1
|
Elkady FM, Badr BM, Saied E, Hashem AH, Abdel-Maksoud MA, Fatima S, Malik A, Aufy M, Hussein AM, Abdulrahman MS, Hashem HR. Green Biosynthesis of Bimetallic Copper Oxide-Selenium Nanoparticles Using Leaf Extract of Lagenaria Siceraria: Antibacterial, Anti-Virulence Activities Against Multidrug-Resistant Pseudomonas Aeruginosa. Int J Nanomedicine 2025; 20:4705-4727. [PMID: 40255676 PMCID: PMC12007613 DOI: 10.2147/ijn.s497494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Accepted: 03/20/2025] [Indexed: 04/22/2025] Open
Abstract
Introduction Clinical isolates of Pseudomonas aeruginosa (P. aeruginosa) are among the most recovered bacteria with phenotypic antimicrobial resistance. Bimetallic nanoparticles (BNPs) have received much attention for antimicrobial activity in the last decade. This research aimed to biosynthesize bimetallic copper oxide-selenium nanoparticles (CuO-Se BNPs) and to assess its bioactivity on various P. aeruginosa clinical isolates. Methodology Based on the possible synergistic effects, CuO-Se BNPs were selected and biosynthesized using leaf extract of Lagenaria siceraria (L. siceraria) for the first time. The obtained BNPs were characterized using UV-vis spectroscopy, X-ray diffraction (XRD), energy dispersive X-ray spectroscopy (EDX), and transmission and scanning electron microscopes. The capability of Cu-Se BNPs to cease the growth of P. aeruginosa isolates and to reduce their virulence characters was evaluated. Also, different cell lines were used to assess its cytotoxicity and anticancer activity. Results The elemental composition of CuO and Se was revealed by the UV, XRD, and EDX data, indicating the synthesis of CuO-Se core shell BNPs with a size of 50 nm. In well diffusion assay, CuO-Se BNPs P. aeruginosa growth with 10-21 mm inhibition zone diameter and 38-95% inhibition. Also, the minimum inhibitory concentration and minimum bactericidal concentration were in a relatively wide range of 7.8-250 μg/mL and 31.2-500 μg/mL, respectively, with tolerance level range of 2-16. Additionally, CuO-Se BNPs shown anti-pyocyanin activity of 4.35-63.21% inhibition while the anti-proteolytic activity was in a range of 4.96-12.59% and anti-pyoverdine effect was in a range of 0.24-83.41%. The IC50 against Wi-38 normal cells was 267.2 µg/mL while the IC50 were 31.1 and 83.4 µg/mL against MCF-7 and Hep-G2, respectively, indicating promising anticancer activity. Conclusion This research demonstrates the promising antibacterial, anti-virulence, and antitumor properties with safe low concentrations of CuO-Se NPs, synthesized via an eco-friendly green synthesis method without the use of toxic chemicals, offering a sustainable and cost-effective alternative.
Collapse
Affiliation(s)
- Fathy M Elkady
- Microbiology and Immunology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
| | - Bahaa M Badr
- Department of Basic Medical and Dental Sciences, Faculty of Dentistry, Zarqa University, Zarqa, Jordan
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Al-Azhar University (Assiut Branch), Assiut, Egypt
| | - Ebrahim Saied
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Cairo, Egypt
| | - Amr H Hashem
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Cairo, Egypt
| | - Mostafa A Abdel-Maksoud
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Sabiha Fatima
- Department of Clinical Laboratory Science, College of Applied Medical Sciences, King Saud University, Riyadh, 11433, Saudi Arabia
| | - Abdul Malik
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, 11433, Saudi Arabia
| | - Mohammed Aufy
- Department of Pharmaceutical Sciences, Division of Pharmacology and Toxicology, University of Vienna, Vienna, Austria
| | - Ahmed M Hussein
- Department of Pharmaceutical Sciences, Division of Pharmacology and Toxicology, University of Vienna, Vienna, Austria
| | - Mohammed S Abdulrahman
- Microbiology and Immunology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
| | - Hany R Hashem
- Department of Microbiology and Immunology, Faculty of Pharmacy, Fayoum University, Al-Fayoum, Egypt
| |
Collapse
|
2
|
Shome A, Ali S, Roy D, Dey S, Sinha S, Barman P, Kumar A, Chakroborty R, Haydar MS, Roy S, Ghosh S, Roy MN. Phyto-assisted eco-benevolent synthesis of oxidase-mimic Cu-Mn 3O 4 as an antibacterial and antiproliferative agent. Bioprocess Biosyst Eng 2025:10.1007/s00449-025-03149-x. [PMID: 40180623 DOI: 10.1007/s00449-025-03149-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 03/09/2025] [Indexed: 04/05/2025]
Abstract
In recent years, the marked augment of antibiotic resistance hampered the development of antibacterial agent. Nanozymes by their in situ ROS production capability oxidize cellular substances of bacterial cell and eliminate MDR bacteria. Therefore, synthesis of effective nanozymes from green precursors is rarely reported, so the prime objective of this study was to synthesize Cu-Mn3O4 nanozymes from aqueous extracts of medicinal plant Azadirachta indica via co-precipitation approach and to endorse their biomedical applications. The synthesized materials were characterized by X-ray diffraction (XRD), Fourier Transform Infrared spectrometer (FTIR), Scanning Electron Images (SEM), and Field-Emission Scanning Electron Microscopy (FESEM) images. X-ray Diffraction (XRD) patterns revealed the formation of hausmannite Mn3O4 crystal system. Fourier Transform Infrared spectrometer (FTIR) spectra revealed functional groups on the surface nanoparticles for their stabilization. Energy-Dispersive X-ray spectroscopy (EDAX) profile confirmed the existence of desired elements in the synthesized nanozymes. B1 mimics oxidase enzyme most effectively with Km = 0.175 mM and Vmax = 10.34 µM/min. The low Km and high Vmax indicates the strong binding affinity and high catalytic activity. From the agar diffusion antibacterial assay, it can be concluded that B3 is the most potent antibacterial agent specifically against Gram-positive bacteria Bacillus subtilis with inhibition zone of 27 mm at 250 µg/mL. Their cytotoxic activities on neuroblastoma (SHSY5) cell line were investigated for the first time. The data revealed that synthesized nanooctahedrons possess a significant cytotoxicity against cancer cell lines SHSY5Y (IC50 = 137.47 ± 14.11 µg/mL) and SKOV3 (IC50 = 72.72 ± 9.33 µg/mL). Overall, with increasing Cu amount, the percentage growth inhibition of Mn3O4 crystal system enhanced. The improved antibacterial activity and cytotoxicity is due to synergy between metal and phytochemicals. Radical scavenging activity of synthesized nanozymes is comparatively lower than their green source and the comparatively lower IC50 values of B1, 234.12 ± 15.13 and 220.12 ± 10.37 respectively, which indicates that it is more active in scavenging DPPH and ABTS radical. B2 (IC50 = 310.56 ± 5.92 µg/mL) and B3 (IC50 = 43.56 ± 3.03 µg/mL) scavenge superoxide radicals and FRAP more effectively. It is noticed that synthesized nanozymes have greater antibacterial and anticancer activity but low scavenging ability compared to green extract. Thus, Cu-Mn3O4 NPs from Azadirachta indica leaf extract could be utilized as a replacement of potential antibiotic drug candidate against MDR bacteria and in cancer avenues.
Collapse
Affiliation(s)
- Ankita Shome
- Department of Chemistry, University of North Bengal, Darjeeling, India
| | - Salim Ali
- Department of Chemistry, University of North Bengal, Darjeeling, India
| | - Debadrita Roy
- Department of Chemistry, University of North Bengal, Darjeeling, India
| | - Sangita Dey
- Department of Biotechnology, University of North Bengal, Darjeeling, 734013, India
| | - Shilpa Sinha
- Department of Biotechnology, University of North Bengal, Darjeeling, 734013, India
| | - Partha Barman
- Department of Biotechnology, University of North Bengal, Darjeeling, 734013, India
| | - Anoop Kumar
- Department of Biotechnology, University of North Bengal, Darjeeling, 734013, India
| | - Ranadhir Chakroborty
- Department of Biotechnology, University of North Bengal, Darjeeling, 734013, India
| | - Md Salman Haydar
- Department of Botany, University of North Bengal, Siliguri, West Bengal, India
| | - Swarnendu Roy
- Department of Botany, University of North Bengal, Siliguri, West Bengal, India
| | - Shibaji Ghosh
- CSIR-Central Salt and Marine Chemicals Research Institute, G. B Marg, Bhavnagar, Gujarat, 364002, India
| | - Mahendra Nath Roy
- Department of Chemistry, University of North Bengal, Darjeeling, India.
| |
Collapse
|
3
|
Phiboonchaiyanan PP, Harikarnpakdee S, Songsak T, Chowjarean V. In Vitro Evaluation of Wound Healing, Stemness Potentiation, Antioxidant Activity, and Phytochemical Profile of Cucurbita moschata Duchesne Fruit Pulp Ethanolic Extract. Adv Pharmacol Pharm Sci 2024; 2024:9288481. [PMID: 39502575 PMCID: PMC11535185 DOI: 10.1155/2024/9288481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 07/03/2024] [Accepted: 10/09/2024] [Indexed: 11/08/2024] Open
Abstract
Wound healing comprises an intricate process to repair damaged tissue. Research on plant extracts with properties to expedite wound healing has been of interest, particularly their ability to enhance the stemness of keratinocyte stem cells. Hence, the present study aims to determine the wound healing and stemness potentiation properties of an ethanolic extract derived from Cucurbita moschata fruit pulp (PKE). Human keratinocytes (HaCaT) and primary skin fibroblast cells were used in this study. The migration of the cells was examined by using a scratch wound healing assay, and spheroid behavior was determined by using a spheroid formation assay. The proteins related to migration and stemness were further measured by using Western blotting to explore the mechanism of action of PKE. The methods used to evaluate PKE's antioxidant properties were 2,2-diphenyl-2-picrylhydrazyl (DPPH) scavenging, ABTS radical scavenging activity, and superoxide anion radical scavenging (SOSA) assays. The phytochemistry of the PKE was investigated using phytochemical screening and high-performance liquid chromatography (HPLC) analysis. The results of this study indicate that nontoxic concentrations of PKE increase the rate of migration and spheroid formation. Mechanistically, PKE increased the expression of the migratory-related protein active FAK (phosphorylated FAK), and the subsequence increased the level of p-AKT. The expression of stem cell marker CD133, upstream protein signaling β-catenin, and self-renewal transcription factor Nanog was increased. The PKE also possessed scavenging properties against DPPH, ABTS, and SOSA. The phytochemistry analyses exhibited the presence of alkaloids, glycosides, xanthones, triterpenes, and steroids. Additionally, bioactive compounds such as ɑ-tocopherol, riboflavin, protocatechuic acid, β-carotene, and luteolin were detected. The presence of these chemicals in PKE may contribute to its antioxidant, stem cell potentiation, and wound-healing effects. The findings could be beneficial in the identification of valuable natural resources that possess the capacity to be used in the process of wound healing through the potentiation of stemness via a readily detectable molecular mechanism.
Collapse
Affiliation(s)
| | - Saraporn Harikarnpakdee
- Department of Industrial Pharmacy, College of Pharmacy, Rangsit University, Pathum Thani 12000, Thailand
| | - Thanapat Songsak
- Department of Pharmacognosy, College of Pharmacy, Rangsit University, Pathum Thani 12000, Thailand
| | - Verisa Chowjarean
- Department of Pharmaceutical Technology, College of Pharmacy, Rangsit University, Pathum Thani 12000, Thailand
| |
Collapse
|
4
|
Kamal R, Awasthi A, Paul P, Mir MS, Singh SK, Dua K. Novel drug delivery systems in colorectal cancer: Advances and future prospects. Pathol Res Pract 2024; 262:155546. [PMID: 39191194 DOI: 10.1016/j.prp.2024.155546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 08/10/2024] [Accepted: 08/14/2024] [Indexed: 08/29/2024]
Abstract
Colorectal cancer (CRC) is an abnormal proliferation of cells within the colon and rectum, leading to the formation of polyps and disruption of mucosal functions. The disease development is influenced by a combination of factors, including inflammation, exposure to environmental mutagens, genetic alterations, and impairment in signaling pathways. Traditional treatments such as surgery, radiation, and chemotherapy are often used but have limitations, including poor solubility and permeability, treatment resistance, side effects, and post-surgery issues. Novel Drug Delivery Systems (NDDS) have emerged as a superior alternative, offering enhanced drug solubility, precision in targeting cancer cells, and regulated drug release. Thereby addressing the shortcomings of conventional therapies and showing promise for more effective CRC management. The present review sheds light on the pathogenesis, signaling pathways, biomarkers, conventional treatments, need for NDDS, and application of NDDS against CRC. Additionally, clinical trials, ongoing clinical trials, marketed formulations, and patents on CRC are also covered in the present review.
Collapse
Affiliation(s)
- Raj Kamal
- Department of Quality Assurance, ISF College of Pharmacy, Moga, Punjab 142001, India; School of Pharmacy, Desh Bhagat University, Mandi Gobindgarh, Punjab 147301, India
| | - Ankit Awasthi
- Department of Pharmaceutics, ISF College of Pharmacy, Moga, Punjab 142001, India; Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India.
| | - Priyanka Paul
- Department of Pharmaceutical Science, PCTE Group of Institute, Ludhiana, Punjab, India
| | - Mohammad Shabab Mir
- School of Pharmacy, Desh Bhagat University, Mandi Gobindgarh, Punjab 147301, India
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144411, India; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Kamal Dua
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia; Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW 2007, Australia
| |
Collapse
|
5
|
Dubey S, Virmani T, Yadav SK, Sharma A, Kumar G, Alhalmi A. Breaking Barriers in Eco-Friendly Synthesis of Plant-Mediated Metal/Metal Oxide/Bimetallic Nanoparticles: Antibacterial, Anticancer, Mechanism Elucidation, and Versatile Utilizations. JOURNAL OF NANOMATERIALS 2024; 2024:1-48. [DOI: 10.1155/2024/9914079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
Nanotechnology has emerged as a promising field in pharmaceutical research, involving producing unique nanoscale materials with sizes up to 100 nm via physiochemical and biological approaches. Nowadays more emphasis has been given to eco-friendly techniques for developing nanomaterials to enhance their biological applications and minimize health and environmental risks. With the help of green nanotechnology, a wide range of green metal, metal oxide, and bimetallic nanoparticles with distinct chemical compositions, sizes, and morphologies have been manufactured which are safe, economical, and environment friendly. Due to their biocompatibility and vast potential in biomedical (antibacterial, anticancer, antiviral, analgesic, anticoagulant, biofilm inhibitory activity) and in other fields such as (nanofertilizers, fermentative, food, and bioethanol production, construction field), green metal nanoparticles have garnered significant interest worldwide. The metal precursors combined with natural extracts such as plants, algae, fungi, and bacteria to get potent novel metal, metal oxide, and bimetallic nanoparticles such as Ag, Au, Co, Cu, Fe, Zr, Zn, Ni, Pt, Mg, Ti, Pd, Cd, Bi2O3, CeO2, Co3O4, CoFe2O4, CuO, Fe2O3, MgO, NiO, TiO2, ZnO, ZrO2, Ag-Au, Ag-Cr, Ag-Cu, Ag-Zn, Ag-CeO2, Ag-CuO, Ag-SeO2, Ag-TiO2, Ag-ZnO, Cu-Ag, Cu-Mg, Cu-Ni, Pd-Pt, Pt-Ag, ZnO-CuO, ZnO-SeO, ZnO-Se, Se-Zr, and Co-Bi2O3. These plant-mediated green nanoparticles possess excellent antibacterial and anticancer activity when tested against several microorganisms and cancer cell lines. Plants contain essential phytoconstituents (polyphenols, flavonoids, terpenoids, glycosides, alkaloids, etc.) compared to other natural sources (bacteria, fungi, and algae) in higher concentration that play a vital role in the development of green metal, metal oxide, and bimetallic nanoparticles because these plant-phytoconstituents act as a reducing, stabilizing, and capping agent and helps in the development of green nanoparticles. After concluding all these findings, this review has been designed for the first time in such a way that it imparts satisfactory knowledge about the antibacterial and anticancer activity of plant-mediated green metal, metal oxide, and bimetallic nanoparticles together, along with antibacterial and anticancer mechanisms. Additionally, it provides information about characterization techniques (UV–vis, FT-IR, DLS, XRD, SEM, TEM, BET, AFM) employed for plant-mediated nanoparticles, biomedical applications, and their role in other industries. Hence, this review provides information about the antibacterial and anticancer activity of various types of plant-mediated green metal, metal oxide, and bimetallic nanoparticles and their versatile application in diverse fields which is not covered in other pieces of literature.
Collapse
Affiliation(s)
- Swati Dubey
- School of Pharmaceutical Sciences, MVN University, Palwal, Haryana, 121105, India
| | - Tarun Virmani
- School of Pharmaceutical Sciences, MVN University, Palwal, Haryana, 121105, India
| | | | - Ashwani Sharma
- School of Pharmaceutical Sciences, MVN University, Palwal, Haryana, 121105, India
| | - Girish Kumar
- School of Pharmaceutical Sciences, MVN University, Palwal, Haryana, 121105, India
| | - Abdulsalam Alhalmi
- Department of Pharmaceutical Science, College of Pharmacy, Aden University, Aden, Yemen
| |
Collapse
|
6
|
He H, Han Y, Wan Q, Yue Y, Li S, Su B, Li J. Curcumin inhibits propofol-induced autophagy of MN9D cells via Akt/mTOR/p70S6K signaling pathway. Cell Biol Int 2024; 48:461-472. [PMID: 38196274 DOI: 10.1002/cbin.12117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 11/20/2023] [Accepted: 12/13/2023] [Indexed: 01/11/2024]
Abstract
The rapid rise in propofol dependency and abuse has highlighted limited resources for addressing substance abuse-related cognitive impairment, prompting the development of novel therapies. Dysregulated autophagy flow accelerates neuronal cell death, and interventions countering this dysregulation offer an appealing strategy for neuronal protection. Curcumin, a potent natural polyphenol derived from turmeric rhizomes, is renowned for its robust antineurotoxic properties and enhanced cognitive function. Utilizing CCK-8 and Ki67 fluorescent staining, our study revealed that curcumin treatment increased cell viability and proliferative potential in MN9D cells exposed to propofol-induced neurotoxicity. Furthermore, enzyme-linked immunosorbent assay and western blot analysis demonstrated the partial restoration of dopamine synthesis, secretion levels, and TH expression in damaged MN9D cells treated with curcumin. Scanning electrode microscope images displayed reduced autolysosomes and phagosomes in curcumin-treated cells compared to the propofol group. Immunoblotting revealed that curcumin mitigated the degradation of LC3I to LC3II and p62 induced by propofol stimulation, with green fluorescence expression of LC3 postcurcumin treatment resembling that following autophagy inhibitor HCQ treatment, indicating that modulating autophagy flow can alleviate propofol's toxic effects. Moreover, curcumin treatment upregulated the Akt/mTOR/p70S6K signaling pathway, suggesting that curcumin potentially curtails autophagy dysregulation in nerve cells by activating Akt/mTOR/p70S6K. In conclusion, our findings suggest that curcumin can ameliorate propofol abuse-induced neurotoxicity, partially through autophagy regulation and Akt/mTOR/p70S6K signaling activation.
Collapse
Affiliation(s)
- Hongxia He
- Department of Anesthesiology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China
- Development and Regeneration Key Lab of Sichuan Province, Department of Histology and Embryology, Department of Pathology, Chengdu Medical College, Chengdu, Sichuan, China
- Mianyang Key Laboratory of Anesthesia and Neuro-regulation, Department of Anesthesiology, Mianyang Central Hospital, Mianyang, Sichuan, China
| | - Yuping Han
- Development and Regeneration Key Lab of Sichuan Province, Department of Histology and Embryology, Department of Pathology, Chengdu Medical College, Chengdu, Sichuan, China
| | - Qiuyan Wan
- Department of Anesthesiology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China
- Development and Regeneration Key Lab of Sichuan Province, Department of Histology and Embryology, Department of Pathology, Chengdu Medical College, Chengdu, Sichuan, China
- Mianyang Key Laboratory of Anesthesia and Neuro-regulation, Department of Anesthesiology, Mianyang Central Hospital, Mianyang, Sichuan, China
| | - Yao Yue
- Development and Regeneration Key Lab of Sichuan Province, Department of Histology and Embryology, Department of Pathology, Chengdu Medical College, Chengdu, Sichuan, China
| | - Shurong Li
- Development and Regeneration Key Lab of Sichuan Province, Department of Histology and Embryology, Department of Pathology, Chengdu Medical College, Chengdu, Sichuan, China
| | - Bingyin Su
- Development and Regeneration Key Lab of Sichuan Province, Department of Histology and Embryology, Department of Pathology, Chengdu Medical College, Chengdu, Sichuan, China
| | - Jun Li
- Department of Anesthesiology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China
- Mianyang Key Laboratory of Anesthesia and Neuro-regulation, Department of Anesthesiology, Mianyang Central Hospital, Mianyang, Sichuan, China
| |
Collapse
|
7
|
Sarani M, Darroudi M, Naderifar M, Akbarizadeh MR, Nobre MAL, Kruppke B, Khonakdar HA, Jazi ME. Biosynthesis of ZnO, Bi 2O 3 and ZnO-Bi 2O 3 bimetallic nanoparticles and their cytotoxic and antibacterial effects. ChemistryOpen 2024; 13:e202300176. [PMID: 38230849 PMCID: PMC11004456 DOI: 10.1002/open.202300176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 12/29/2023] [Indexed: 01/18/2024] Open
Abstract
This work introduces an easy method for producing Bi2O3, ZnO, ZnO-Bi2O3 nanoparticles (NPs) by Biebersteinia Multifida extract. Our products have been characterized through the outcomes which recorded with using powder X-ray diffractometry (PXRD), Raman, energy dispersive X-ray (EDX), field emission-scanning electron microscopy (FE-SEM), and Fourier-transform infrared (FT-IR) techniques. The finding of SEM presented porous structure and spherical morphology for Bi2O3 and ZnO NPs, respectively. While FE-SEM image of bimetallic nanoparticles showed both porous and spherical morphologies for them; so that spherical particles of ZnO have sat on the porous structure of Bi2O3 NPs. According to the PXRD results, the crystallite sizes of Bi2O3, ZnO and ZnO-Bi2O3 NPs have been obtained 57.69, 21.93, and 43.42 nm, respectively. Antibacterial performance of NPs has been studied on Staphylococcus epidermidis and Pseudomonas aeruginosa bacteria, to distinguish the minimum microbial inhibitory concentration (MIC). Antimicrobial outcomes have showed a better effect for ZnO-Bi2O3 NPs. Besides, wondering about the cytotoxic action against cancer cell lines, the MTT results have verified the intense cytotoxic function versus breast cancer cells (MCF-7). According to these observations, obtained products can prosper medical and biological applications.
Collapse
Affiliation(s)
- Mina Sarani
- Department of Polymer ProcessingIran Polymer and Petrochemical InstituteTehranIran
| | - Majid Darroudi
- Department of Medical Biotechnology and NanotechnologyFaculty of MedicineMashhad University of Medical SciencesMashhadIran
- Department of Basic Medical SciencesNeyshabur University of Medical SciencesNeyshaburIran
| | - Mahin Naderifar
- Faculty of Nursing and MidwiferyZabol University of Medical SciencesZabolIran
| | - Majid Reza Akbarizadeh
- Department of pediatricAmir Al Momenin HospitalZabol University of Medical SciencesZabolIran
| | - Marcos A. L. Nobre
- São Paulo State University (Unesp)School of Technology and SciencesPresidente PrudenteSP-19060-900Brazil
| | - Benjamin Kruppke
- Max Bergmann Center of BiomaterialsInstitute of Materials ScienceTechnische Universität Dresden01069DresdenGermany
| | - Hossein Ali Khonakdar
- Department of Polymer ProcessingIran Polymer and Petrochemical InstituteTehranIran
- Max Bergmann Center of BiomaterialsInstitute of Materials ScienceTechnische Universität Dresden01069DresdenGermany
| | - Mehdi Erfani Jazi
- Department of Chemistry and Center for Photochemical SciencesBowling Green State UniversityBowling GreenOH-43403USA
| |
Collapse
|
8
|
Dwivedi P, Malik A, Fatima Hussain HZ, Jatrana I, Imtiyaz K, Rizvi MA, Mushtaque M, Khan AU, Alam M, Rafatullah M. Eco-Friendly CuO/Fe 3O 4 Nanocomposite synthesis, characterization, and cytotoxicity study. Heliyon 2024; 10:e27787. [PMID: 38496878 PMCID: PMC10944281 DOI: 10.1016/j.heliyon.2024.e27787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 02/16/2024] [Accepted: 03/06/2024] [Indexed: 03/19/2024] Open
Abstract
The current study report a convenient, simple, and low cost approach for the biogenic synthesis of CuO/Fe3O4 nanocomposites (NCs) from pumpkin seeds extract and their vitro cytotoxicity. The characterization of finally obtained CuO/Fe3O4 nanocomposites (NCs) performed using UV-Visible, FT-IR, XRD, XPS, GC-MS, SEM-EDX and TEM analysis. The formation and elemental analysis were determined using the energy-dispersive X-ray (EDX) microanalysis technique. The formation of rod-like monoclinic and spherical, having size range 5 nm-20 nm confirmed by scanning electron microscope (SEM) and transmission electron microscopy (TEM) respectively. Finally, the MTT assay of the synthesized composites was evaluated for toxicity against cancerous cell lines HCT-116 (Colon cancer cell) and A549 (human lung adenocarcinoma cell). The synthesized composite material showed moderate (IC50 = 199 μg/mL) to low (IC50 = 445 μg/mL) activity against HCT-116 and A549 cell lines, respectively.
Collapse
Affiliation(s)
- Poonam Dwivedi
- Department of Chemistry, School of Basic Sciences, Jaipur National University, Jaipur, 302017 (Rajasthan) India
| | - Abdul Malik
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Hafiza Zumra Fatima Hussain
- Department of Environmental, Biological and Pharmaceutical Science and Technology (DISTABiF), University of Campania ‘Luigi Vanvitelli’ Via Vivaldi 43, 81100 Caserta, Italy
| | - Indu Jatrana
- Department of Chemistry, School of Basic Sciences, Jaipur National University, Jaipur, 302017 (Rajasthan) India
| | - Khalid Imtiyaz
- Department of Biosciences, Jamia Millia Islamia, New Delhi, 110025, India
| | - M.M. Alam Rizvi
- Department of Biosciences, Jamia Millia Islamia, New Delhi, 110025, India
| | - Md Mushtaque
- Department of Chemistry, Millat College (A constituent colle ge of Lalit Narayan Mithila University), Darbhanga, Bihar, India
| | - Azhar U. Khan
- Department of Chemistry, School of Basic Sciences, Jaipur National University, Jaipur, 302017 (Rajasthan) India
| | - Mahboob Alam
- Division of Chemistry and Biotechnology, Dongguk University, 123, Dongdaero, Gyeongju-si 780714, Republic of Korea
| | - Mohd Rafatullah
- Environmental Technology Division, School of Industrial Technology, Universiti Sains Malaysia, 11800 Penang, Malaysia
| |
Collapse
|
9
|
Mini JJ, Khan S, Aravind M, Mol T, Ahmed Awadh Bahajjaj A, Robert HM, Kumaresubitha T, Anwar A, Li H. Investigation of antimicrobial and anti-cancer activity of thermally sensitive SnO 2 nanostructures with green-synthesized cauliflower morphology at ambient weather conditions. ENVIRONMENTAL RESEARCH 2024; 245:117878. [PMID: 38147921 DOI: 10.1016/j.envres.2023.117878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 11/01/2023] [Accepted: 12/04/2023] [Indexed: 12/28/2023]
Abstract
A tin oxide (SnO2) nanostructure was prepared using Matricaria recutita leaf extract to investigate its anticancer activity against SK-MEL-28 cells. The tetragonal crystal structure of tin oxide nanoparticles with an average crystal size of 27 nm was confirmed by X-ray diffraction (XRD) analysis. The tetragonal crystal structure of the tin oxide nanoparticles, with an average crystallite size of 27 nm, was confirmed by XRD an absorbance peak at 365 nm was identified by UV-visible spectroscopy analysis as belonging to the bio-mediated synthesis of SnO2 nanoparticles. The SnO2 NPs are capped and stabilized with diverse functional groups derived from bioactive molecules, including aldehydes, benzene rings, amines, alcohols, and carbonyl stretch protein molecules. Fourier transform infrared spectroscopy (FTIR) analysis validated the presence of these capping and stabilizing chemical bonds. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) studies revealed the cauliflower-shaped morphology of the SnO2 nanoparticles with an average particle size of 28 nm. The antimicrobial activity of both prepared and encapsulated samples confirmed their biological activities. Furthermore, both prepared and encapsulated tin oxide samples exhibited excellent anticancer activity against SK-MEL-28 human cancer cells. The present study introduces a reliable and uncomplicated approach to produce SnO2 nanoparticles and demonstrates their effectiveness in various applications, including cancer therapy, drug administration, and disinfectant.
Collapse
Affiliation(s)
- J Josphin Mini
- Department of Botany, Women's Christian College, Nagercoil, Tamil Nadu, India
| | - Safia Khan
- Shandong Technology Centre of Nanodevices and Integration, School of Microelectronics, Shandong University, Jinan, 250101, China
| | - M Aravind
- Department of Physics, National Engineering College, Kovilpatti, Tamil Nadu, India.
| | - Thibi Mol
- Department of Chemistry, Nesamony Memorial Christian College, Marthandam, Tamil Nadu, India
| | | | - H Marshan Robert
- Department of Physics, Nanjil Catholic College of Arts and Science, Kaliyakkaviali, Tamil Nadu, India
| | - T Kumaresubitha
- Department of Botany, Pachaiyappa's College, Chennai, Tamil Nadu, India
| | - Aneela Anwar
- Department of Chemistry, University of Engineering and Technology, Lahore, Pakistan.
| | - Hu Li
- Ångström Laboratory, Department of Materials Science and Engineering, Uppsala University, 75121, Uppsala, Sweden.
| |
Collapse
|
10
|
Khafaga AF, Gaballa MMS, Karam R, Shoulah SA, Shamma RN, Khalifa NE, Farrag NE, Noreldin AE. Synergistic therapeutic strategies and engineered nanoparticles for anti-vascular endothelial growth factor therapy in cancer. Life Sci 2024; 341:122499. [PMID: 38342375 DOI: 10.1016/j.lfs.2024.122499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 01/29/2024] [Accepted: 02/07/2024] [Indexed: 02/13/2024]
Abstract
Angiogenesis is one of the defining characteristics of cancer. Vascular endothelial growth factor (VEGF) is crucial for the development of angiogenesis. A growing interest in cancer therapy is being caused by the widespread use of antiangiogenic drugs in treating several types of human cancer. However, this therapeutic approach can worsen resistance, invasion, and overall survival. As we proceed, refining combination strategies and addressing the constraint of targeted treatments are paramount. Therefore, major challenges in using novel combinations of antiangiogenic agents with cytotoxic treatments are currently focused on illustrating the potential of synergistic therapeutic strategies, alongside advancements in nanomedicine and gene therapy, present opportunities for more precise interference with angiogenesis pathways and tumor environments. Nanoparticles have the potential to regulate several crucial activities and improve several drug limitations such as lack of selectivity, non-targeted cytotoxicity, insufficient drug delivery at tumor sites, and multi-drug resistance based on their unique features. The goal of this updated review is to illustrate the enormous potential of novel synergistic therapeutic strategies and the targeted nanoparticles as an alternate strategy for t treating a variety of tumors employing antiangiogenic therapy.
Collapse
Affiliation(s)
- Asmaa F Khafaga
- Department of Pathology, Faculty of Veterinary Medicine, Alexandria University, Edfina 22758, Egypt.
| | - Mohamed M S Gaballa
- Department of Pathology, Faculty of Veterinary Medicine, Benha University, Toukh 13736, Egypt.
| | - Reham Karam
- Department of Virology, Faculty of Veterinary Medicine, Mansoura University, 35511, Egypt.
| | - Salma A Shoulah
- Department of Animal Medicine (Infectious Diseases), Faculty of Veterinary Medicine, Benha University, Toukh 13736, Egypt.
| | - Rehab N Shamma
- Department of Pharmaceutics & Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt.
| | - Norhan E Khalifa
- Department of Physiology, Faculty of Veterinary Medicine, Matrouh University, Matrouh 51511, Egypt.
| | - Nehal E Farrag
- Faculty of Veterinary Medicine, Alexandria University, Edfina 22758, Egypt.
| | - Ahmed E Noreldin
- Department of Histology and Cytology, Faculty of Veterinary Medicine, Damanhour University, Damanhour 22511, Egypt.
| |
Collapse
|
11
|
Aly Khalil AM, Saied E, Mekky AE, Saleh AM, Al Zoubi OM, Hashem AH. Green biosynthesis of bimetallic selenium-gold nanoparticles using Pluchea indica leaves and their biological applications. Front Bioeng Biotechnol 2024; 11:1294170. [PMID: 38274007 PMCID: PMC10809157 DOI: 10.3389/fbioe.2023.1294170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 12/18/2023] [Indexed: 01/27/2024] Open
Abstract
Increasing bacterial resistance and the negative impact of currently used antibacterial agents have produced the need for novel antibacterial agents and anticancer drugs. In this regard, nanotechnology could provide safer and more efficient therapeutic agents. The main methods for nanoparticle production are chemical and physical approaches that are often costly and environmentally unsafe. In the current study, Pluchea indica leaf extract was used for the biosynthesis of bimetallic selenium-gold nanoparticles (Se-Au BNPs) for the first time. Phytochemical examinations revealed that P. indica leaf extract includes 90.25 mg/g dry weight (DW) phenolics, 275.53 mg/g DW flavonoids, and 26.45 mg/g DW tannins. X-ray diffraction (XRD), transmission electron microscopy (TEM), Fourier-transform infrared (FTIR) spectroscopy, dynamic light scattering (DLS), scanning electron microscopy (SEM), and energy-dispersive X-ray spectroscopy (EDX) techniques were employed to characterize Se-Au BNPs. Based on UV-vis spectra, the absorbance of Se-Au BNPs peaked at 238 and 374 nm. In SEM imaging, Se-Au BNPs emerged as bright particles, and both Au and Se were uniformly distributed throughout the P. indica leaf extract. XRD analysis revealed that the average size of Se-Au BNPs was 45.97 nm. The Se-Au BNPs showed antibacterial properties against Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus, and Bacillus subtilis, with minimum inhibitory concentrations (MICs) of 31.25, 15.62, 31.25, and 3.9 μg/mL, respectively. Surprisingly, a cytotoxicity assay revealed that the IC50 value toward the Wi 38 normal cell line was 116.8 μg/mL, implying that all of the MICs described above could be used safely. More importantly, Se-Au BNPs have shown higher anticancer efficacy against human breast cancer cells (MCF7), with an IC50 value of 13.77 μg/mL. In conclusion, this paper is the first to provide data on the effective utilization of P. indica leaf extract in the biosynthesis of biologically active Se-Au BNPs.
Collapse
Affiliation(s)
| | - Ebrahim Saied
- Department of Botany and Microbiology, Faculty of Science, Al-Azhar University, Cairo, Egypt
| | - Alsayed E. Mekky
- Department of Botany and Microbiology, Faculty of Science, Al-Azhar University, Cairo, Egypt
| | - Ahmed M. Saleh
- Biology Department, Faculty of Science Yanbu, Taibah University, Medina, Saudi Arabia
| | - Omar Mahmoud Al Zoubi
- Biology Department, Faculty of Science Yanbu, Taibah University, Medina, Saudi Arabia
| | - Amr H. Hashem
- Department of Botany and Microbiology, Faculty of Science, Al-Azhar University, Cairo, Egypt
| |
Collapse
|
12
|
Ahmad I, Ahmad S, Ahmad A, Zughaibi TA, Alhosin M, Tabrez S. Curcumin, its derivatives, and their nanoformulations: Revolutionizing cancer treatment. Cell Biochem Funct 2024; 42:e3911. [PMID: 38269517 DOI: 10.1002/cbf.3911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/27/2023] [Accepted: 12/13/2023] [Indexed: 01/26/2024]
Abstract
Curcumin is a natural compound derived from turmeric and can target malignant tumor molecules involved in cancer propagation. It has potent antioxidant activity, but its effectiveness is limited due to poor absorption and rapid elimination from the body. Various curcumin derivatives have also shown anticancer potential in in-vitro and in-vivo models. Curcumin can target multiple signaling pathways involved in cancer development/progression or induce cancer cell death through apoptosis. In addition, curcumin and its derivatives could also enhance the effectiveness of conventional chemotherapy, radiation therapy and reduce their associated side effects. Lately, nanoparticle-based delivery systems are being developed/explored to overcome the challenges associated with curcumin's delivery, increasing its overall efficacy. The use of an imaging system to track these formulations could also give beneficial information about the bioavailability and distribution of the nano-curcumin complex. In conclusion, curcumin holds significant promise in the fight against cancer, especially in its nanoform, and could provide precise delivery to cancer cells without affecting normal healthy cells.
Collapse
Affiliation(s)
- Iftikhar Ahmad
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Sameer Ahmad
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Biotechnology & Genetics, Faculty of Biological Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ausaf Ahmad
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow, India
| | - Torki A Zughaibi
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mahmoud Alhosin
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Shams Tabrez
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
13
|
Zughaibi TA, Jabir NR, Khan AU, Khan MS, Tabrez S. Screening of Cu 4 O 3 NPs efficacy and its anticancer potential against cervical cancer. Cell Biochem Funct 2023; 41:1174-1187. [PMID: 37691077 DOI: 10.1002/cbf.3850] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/31/2023] [Accepted: 08/26/2023] [Indexed: 09/12/2023]
Abstract
Cu4 O3 is the least explored copper oxide, and its nanoformulation is anticipated to have important therapeutic potential especially against cancer. The current study aimed to biosynthesize Cu4 O3 nanoparticles (NPs) using an aqueous extract of pumpkin seeds and evaluate its antiproliferative efficacy against cervical cells after screening on different cancer cell lines. The obtained NPs were characterized by different spectroscopic analyses, such as UV-vis, thermogravimetric, energy dispersive X-ray, and Fourier-transform infrared spectroscopy (FTIR). In addition, high-resolution transmission electron microscopes (HR-TEM) were used to observe the morphology of the biosynthesized NPs. The UV-vis spectra showed a peak at around 332 nm, confirming the formation of Cu4 O3 NPs. Moreover, FTIR and TAG analyses identified the presence of various bioactive phytoconstituents that might have worked as capping and stabilization agents and comparative stable NPs at very high temperatures, respectively. The HR-TEM data showed the spherical shape of Cu4 O3 NPs in the range of 100 nm. The Cu4 O3 NPs was screened on three different cancer cell lines viz., Hela, MDA-MB-231, and HCT-116 using cytotoxicity (MTT) reduction assay. In addition, Vero was taken as a normal epithelial (control) cell. The high responsive cell line in terms of least IC50 was further assessed for its anticancer potential using a battery of biological tests, including morphological alterations, induction of apoptosis/ROS generation, regulation of mitochondrial membrane potential (MMP), and suppression of cell adhesion/migration. Vero cells (control) showed a slight decline in % cell viability even at the highest tested Cu4 O3 NPs concentration. However, all the studied cancer cells viz., MDA-MB-231, HCT 116, and HeLa cells showed a dose-dependent decline in cell viability after the treatment with Cu4 O3 NPs with a calculated IC50 value of 10, 11, and 7.2 µg/mL, respectively. Based on the above data, Hela cells were chosen for further studies, that showed induction of apoptosis from 3.5 to 9-folds by three different staining techniques acridine orange/ethidium bromide (AO/EB), 4',6-diamidino-2-phenylindole (DAPI), and propidium iodide (PI). The enhanced production of reactive oxygen species (>3.5-fold), modulation in MMP, and suppression of cell adhesion/migration were observed in the cells treated with Cu4 O3 NPs. The current study obtained the significant antiproliferative potential of Cu4 O3 NPs against the cervical cancer cell line, which needs to be confirmed further in a suitable in vivo model. Based on our results, we also recommend the green-based, eco-friendly, and cost-effective alternative method for synthesizing novel nanoformulation.
Collapse
Affiliation(s)
- Torki A Zughaibi
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Nasimudeen R Jabir
- Department of Biochemistry, Centre for Research and Development, PRIST University, Vallam Thanjavur, Tamil Nadu, India
| | - Azhar U Khan
- Department of Chemistry, School of Life and Basic Sciences, Siilas Campus, Jaipur National University, Jaipur, Rajasthan, India
| | - Mohd Shahnawaz Khan
- Protein Research Chair, Department of Biochemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Shams Tabrez
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
14
|
Wei K, Gong F, Wu J, Tang W, Liao F, Han Z, Pei Z, Lei H, Wang L, Shao M, Liu Z, Cheng L. Orally Administered Silicon Hydrogen Nanomaterials as Target Therapy to Treat Intestinal Diseases. ACS NANO 2023; 17:21539-21552. [PMID: 37843009 DOI: 10.1021/acsnano.3c06551] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2023]
Abstract
The occurrence and development of inflammatory bowel diseases (IBDs) are inextricably linked to the excessive production of reactive oxygen species (ROS). Thus, there is an urgent need to develop innovative tactics to combat IBDs and scavenge excess ROS from affected areas. Herein, silicon hydrogen nanoparticles (SiH NPs) with ROS-scavenging ability were prepared by etching Si nanowires (NWs) with hydrogen fluoride (HF) to alleviate the symptoms associated with IBD by orally targeting the inflamed colonic sites. The strong reductive Si-H bonds showed excellent stability in the gastric and intestinal fluids, which exhibited efficient ROS-scavenging effects to protect cells from high oxidative stress-induced death. After oral delivery, the negatively charged SiH NPs were specifically adsorbed to the positively charged inflammatory epithelial tissues of the colon for an extended period via electrostatic interactions to prolong the colonic residence time. SiH NPs exhibited significant preventive and therapeutic effects in dextran sodium sulfate-induced prophylactic and therapeutic mouse models by inhibiting colonic shortening, reducing the secretion of pro-inflammatory cytokines, regulating macrophage polarization, and protecting the colonic barrier. As determined using 16S rDNA high-throughput sequencing, the oral administration of SiH NPs treatment led to changes in the abundance of the intestinal microbiome, which improved the bacterial diversity and restored the relative abundance of beneficial bacteria after the inflamed colon. Overall, our findings highlight the broad application of SiH-based anti-inflammatory drugs in the treatment of IBD and other inflammatory diseases.
Collapse
Affiliation(s)
- Kailu Wei
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, China
| | - Fei Gong
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, China
| | - Jie Wu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, China
| | - Wei Tang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, China
| | - Fan Liao
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, China
| | - Zhihui Han
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, China
| | - Zifan Pei
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, China
| | - Huali Lei
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, China
| | - Li Wang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, China
| | - Mingwang Shao
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, China
| | - Zhuang Liu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, China
- Macao Institute of Materials Science and Engineering, Macau University of Science and Technology, Taipa 999078, Macau SAR, China
| | - Liang Cheng
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, China
- Macao Institute of Materials Science and Engineering, Macau University of Science and Technology, Taipa 999078, Macau SAR, China
| |
Collapse
|
15
|
Isaq M, Ramachandra YL, Rai PS, Chavan A, Sekar R, Lee MJ, Somu P. Biogenic synthesized silver nanoparticles using fungal endophyte Cladosporium oxysporum of Vateria indica induce apoptosis in human colon cancer cell line via elevated intracellular ROS generation and cell cycle arrest. J Mol Liq 2023; 386:122601. [DOI: 10.1016/j.molliq.2023.122601] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
16
|
Alaizeri ZM, Alhadlaq HA, Aldawood S, Javed Akhtar M, Ahamed M. One-step preparation, characterization, and anticancer potential of ZnFe 2O 4/RGO nanocomposites. Saudi Pharm J 2023; 31:101735. [PMID: 37638224 PMCID: PMC10448167 DOI: 10.1016/j.jsps.2023.101735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Accepted: 07/30/2023] [Indexed: 08/29/2023] Open
Abstract
Zinc ferrite nanoparticles (ZnFe2O4 NPs) have attracted extensive attention for their diverse applications including sensing, waste-water treatment, and biomedicine. The novelty of the present work is the fabrication of ZnFe2O4/RGO NCs by using a one-step hydrothermal process to assess the influence of RGO doping on the physicochemical properties and anticancer efficacy of ZnFe2O4 NPs. X-ray diffraction (XRD), Scanning electron microscopy (SEM), Energy-dispersive X-ray(EDX), X-ray photoelectron spectroscopy (XPS), Fourier-transform infrared spectroscopy (FTIR), UV-vis spectroscopy, and Photoluminescence (PL) spectroscopy were employed to characterize prepared pure ZnFe2O4 NPs and ZnFe2O4/ RGO NCs. XRD results showed that the synthesized samples have high crystallinity. Furthermore, the average crystal sizes of ZnFe2O4 nanoparticles (NPs) and ZnFe2O4/RGO nanocomposites (NCs) were 51.08 nm and 54.36 nm, respectively. SEM images revealed that pure ZnFe2O4 NPs were spherical in shape with uniformly loaded on the surface of the RGO nanosheet. XPS and EDX analysis confirmed the elemental compositions of ZnFe2O4/RGO NCs. Elemental mapping of SEM shows that the elemental compositions (Zn, Fe, O, and C) were homogeneously distributed in ZnFe2O4/RGO NCs. The intensity of FT-IR spectra depicted that pure ZnFe2O4 NPs were successfully anchored into the RGO nanosheet. An optical study suggested that the band gap energy of ZnFe2O4/RGO NCs (1.61 eV) was lower than that of pure ZnFe2O4 NPs (1.96 eV). PL spectra indicated that the recombination rate of the ZnFe2O4/ RGO NCs was lower than ZnFe2O4 NPs. MTT assay was used to evaluate the anticancer performance of ZnFe2O4 /RGO NCs and pure ZnFe2O4NPs against human cancer cells. In vitro study indicates that ZnFe2O4 /RGO NCs have higher anticancer activity against human breast (MCF-7) and lung (A549) cancer cells as compared to pure form ZnFe2O4 NPs. This work suggests that RGO doping enhances the anticancer activity of ZnFe2O4NPs by tuning its optical behavior. This study warrants future research on potential therapeutic applications of these types of nanocomposites.
Collapse
Affiliation(s)
- ZabnAllah M. Alaizeri
- Department of Physics and Astronomy, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Hisham A. Alhadlaq
- Department of Physics and Astronomy, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Saad Aldawood
- Department of Physics and Astronomy, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohd Javed Akhtar
- Department of Physics and Astronomy, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Maqusood Ahamed
- Department of Physics and Astronomy, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
17
|
Hashem AH, Rizk SH, Abdel-Maksoud MA, Al-Qahtani WH, AbdElgawad H, El-Sayyad GS. Unveiling anticancer, antimicrobial, and antioxidant activities of novel synthesized bimetallic boron oxide-zinc oxide nanoparticles. RSC Adv 2023; 13:20856-20867. [PMID: 37448639 PMCID: PMC10336335 DOI: 10.1039/d3ra03413e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 07/03/2023] [Indexed: 07/15/2023] Open
Abstract
Bimetallic nanoparticles have received much attention recently due to their multifunctional applications, and synergistic potential at low concentrations. In the current study, bimetallic boron oxide-zinc oxide nanoparticles (B2O3-ZnO NPs) were synthesized by an eco-friendly, and cost-effective method through the utilization of gum arabic in the presence of gamma irradiation. Characterization of the synthesized bimetallic B2O3-ZnO NPs revealed the successful synthesis of bimetallic NPs on the nano-scale, and good distribution, in addition to formation of a stable colloidal nano-solution. Furthermore, the bimetallic B2O3-ZnO NPs were assessed for anticancer, antimicrobial and antioxidant activities. The evaluation of the cytotoxicity of bimetallic B2O3-ZnO NPs on Vero and Wi38 normal cell lines illustrated that bimetallic B2O3-ZnO NPs are safe in use where IC50 was 384.5 and 569.2 μg ml-1, respectively. The bimetallic B2O3-ZnO NPs had anticancer activity against Caco 2 where IC50 was 80.1 μg ml-1. Furthermore, B2O3-ZnO NPs exhibited promising antibacterial activity against E. coli, P. aeruginosa, B. subtilis and S. aureus, where MICs were 125, 62.5, 125 and 62.5 μg ml-1 respectively. Likewise, B2O3-ZnO NPs had potential antifungal activity against C. albicans as unicellular fungi (MIC was 62.5 μg ml-1). Moreover, B2O3-ZnO NPs displayed antioxidant activity (IC50 was 102.6 μg ml-1). In conclusion, novel bimetallic B2O3-ZnO NPs were successfully synthesized using gum arabic under gamma radiation, where they displayed anticancer, antimicrobial and antioxidant activities.
Collapse
Affiliation(s)
- Amr H Hashem
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University Nasr City Cairo 11884 Egypt
| | - Samar H Rizk
- Department of Biochemistry, Faculty of Pharmacy, Ahram Canadian University Sixth of October City Giza Egypt
- Department of Biochemistry, Faculty of Pharmacy, Galala University New Galala City Suez Egypt
| | - Mostafa A Abdel-Maksoud
- Botany and Microbiology Department, College of Science, King Saud University P.O. Box 2455 Riyadh 11451 Saudi Arabia
| | - Wahidah H Al-Qahtani
- Department of Food Sciences & Nutrition, College of Food and Agricultural Sciences, King Saud University P.O. Box 270677 Riyadh 11352 Saudi Arabia
| | - Hamada AbdElgawad
- Laboratory for Molecular Plant Physiology and Biotechnology, Department of Biology, University of Antwerp 2020 Antwerp Belgium
| | - Gharieb S El-Sayyad
- Microbiology and Immunology Department, Faculty of Pharmacy, Ahram Canadian University Sixth of October City Giza Egypt
- Microbiology and Immunology Department, Faculty of Pharmacy, Galala University New Galala City Suez Egypt
- Drug Microbiology Lab, Drug Radiation Research Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA) Cairo Egypt
| |
Collapse
|