPE exhibits superior electrocatalytic performance on the oxidation of FA. Also the diffusion coefficient, exchange current density (J°) and mean value of catalytic rate constant (Kcat) were found to be 1.18 × 10-6 cm2 s-1, 23 mA cm-2 and 0.4537 × 104 cm3 mol-1 s-1, respectively. In general, it can be said the Cu-(PTA) MOFs/MgAl-LDHs is promising candidate for applications in direct formaldehyde fuel cells.
Collapse
Affiliation(s)
- Biuck Habibi
- Electroanalytical Chemistry Laboratory, Department of Chemistry, Faculty of Sciences, Azarbaijan Shahid Madani University, Tabriz, 53714-161, Iran
| | - Ali Pashazadeh
- Electroanalytical Chemistry Laboratory, Department of Chemistry, Faculty of Sciences, Azarbaijan Shahid Madani University, Tabriz, 53714-161, Iran.
| | - Sara Pashazadeh
- Electroanalytical Chemistry Laboratory, Department of Chemistry, Faculty of Sciences, Azarbaijan Shahid Madani University, Tabriz, 53714-161, Iran
| | - Lotf Ali Saghatforoush
- Department of Chemistry, Payame Noor University, Tehran, 19395-4697, Islamic Republic of Iran
| |
Collapse
|
16
|
Guo L, Kong W, Che Y, Liu C, Zhang S, Liu H, Tang Y, Yang X, Zhang J, Xu C. Research progress on antibacterial applications of metal-organic frameworks and their biomacromolecule composites. Int J Biol Macromol 2024; 261:129799. [PMID: 38296133 DOI: 10.1016/j.ijbiomac.2024.129799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 01/24/2024] [Accepted: 01/25/2024] [Indexed: 02/03/2024]
Abstract
With the extensive use of antibiotics, resulting in increasingly serious problems of bacterial resistance, antimicrobial therapy has become a global concern. Metal-organic frameworks (MOFs) are low-density porous coordination materials composed of metal ions and organic ligands, which can form composite materials with biomacromolecules such as proteins and polysaccharides. In recent years, MOFs and their derivatives have been widely used in the antibacterial field as efficient antibacterial agents. This review offers a detailed summary of the antibacterial applications of MOFs and their composites, and the different synthesis methods and antibacterial mechanisms of MOFs and MOF-based composites are briefly introduced. Finally, the challenges and prospects of MOFs-based antibacterial materials in the rapidly developing medical field were briefly discussed. We hope this review will provide new strategies for the medical application of MOFs-based antibacterial materials.
Collapse
Affiliation(s)
- Lei Guo
- College of Basic Medical Sciences, Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun 130021, Jilin, China
| | - Wei Kong
- Radiation Medicine, School of Public Health, Jilin University, Changchun 130021, Jilin, China
| | - Yilin Che
- Radiation Medicine, School of Public Health, Jilin University, Changchun 130021, Jilin, China
| | - Chang Liu
- College of Basic Medical Sciences, Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun 130021, Jilin, China; Department of Neurology and Neuroscience Center, First Hospital of Jilin University, Changchun 130021, Jilin, China
| | - Shichen Zhang
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Jilin University, Changchun 130021, Jilin, China
| | - Heshi Liu
- Department of Gastrocolorectal Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun 130021, Jilin, China
| | - Yixin Tang
- College of Basic Medical Sciences, Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun 130021, Jilin, China
| | - Xi Yang
- College of Basic Medical Sciences, Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun 130021, Jilin, China
| | - Jizhou Zhang
- College of Basic Medical Sciences, Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun 130021, Jilin, China
| | - Caina Xu
- College of Basic Medical Sciences, Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun 130021, Jilin, China.
| |
Collapse
|
17
|
Ramu S, Kainthla I, Chandrappa L, Shivanna JM, Kumaran B, Balakrishna RG. Recent advances in metal organic frameworks-based magnetic nanomaterials for waste water treatment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:167-190. [PMID: 38044404 DOI: 10.1007/s11356-023-31162-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 11/17/2023] [Indexed: 12/05/2023]
Abstract
Magnetic nanoparticle-incorporated metal organic frameworks (MOF) are potential composites for various applications such as catalysis, water treatment, drug delivery, gas storage, chemical sensing, and heavy metal ion removal. MOFs exhibits high porosity and flexibility enabling guest species like heavy metal ions to diffuse into bulk structure. Additionally, shape and size of the pores contribute to selectivity of the guest materials. Incorporation of magnetic materials allows easy collection of adsorbent materials from solution system making the process simple and cost-effective. In view of the above advantages in the present review article, we are discussing recent advances of different magnetic material-incorporated MOF (Mg-MOF) composite for application in photocatalytic degradation of dyes and toxic chemicals, adsorption of organic compounds, adsorption of heavy metal ions, and adsorption of dyes. The review initially discusses on properties of Mg-MOF, different synthesis techniques such as mechanochemical, sonochemical (ultrasound) synthesis, slow evaporation and diffusion methods, solvo(hydro)-thermal and iono-thermal method, microwave-assisted method, microemulsion method post-synthetic modification template strategies and followed by application in waste water treatment.
Collapse
Affiliation(s)
- Shwetharani Ramu
- Centre for Nano and Material Sciences, Jain (Deemed-to-Be University), Jain Global Campus, Kanakapura, Bangalore, Karnataka, 562112, India
| | - Itika Kainthla
- School of Physics and Material Sciences, Shoolini University, Bajhol, Solan, Himachal Pradesh, 173229, India
| | - Lavanya Chandrappa
- Centre for Nano and Material Sciences, Jain (Deemed-to-Be University), Jain Global Campus, Kanakapura, Bangalore, Karnataka, 562112, India
| | - Jyothi Mannekote Shivanna
- Department of Chemistry, AMC Engineering College, Bannerughatta Road, Bengaluru, Karnataka, 560083, India
| | - Brijesh Kumaran
- Department of Sustainable Energy Engineering, Indian Institute of Technology Kanpur, Kalyanpur, Kanpur, Uttar Pradesh, 208016, India
| | - R Geetha Balakrishna
- Centre for Nano and Material Sciences, Jain (Deemed-to-Be University), Jain Global Campus, Kanakapura, Bangalore, Karnataka, 562112, India.
| |
Collapse
|
18
|
Zhang Q, Yan S, Yan X, Lv Y. Recent advances in metal-organic frameworks: Synthesis, application and toxicity. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 902:165944. [PMID: 37543345 DOI: 10.1016/j.scitotenv.2023.165944] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/26/2023] [Accepted: 07/29/2023] [Indexed: 08/07/2023]
Abstract
Metal-organic frameworks (MOFs) are a new class of crystalline porous hybrid materials with high porosity, large specific surface area and adjustable channel structure and biocompatibility, which are being investigated with increasing interest for energy storage and conversion, gas adsorption/separation, catalysis, sensing and biomedicine. However, the practical applications of MOFs make them release into the environment inevitable, posing a threat to humans and organisms. In this article, we cover advances in the currently available MOFs synthesis methods and the emerging applications of MOFs, especially in the biomedical field (therapeutic agents and bioimaging). Additionally, after evaluating the current status of main exposure routes and affecting factors in the field of MOFs-toxicity, the molecular mechanism is also clarified and identified. Knowledge gaps are identified from such a summarization and frontier development are explored for MOFs. Afterwards, we also present the limitations, challenges, and future perspectives in the study of the entire life cycle of MOFs. This review emphasizes the need for a more targeted discussion of the latest, widely used and effective versatile material class in order to exploit the full potential of high-performance and non-toxicity MOFs in the future.
Collapse
Affiliation(s)
- Qian Zhang
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, China
| | - Shuguang Yan
- Analytical & Testing Center, Sichuan University, Chengdu, Sichuan 610064, China
| | - Xueting Yan
- Analytical & Testing Center, Sichuan University, Chengdu, Sichuan 610064, China.
| | - Yi Lv
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, China; Analytical & Testing Center, Sichuan University, Chengdu, Sichuan 610064, China
| |
Collapse
|
19
|
Zheng Z, Zhang O, Nguyen HL, Rampal N, Alawadhi AH, Rong Z, Head-Gordon T, Borgs C, Chayes JT, Yaghi OM. ChatGPT Research Group for Optimizing the Crystallinity of MOFs and COFs. ACS CENTRAL SCIENCE 2023; 9:2161-2170. [PMID: 38033801 PMCID: PMC10683477 DOI: 10.1021/acscentsci.3c01087] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/20/2023] [Accepted: 10/23/2023] [Indexed: 12/02/2023]
Abstract
We leveraged the power of ChatGPT and Bayesian optimization in the development of a multi-AI-driven system, backed by seven large language model-based assistants and equipped with machine learning algorithms, that seamlessly orchestrates a multitude of research aspects in a chemistry laboratory (termed the ChatGPT Research Group). Our approach accelerated the discovery of optimal microwave synthesis conditions, enhancing the crystallinity of MOF-321, MOF-322, and COF-323 and achieving the desired porosity and water capacity. In this system, human researchers gained assistance from these diverse AI collaborators, each with a unique role within the laboratory environment, spanning strategy planning, literature search, coding, robotic operation, labware design, safety inspection, and data analysis. Such a comprehensive approach enables a single researcher working in concert with AI to achieve productivity levels analogous to those of an entire traditional scientific team. Furthermore, by reducing human biases in screening experimental conditions and deftly balancing the exploration and exploitation of synthesis parameters, our Bayesian search approach precisely zeroed in on optimal synthesis conditions from a pool of 6 million within a significantly shortened time scale. This work serves as a compelling proof of concept for an AI-driven revolution in the chemistry laboratory, painting a future where AI becomes an efficient collaborator, liberating us from routine tasks to focus on pushing the boundaries of innovation.
Collapse
Affiliation(s)
- Zhiling Zheng
- Department
of Chemistry, University of California, Berkeley, California 94720, United States
- Kavli
Energy Nanoscience Institute, University
of California, Berkeley, California 94720, United States
- Bakar
Institute of Digital Materials for the Planet, College of Computing,
Data Science, and Society, University of
California, Berkeley, California 94720, United States
| | - Oufan Zhang
- Department
of Chemistry, University of California, Berkeley, California 94720, United States
- Kenneth
S. Pitzer Center for Theoretical Chemistry, University of California, Berkeley, California 94720, United States
| | - Ha L. Nguyen
- Department
of Chemistry, University of California, Berkeley, California 94720, United States
- Kavli
Energy Nanoscience Institute, University
of California, Berkeley, California 94720, United States
| | - Nakul Rampal
- Department
of Chemistry, University of California, Berkeley, California 94720, United States
- Kavli
Energy Nanoscience Institute, University
of California, Berkeley, California 94720, United States
- Bakar
Institute of Digital Materials for the Planet, College of Computing,
Data Science, and Society, University of
California, Berkeley, California 94720, United States
| | - Ali H. Alawadhi
- Department
of Chemistry, University of California, Berkeley, California 94720, United States
- Kavli
Energy Nanoscience Institute, University
of California, Berkeley, California 94720, United States
| | - Zichao Rong
- Department
of Chemistry, University of California, Berkeley, California 94720, United States
- Kavli
Energy Nanoscience Institute, University
of California, Berkeley, California 94720, United States
- Bakar
Institute of Digital Materials for the Planet, College of Computing,
Data Science, and Society, University of
California, Berkeley, California 94720, United States
| | - Teresa Head-Gordon
- Department
of Chemistry, University of California, Berkeley, California 94720, United States
- Kenneth
S. Pitzer Center for Theoretical Chemistry, University of California, Berkeley, California 94720, United States
- Department
of Chemical and Biomolecular Engineering, University of California, Berkeley, California 94720, United States
- Department
of Bioengineering, University of California, Berkeley, California 94720, United States
| | - Christian Borgs
- Bakar
Institute of Digital Materials for the Planet, College of Computing,
Data Science, and Society, University of
California, Berkeley, California 94720, United States
- Department
of Electrical Engineering and Computer Sciences, University of California, Berkeley, California 94720, United States
| | - Jennifer T. Chayes
- Bakar
Institute of Digital Materials for the Planet, College of Computing,
Data Science, and Society, University of
California, Berkeley, California 94720, United States
- Department
of Electrical Engineering and Computer Sciences, University of California, Berkeley, California 94720, United States
- Department
of Mathematics, University of California, Berkeley, California 94720, United States
- Department
of Statistics, University of California, Berkeley, California 94720, United States
- School
of Information, University of California, Berkeley, California 94720, United States
| | - Omar M. Yaghi
- Department
of Chemistry, University of California, Berkeley, California 94720, United States
- Kavli
Energy Nanoscience Institute, University
of California, Berkeley, California 94720, United States
- Bakar
Institute of Digital Materials for the Planet, College of Computing,
Data Science, and Society, University of
California, Berkeley, California 94720, United States
- KACST−UC Berkeley Center of Excellence for Nanomaterials for
Clean Energy Applications, King Abdulaziz City for Science and Technology, Riyadh 11442, Saudi Arabia
| |
Collapse
|
20
|
Amin N, Adeel S, Fazal-Ur-Rehman, Anjum MN. Environmental friendly utilization of plant wastes in combination as a source of natural colorants for binary mordanted silk dyeing. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:112825-112835. [PMID: 37840083 DOI: 10.1007/s11356-023-30162-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 09/25/2023] [Indexed: 10/17/2023]
Abstract
This study investigates the absorption behavior of natural dyes on silk fabric: madder roots (red dye) and amaltas (brown dye). The dyes were extracted under optimized conditions in an acidic medium. Binary mixtures of these dyes in different proportions were employed to develop various shades. This research work has explored the impact of single as well as binary mixture of chemical mordants on the dyeing behavior of natural dyes on silk. Al (Alum), iron (Fe), and tannic acid (T.A.) were used as pre- and post-mordants. Different concentrations of the dye mixtures were used to achieve different shades. The absorption behavior of the binary mixture of natural dyes was assessed using a spectra photometer Colori-spectra SF600. The study found that the highest color strength was achieved when an acidic extract with a table salt concentration of 2 g/100 mL was applied to silk fabric at 65 °C for 55 min and subjected to microwave treatment for 6 min. The study revealed excellent results for the selected binary mixtures of chemical mordants, such as (Al + Fe), (Al + T.A.), and (Fe + T.A.), in comparison by employing single mordants such as (Al, Fe, and T.A.).
Collapse
Affiliation(s)
- Nimra Amin
- Department of Applied Chemistry, Government College University Faisalabad, Faisalabad, 38000, Pakistan
| | - Shahid Adeel
- Department of Applied Chemistry, Government College University Faisalabad, Faisalabad, 38000, Pakistan
| | - Fazal-Ur-Rehman
- Department of Applied Chemistry, Government College University Faisalabad, Faisalabad, 38000, Pakistan.
| | - Muhammad Naveed Anjum
- Department of Applied Chemistry, Government College University Faisalabad, Faisalabad, 38000, Pakistan
| |
Collapse
|
21
|
Tran QN, Lee HJ, Tran N. Covalent Organic Frameworks: From Structures to Applications. Polymers (Basel) 2023; 15:polym15051279. [PMID: 36904520 PMCID: PMC10007052 DOI: 10.3390/polym15051279] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 02/01/2023] [Accepted: 02/09/2023] [Indexed: 03/06/2023] Open
Abstract
Three-dimensional covalent organic frameworks possess hierarchical nanopores, enormous surface areas with high porosity, and open positions. The synthesis of large crystals of three-dimensional covalent organic frameworks is a challenge, since different structures are generated during the synthesis. Presently, their synthesis with new topologies for promising applications has been developed by the use of building units with varied geometries. Covalent organic frameworks have multiple applications: chemical sensing, fabrication of electronic devices, heterogeneous catalysts, etc. We have presented the techniques for the synthesis of three-dimensional covalent organic frameworks, their properties, and their potential applications in this review.
Collapse
Affiliation(s)
- Quang Nhat Tran
- Department of Chemical and Biological Engineering, Gachon University, 1342 Seongnamdaero, Sujeong-gu, Seongnam-si 13120, Republic of Korea
- Correspondence: (Q.N.T.); (N.T.)
| | - Hyun Jong Lee
- Department of Chemical and Biological Engineering, Gachon University, 1342 Seongnamdaero, Sujeong-gu, Seongnam-si 13120, Republic of Korea
| | - Ngo Tran
- Institute of Research and Development, Duy Tan University, Da Nang 550000, Vietnam
- Faculty of Natural Sciences, Duy Tan University, Da Nang 550000, Vietnam
- Correspondence: (Q.N.T.); (N.T.)
| |
Collapse
|
22
|
Polymer Membranes of Zeolitic Imidazole Framework-8 with Sodium Alginate Synthesized from ZIF-8 and Their Application in Light Gas Separation. Polymers (Basel) 2023; 15:polym15041011. [PMID: 36850293 PMCID: PMC9964549 DOI: 10.3390/polym15041011] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 01/29/2023] [Accepted: 02/09/2023] [Indexed: 02/22/2023] Open
Abstract
The potential of nanocomposite membranes (NCMs) prepared by the sodium alginate polymer and embedded with synthesized zeolitic imidazole framework-8 (ZIF-8) as fillers having microporous structure in the application of separation of gaseous mixture generated by the process of methane reforming was assessed. ZIF-8 crystals were created through hydrothermal synthesis, with sizes varying from 50 to 70 nm. NCMs were prepared with a 15% filler loading, i.e., synthesized ZIF-8. NCMs (ZIF-8) having H2 permeability of 28 Barrer and H2/CH4 selectivity of 125 outperformed neat polymer membranes in terms of separation performance at ambient temperature and 4 kg/cm2 pressure. The purity of H2 increased to as high as 95% among the measured values. The NCMs did not, however, outperform a neat polymer membrane in terms of their ability to separate mixtures of gases. Moreover, the combination of ZIF-8 as a filler with sodium alginate was new and had not been reported previously. As a result, it is worthwhile to investigate.
Collapse
|