1
|
Wang Q, Wei Y, Lan J, Bai C, Chen J, Zhao S, Wang T, Dong Y. A new perspective on antimicrobial therapeutic drug monitoring: Surface-enhanced Raman spectroscopy. Talanta 2025; 292:128017. [PMID: 40154051 DOI: 10.1016/j.talanta.2025.128017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Revised: 03/13/2025] [Accepted: 03/22/2025] [Indexed: 04/01/2025]
Abstract
Therapeutic drug monitoring (TDM) enables the personalization of treatment regimens, enhancing efficacy in combating infectious diseases while minimizing toxicity risks and reducing the potential for pathogenic resistance. However, existing TDM techniques still present certain limitations. Chromatographic analysis involves a prolonged detection period, which hampers its capacity for rapid multi-sample analysis. Immunoassay is constrained by poor specificity and stability, as well as a restricted range of detectable drugs. Surface-enhanced Raman spectroscopy (SERS) amplifies the Raman signals of target molecules via the local electromagnetic field and charge transfer effects on the surface of plasmonic materials, offering many significant advantages including high sensitivity, rapid detection, minimal sample requirements, and the ability to provide molecular fingerprints. SERS biosensing has demonstrated considerable potential in the field of blood drug concentration monitoring. This paper comprehensively reviews the research on the application of SERS in the TDM of antimicrobial agents. Beginning with the clinical practice of antimicrobial TDM, this review systematically introduces the principles of SERS techniques, the enhancement substrates, and the commonly used data processing methods including machine learning. It then provides a detailed discussion of the application of SERS in the TDM of various types of antimicrobials. Finally, it summarizes four major challenges currently faced by SERS techniques in antimicrobial TDM-namely protein corona effects, matrix interferences, substrate heterogeneity, and quantification reproducibility-and proposes potential future directions. This paper aims to offer new strategies and perspectives for the TDM and personalized dosage of antimicrobial agents.
Collapse
Affiliation(s)
- Quanfang Wang
- Department of Pharmacy, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Yu Wei
- Department of Pharmacy, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Jingjing Lan
- Department of Pharmacy, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Chuqi Bai
- Department of Pharmacy, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Jiaojiao Chen
- Department of Pharmacy, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Shidi Zhao
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Taotao Wang
- Department of Pharmacy, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Yalin Dong
- Department of Pharmacy, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China.
| |
Collapse
|
2
|
da Silva SMSD, Nogueira MS, Rizzato JMB, de Lima Silva S, Cortelli SC, Borges R, da Silva Martinho H, Silva RA, das Chagas E Silva de Carvalho LF. Machine learning combined with infrared spectroscopy for detection of hypertension pregnancy: towards newborn and pregnant blood analysis. BMC Pregnancy Childbirth 2025; 25:358. [PMID: 40148838 PMCID: PMC11948831 DOI: 10.1186/s12884-024-06941-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 10/29/2024] [Indexed: 03/29/2025] Open
Abstract
Biochemical changes in the cervix during labor are not well understood. This gap in knowledge is significant, as understanding the precise biochemical processes can provide critical insights into the mechanisms of labor and potentially inform better clinical practices for monitoring and managing pregnancy and childbirth. Fourier-transform infrared (FT-IR) spectroscopy as a non-invasive optical technique, it has the potential sensibility to detect biochemical components. This technology operates by meansuring the vibrational energy of molecular composition and structural changes occurring in the tissue. A total of 30 pregnant participants undergoing either spontaneous or induced labor were recruited. We detected several biochemical changes during labor, including a significant decrease in FT-IR spectral features associated with collagen and other extracellular matrix (ECM) proteins, attributed to collagen dispersion. Specifically, the amide I and amide II bands, which are indicative of protein secondary structure, showed marked reductions. Our results have demonstrated that FT-IR spectroscopy is sensitive to multiple biochemical remodeling changes in the cervix during labor. Traditional methods have limitations, either due to their invasiveness or insufficient sensitivity to detect subtle biochemical alterations, therefore, FT-IR spectroscopy may be a valuable noninvasive tool for objective cervical assessment to potentially guide clinical labor management.
Collapse
Affiliation(s)
| | | | | | - Simone de Lima Silva
- Departamento de Odontologia, Rua Dos Operários, Universidade de Taubaté, N° 9, Centro, Taubaté, SP, 12020-340, Brazil
| | - Sheila Cavalca Cortelli
- Departamento de Odontologia, Rua Dos Operários, Universidade de Taubaté, N° 9, Centro, Taubaté, SP, 12020-340, Brazil
| | - Roger Borges
- Universidade Federal Do ABC (UFABC), CCNH - Centro de Ciências Naturais E Humanas, Campus Santo André - Avenida Dos Estados, 5001 - Bairro Bangu - Santo André, São Paulo, 09210-580, Brazil
- Faculdade Israelita de Ciências da Saúde Albert Einstein, Hospital Albert Einstein, Av. Albert Einstein, 627 - Morumbi, São Paulo, SP, 05652-000, Brazil
| | - Herculano da Silva Martinho
- Universidade Federal Do ABC (UFABC), CCNH - Centro de Ciências Naturais E Humanas, Campus Santo André - Avenida Dos Estados, 5001 - Bairro Bangu - Santo André, São Paulo, 09210-580, Brazil
| | - Rodrigo Augusto Silva
- Departamento de Odontologia, Rua Dos Operários, Universidade de Taubaté, N° 9, Centro, Taubaté, SP, 12020-340, Brazil
- Universidade Paulista - UNIP/SP, Av. Paulista, 900 Bairro Cerqueira César - Distrito Jardim Paulista Zona Oeste, São Paulo, SP, 01310940, Brazil
| | | |
Collapse
|
3
|
Fan M, Brolo AG. Factors that Affect Quantification in Surface-Enhanced Raman Scattering. ACS NANO 2025; 19:3969-3996. [PMID: 39855155 DOI: 10.1021/acsnano.4c15183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2025]
Abstract
Surface-enhanced Raman scattering (SERS) is an analytical technique capable of detecting trace amounts of specific species. The uniqueness of vibrational signatures is a major advantage of SERS. This combination of sensitivity and specificity has motivated researchers to develop diverse analytical methodologies leveraging SERS. However, even 50 years after its first observation, SERS is still perceived as an unreliable technique for quantification. This perception has precluded the application of SERS in laboratories that rely on consistent quantification (for regulatory purposes, for instance). In this review, we describe some of the aspects that lead to SERS intensity variations and how those challenges were addressed in the 50 years of the technique. The goal is to identify the sources of variations in SERS intensities and then demonstrate that, even with these pitfalls, the technique can be used for quantification when factors such as nature of the substrate, experimental conditions, sample preparation, surface chemistry, and data analysis are carefully considered and tailored for a particular application.
Collapse
Affiliation(s)
- Meikun Fan
- School of Environmental Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031, China
| | - Alexandre G Brolo
- Department of Chemistry, University of Victoria, Victoria, BC V8N 4Y3, Canada
- Centre for Advanced Materials and Related Technologies (CAMTEC), University of Victoria, Victoria, BC V8P 5C2, Canada
| |
Collapse
|
4
|
Wang Y, Yang J, Amier Y, Yuan D, Xun Y, Yu X. Advancements in Nanomedicine for the Diagnosis and Treatment of Kidney Stones. Int J Nanomedicine 2025; 20:1401-1423. [PMID: 39925679 PMCID: PMC11805677 DOI: 10.2147/ijn.s504318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Accepted: 01/17/2025] [Indexed: 02/11/2025] Open
Abstract
Kidney stones constitute a common condition impacting the urinary system. In clinical diagnosis and management, traditional surgical interventions and pharmacological treatments are primarily utilized; however, these methods possess inherent limitations. Presently, the field of nanomedicine is undergoing significant advancements. The application of nanomaterials in biosensors enables the accurate assessment of urinary ion composition. Furthermore, contrast agents developed from these materials can improve the signal-to-noise ratio and enhance image clarity. By mitigating oxidative stress-induced cellular damage, nanomaterials can inhibit the formation of kidney stones and enhance the efficacy of drug delivery as effective carriers. Additionally, by modifying the physical and chemical properties of bacteria, nanomaterials can effectively eliminate bacterial presence, thereby preventing severe complications. This review explores the advancements in nanomaterials technology related to the early detection of risk factors, clinical diagnosis, and treatment of kidney stones and their associated complications.
Collapse
Affiliation(s)
- Yongqi Wang
- Department of Urology, Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Junyi Yang
- Department of Urology, Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Yirixiatijiang Amier
- Department of Urology, Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Dongfeng Yuan
- Department of Urology, Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Yang Xun
- Department of Urology, Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Xiao Yu
- Department of Urology, Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| |
Collapse
|
5
|
Santos LCS, Silveira L, Pacheco MTT. Raman Spectroscopic Analysis of Urinary Creatine and Phosphate in Athletes: Pre- and Post-Training Assessment. JOURNAL OF BIOPHOTONICS 2025; 18:e202400210. [PMID: 39533698 DOI: 10.1002/jbio.202400210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 08/30/2024] [Accepted: 10/05/2024] [Indexed: 11/16/2024]
Abstract
The aim of this study was to detect biochemical components in the urine of bodybuilders who ingested creatine pretraining compared to individuals who did not ingest creatine after physical exercise using Raman spectroscopy. Twenty volunteers practicing bodybuilding were selected to collect pre- and post-training urine samples, where 10 volunteers ingested creatine 30 min before pretraining urine collection (creatine group), and 10 did not (control group). The samples were subjected to Raman spectroscopy, and the spectra of both creatine and control groups and the difference (post-pre) for both groups were analyzed. Principal component analysis (PCA) technique was applied to the samples. The results showed peaks of creatine and phosphate in urine after training (creatine post-training group), suggesting that part of the creatine was absorbed and metabolized, and part was excreted. Raman spectroscopy could be applied to detect biocompounds in urine, such as unmetabolized creatine and phosphate.
Collapse
Affiliation(s)
- Letícia C S Santos
- Biomedical Engineering Institute, Universidade Anhembi Morumbi (UAM), São Paulo, Brazil
| | - Landulfo Silveira
- Biomedical Engineering Institute, Universidade Anhembi Morumbi (UAM), São Paulo, Brazil
- Centro de Inovação, Tecnologia e Educação (CITÉ), Parque de Inovação e Tecnologia de São José dos Campos, São José dos Campos, Brazil
| | - Marcos T T Pacheco
- Biomedical Engineering Institute, Universidade Anhembi Morumbi (UAM), São Paulo, Brazil
- Learning and Education Advancement Research Network Institute (LEARN), São José dos Campos, Brazil
| |
Collapse
|
6
|
Leelasattarathkul T, Trakoolwilaiwan T, Khachornsakkul K. A gold nanomaterial-integrated distance-based analytical device for uric acid quantification in human urine samples. Analyst 2024; 149:5518-5526. [PMID: 39420824 DOI: 10.1039/d4an01139b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
In this article, we present the first demonstration of a distance-based paper analytical device (dPAD) for uric acid quantification in human urine samples with instrument-free readout and user-friendliness for the rapid diagnosis and prognosis of various related diseases. By employing gold nanoparticles (AuNPs) as a peroxidase-like nanozyme, our proposed technique eliminates the utilization of horseradish peroxidase (HRP), making the device cost-effective and stable. In our dPAD, uric acid in the sample is oxidized by the uricase enzyme and subsequently catalysed with AuNPs in the sample zone, generating hydroxyl radicals (˙OH). Then, the produced ˙OH reacts with 3,3'-diaminobenzidine (DAB) to form poly DAB (oxDAB), resulting in a coloured distance signal in the detection zone of the dPAD. The variation of the distance of the observed red-brown colour is directly proportional to the uric acid concentration. Our sensor exhibited a linear range from 0.50 to 6.0 mmol L-1 (R2 = 0.9922) with a detection limit (LOD) of 0.25 mmol L-1, covering the clinical range of uric acid in urine. Hence, there is no need for additional sample preparation or dilution. Additionally, this assay is highly selective, with no interferences. We also found that this approach could accurately and precisely determine uric acid in human control samples with the recovery ranging from 99.37 to 100.35 with the highest RSD of 4.05%. Our method is comparable with the use of a commercially available uric acid sensor at a 95% confidence interval. Consequently, the developed dPAD offers numerous advantages such as cost-effectiveness, simplicity, and ease of operation with unskilled individuals. Furthermore, this concept can be applied for extensive biosensing applications in monitoring other biomarkers as an alternative analytical point-of-care (POC) device.
Collapse
Affiliation(s)
- Tapparath Leelasattarathkul
- Division of Chemistry, Department of Science, Faculty of Science and Technology, Rajamangala University of Technology Krungthep, Bangkok, 10120 Thailand.
| | - Thithawat Trakoolwilaiwan
- Division of Chemistry, Department of Science, Faculty of Science and Technology, Rajamangala University of Technology Krungthep, Bangkok, 10120 Thailand.
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Khlong Luang, Pathum Thani, 12120 Thailand
| | - Kawin Khachornsakkul
- Division of Chemistry, Department of Science, Faculty of Science and Technology, Rajamangala University of Technology Krungthep, Bangkok, 10120 Thailand.
- Department of Electrical and Computer Engineering, Tufts University, Medford, MA 02155, USA
| |
Collapse
|
7
|
Zhou B, Fu J, Yuan Y, Han F, Huo K, Chu PK, Zhang X. Potential-dependent simultaneous detection of uric acid and glucose using dual-function Ni@CNT supported carbon fiber electrodes. Microchem J 2024; 205:111244. [DOI: 10.1016/j.microc.2024.111244] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
8
|
Zhang J, Weng Y, Liu Y, Wang N, Feng S, Qiu S, Lin D. Molecular separation-assisted label-free SERS combined with machine learning for nasopharyngeal cancer screening and radiotherapy resistance prediction. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2024; 257:112968. [PMID: 38955080 DOI: 10.1016/j.jphotobiol.2024.112968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 04/30/2024] [Accepted: 06/25/2024] [Indexed: 07/04/2024]
Abstract
Nasopharyngeal cancer (NPC) is a malignant tumor with high prevalence in Southeast Asia and highly invasive and metastatic characteristics. Radiotherapy is the primary strategy for NPC treatment, however there is still lack of effect method for predicting the radioresistance that is the main reason for treatment failure. Herein, the molecular profiles of patient plasma from NPC with radiotherapy sensitivity and resistance groups as well as healthy group, respectively, were explored by label-free surface enhanced Raman spectroscopy (SERS) based on surface plasmon resonance for the first time. Especially, the components with different molecular weight sizes were analyzed via the separation process, helping to avoid the possible missing of diagnostic information due to the competitive adsorption. Following that, robust machine learning algorithm based on principal component analysis and linear discriminant analysis (PCA-LDA) was employed to extract the feature of blood-SERS data and establish an effective predictive model with the accuracy of 96.7% for identifying the radiotherapy resistance subjects from sensitivity ones, and 100% for identifying the NPC subjects from healthy ones. This work demonstrates the potential of molecular separation-assisted label-free SERS combined with machine learning for NPC screening and treatment strategy guidance in clinical scenario.
Collapse
Affiliation(s)
- Jun Zhang
- Key Laboratory of OptoElectronic Science and Technology for Medicine, Ministry of Education, Fujian Provincial Key Laboratory for Photonics Technology, Fujian Normal University, Fuzhou 350117, PR China
| | - Youliang Weng
- Department of Radiation Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fujian Branch of Fudan University Shanghai Cancer Center, Fuzhou 350014, PR China
| | - Yi Liu
- Key Laboratory of OptoElectronic Science and Technology for Medicine, Ministry of Education, Fujian Provincial Key Laboratory for Photonics Technology, Fujian Normal University, Fuzhou 350117, PR China
| | - Nan Wang
- Key Laboratory of OptoElectronic Science and Technology for Medicine, Ministry of Education, Fujian Provincial Key Laboratory for Photonics Technology, Fujian Normal University, Fuzhou 350117, PR China
| | - Shangyuan Feng
- Key Laboratory of OptoElectronic Science and Technology for Medicine, Ministry of Education, Fujian Provincial Key Laboratory for Photonics Technology, Fujian Normal University, Fuzhou 350117, PR China
| | - Sufang Qiu
- Department of Radiation Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fujian Branch of Fudan University Shanghai Cancer Center, Fuzhou 350014, PR China.
| | - Duo Lin
- Key Laboratory of OptoElectronic Science and Technology for Medicine, Ministry of Education, Fujian Provincial Key Laboratory for Photonics Technology, Fujian Normal University, Fuzhou 350117, PR China.
| |
Collapse
|
9
|
Li S, Zheng Y, Yang Y, Yang H, Han C, Du P, Wang X, Yang H. Diagnosis and classification of intestinal diseases with urine by surface-enhanced Raman spectroscopy. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 312:124081. [PMID: 38422936 DOI: 10.1016/j.saa.2024.124081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 02/21/2024] [Accepted: 02/22/2024] [Indexed: 03/02/2024]
Abstract
Intestinal Disease (ID) is often characterized by clinical symptoms such as malabsorption, intestinal dysfunction, and injury. If treatment is not timely, it will increase the risk of cancer. Early diagnosis of ID is the key to cure it. There are certain limitations of the conventional diagnostic methods, such as low sensitivity and specificity. Therefore, development of a highly sensitive, non-invasive diagnostic method for ID is extremely important. Urine samples are easier to collect and more sensitive to changes in biomolecules than other pathological diagnostic samples such as tissue and blood. In this paper, a diagnostic method of ID with urine by surface-enhanced Raman spectroscopy (SERS) is proposed. A classification model between ID patients and healthy controls (HC) and a classification model between different pathological types of ID (i.e., benign intestinal disease (BID) and colorectal cancer (CRC)) are established. Here, 830 urine samples, including 100 HC, 443 BID, and 287 CRC, were investigated by SERS. The ID/HC classification model was developed by analyzing the SERS spectra of 150 ID and 100 HC, while BID/CRC classification model was built with 300 BID and 150 CRC patients by principal component analysis (PCA)-support vector machines (SVM). The two established models were internally verified by leave-one-out-cross-validation (LOOCV). Finally, the BID/CRC classification model was further evaluated by 143 BID and 137 CRC patients as an external test set. It shows that the accuracy of the classification model validated by the LOOCV for ID/HC and BID/CRC is 86.4% and 85.56%, respectively. And the accuracy of the BID/CRC classification model with external test set is 82.14%. It shows that high accuracy can be achieved with these two established classification models. It indicates that ID patients in the general population can be identified and BID and CRC patients can be further classified with measuring urine by SERS. It shows that the proposed diagnostic method and established classification models provide valuable information for clinicians to early diagnose ID patients and analyze different stages of ID.
Collapse
Affiliation(s)
- Silong Li
- School of Energy and Power Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Yuqing Zheng
- School of Energy and Power Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Yiheng Yang
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| | - Haojie Yang
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| | - Changpeng Han
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| | - Peng Du
- Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Xiaolei Wang
- Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China.
| | - Huinan Yang
- School of Energy and Power Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China.
| |
Collapse
|
10
|
Han J, Zhang Y, Lv X, Fan D, Dong S. A facile, low-cost bimetallic iron-nickel MOF nanozyme-propelled ratiometric fluorescent sensor for highly sensitive and selective uric acid detection and its smartphone application. NANOSCALE 2024; 16:1394-1405. [PMID: 38165141 DOI: 10.1039/d3nr05028a] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
As a kind of well-known disease biomarker, uric acid (UA) is closely associated with normal metabolism and health. Despite versatile nanozymes facilitating the analysis of UA, most previous works could only generate single-signal outputs with unsatisfactory detection performance. Exploring a novel ratiometric fluorescent UA sensor with high sensitivity, reliability and portable sensing ability based on facile, low-cost nanozymes is still challenging. Herein, we report the first metal-organic-framework (MOF) nanozyme-originated ratiometric fluorescent UA sensor based on Fe3Ni-MOF-NH2 propelled UA/uricase/o-phenylenediamine tandem catalytic reaction. Different from previous reports, the peroxidase-like property and fluorescence of Fe3Ni-MOF-NH2 were simultaneously employed. In the absence of UA, only the MOF's fluorescence at 430 nm (FI430) can be observed, while the addition of UA will initiate UA/uricase catalytic reaction, and the generated H2O2 could oxidize o-phenylenediamine into highly fluorescent 2,3-diaminophenazine (DAP) (emission at 565 nm, FI565) under the catalysis of the MOF nanozyme. Coincidently, MOF's fluorescence can be quenched by DAP via the inner filter effect, resulting in a low FI430 value and high FI565 value, respectively. Therefore, H2O2 and UA can be alternatively detected through monitoring the above contrary fluorescence changes. The limit of detection for UA is 24 nM, which is much lower than those in most previous works, and the lowest among nanozyme-based ratiometric fluorescent UA sensors reported to date. Moreover, the portable sensing of UA via smartphone-based RGB analysis was facilely achieved by virtue of the above nanozyme-propelled tandem catalytic system, and MOF nanozyme-based molecular contrary logic pairs were further implemented accordingly.
Collapse
Affiliation(s)
- Jiawen Han
- Laboratory for Marine Drugs and Bioproducts, National Laboratory for Marine Science and Technology; Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, Shandong, 266003, China.
| | - Yuwei Zhang
- Laboratory for Marine Drugs and Bioproducts, National Laboratory for Marine Science and Technology; Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, Shandong, 266003, China.
| | - Xujuan Lv
- Laboratory for Marine Drugs and Bioproducts, National Laboratory for Marine Science and Technology; Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, Shandong, 266003, China.
| | - Daoqing Fan
- Laboratory for Marine Drugs and Bioproducts, National Laboratory for Marine Science and Technology; Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, Shandong, 266003, China.
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Shaojun Dong
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| |
Collapse
|
11
|
Borșa RM, Toma V, Onaciu A, Moldovan CS, Mărginean R, Cenariu D, Știufiuc GF, Dinu CM, Bran S, Opriș HO, Văcăraș S, Onișor-Gligor F, Sentea D, Băciuț MF, Iuga CA, Știufiuc RI. Developing New Diagnostic Tools Based on SERS Analysis of Filtered Salivary Samples for Oral Cancer Detection. Int J Mol Sci 2023; 24:12125. [PMID: 37569501 PMCID: PMC10418512 DOI: 10.3390/ijms241512125] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 07/25/2023] [Accepted: 07/26/2023] [Indexed: 08/13/2023] Open
Abstract
Cancer still represents one of the biggest challenges in current medical practice. Among different types of cancer, oral cancer has a huge impact on patients due to its great visibility, which is more likely to create social stigma and increased anxiety. New early diagnose methods are still needed to improve treatment efficiency and patients' life quality. Raman/SERS (Surface Enhanced Raman Spectroscopy) spectroscopy has a unique and powerful potential for detecting specific molecules that can become priceless biomarkers in different pathologies, such as oral cancer. In this study, a batch of saliva samples obtained from a group of 17 patients with oro-maxillofacial pathologies compared with saliva samples from 18 healthy donors using the aforementioned methods were evaluated. At the same time, opiorphin, potassium thiocyanate and uric acid were evaluated as potential specific biomarkers for oro-maxillofacial pathologies using multivariate analysis. A careful examination of SERS spectra collected on saliva samples showed that the spectra are dominated by the vibrational bands of opiorphin, potassium thiocyanate and uric acid. Given the fact that all these small molecules are found in very small amounts, we filtrated all the samples to get rid of large molecules and to improve our analysis. By using solid plasmonic substrates, we were able to gain information about molecular concentration and geometry of interaction. On the other hand, the multivariate analysis of the salivary spectra contributed to developing a new detection method for oral cancer.
Collapse
Affiliation(s)
- Rareș-Mario Borșa
- Dental Medicine Faculty, “Iuliu Hatieganu” University of Medicine and Pharmacy, Pasteur 4, 400349 Cluj-Napoca, Romania; (R.-M.B.); (C.-M.D.); (S.B.); (H.-O.O.); (S.V.); (F.O.-G.); (M.-F.B.)
- Research Center for Advanced Medicine—MedFuture, “Iuliu Hatieganu” University of Medicine and Pharmacy, Pasteur 4-6, 400337 Cluj-Napoca, Romania; (V.T.); (A.O.); (C.-S.M.); (R.M.); (D.C.); (C.-A.I.)
| | - Valentin Toma
- Research Center for Advanced Medicine—MedFuture, “Iuliu Hatieganu” University of Medicine and Pharmacy, Pasteur 4-6, 400337 Cluj-Napoca, Romania; (V.T.); (A.O.); (C.-S.M.); (R.M.); (D.C.); (C.-A.I.)
| | - Anca Onaciu
- Research Center for Advanced Medicine—MedFuture, “Iuliu Hatieganu” University of Medicine and Pharmacy, Pasteur 4-6, 400337 Cluj-Napoca, Romania; (V.T.); (A.O.); (C.-S.M.); (R.M.); (D.C.); (C.-A.I.)
| | - Cristian-Silviu Moldovan
- Research Center for Advanced Medicine—MedFuture, “Iuliu Hatieganu” University of Medicine and Pharmacy, Pasteur 4-6, 400337 Cluj-Napoca, Romania; (V.T.); (A.O.); (C.-S.M.); (R.M.); (D.C.); (C.-A.I.)
| | - Radu Mărginean
- Research Center for Advanced Medicine—MedFuture, “Iuliu Hatieganu” University of Medicine and Pharmacy, Pasteur 4-6, 400337 Cluj-Napoca, Romania; (V.T.); (A.O.); (C.-S.M.); (R.M.); (D.C.); (C.-A.I.)
| | - Diana Cenariu
- Research Center for Advanced Medicine—MedFuture, “Iuliu Hatieganu” University of Medicine and Pharmacy, Pasteur 4-6, 400337 Cluj-Napoca, Romania; (V.T.); (A.O.); (C.-S.M.); (R.M.); (D.C.); (C.-A.I.)
| | | | - Cristian-Mihail Dinu
- Dental Medicine Faculty, “Iuliu Hatieganu” University of Medicine and Pharmacy, Pasteur 4, 400349 Cluj-Napoca, Romania; (R.-M.B.); (C.-M.D.); (S.B.); (H.-O.O.); (S.V.); (F.O.-G.); (M.-F.B.)
- Department of Maxillofacial Surgery and Implantology, “Iuliu Hațieganu” University of Medicine and Pharmacy, Iuliu Hossu 37, 400029 Cluj-Napoca, Romania
- County Emergency Hospital Cluj, Clinicilor 3-5, 400006 Cluj-Napoca, Romania;
| | - Simion Bran
- Dental Medicine Faculty, “Iuliu Hatieganu” University of Medicine and Pharmacy, Pasteur 4, 400349 Cluj-Napoca, Romania; (R.-M.B.); (C.-M.D.); (S.B.); (H.-O.O.); (S.V.); (F.O.-G.); (M.-F.B.)
- Department of Maxillofacial Surgery and Implantology, “Iuliu Hațieganu” University of Medicine and Pharmacy, Iuliu Hossu 37, 400029 Cluj-Napoca, Romania
- County Emergency Hospital Cluj, Clinicilor 3-5, 400006 Cluj-Napoca, Romania;
| | - Horia-Octavian Opriș
- Dental Medicine Faculty, “Iuliu Hatieganu” University of Medicine and Pharmacy, Pasteur 4, 400349 Cluj-Napoca, Romania; (R.-M.B.); (C.-M.D.); (S.B.); (H.-O.O.); (S.V.); (F.O.-G.); (M.-F.B.)
- Department of Maxillofacial Surgery and Implantology, “Iuliu Hațieganu” University of Medicine and Pharmacy, Iuliu Hossu 37, 400029 Cluj-Napoca, Romania
- County Emergency Hospital Cluj, Clinicilor 3-5, 400006 Cluj-Napoca, Romania;
| | - Sergiu Văcăraș
- Dental Medicine Faculty, “Iuliu Hatieganu” University of Medicine and Pharmacy, Pasteur 4, 400349 Cluj-Napoca, Romania; (R.-M.B.); (C.-M.D.); (S.B.); (H.-O.O.); (S.V.); (F.O.-G.); (M.-F.B.)
- Department of Maxillofacial Surgery and Implantology, “Iuliu Hațieganu” University of Medicine and Pharmacy, Iuliu Hossu 37, 400029 Cluj-Napoca, Romania
- County Emergency Hospital Cluj, Clinicilor 3-5, 400006 Cluj-Napoca, Romania;
| | - Florin Onișor-Gligor
- Dental Medicine Faculty, “Iuliu Hatieganu” University of Medicine and Pharmacy, Pasteur 4, 400349 Cluj-Napoca, Romania; (R.-M.B.); (C.-M.D.); (S.B.); (H.-O.O.); (S.V.); (F.O.-G.); (M.-F.B.)
- Department of Maxillofacial Surgery and Implantology, “Iuliu Hațieganu” University of Medicine and Pharmacy, Iuliu Hossu 37, 400029 Cluj-Napoca, Romania
- County Emergency Hospital Cluj, Clinicilor 3-5, 400006 Cluj-Napoca, Romania;
| | - Dorin Sentea
- County Emergency Hospital Cluj, Clinicilor 3-5, 400006 Cluj-Napoca, Romania;
| | - Mihaela-Felicia Băciuț
- Dental Medicine Faculty, “Iuliu Hatieganu” University of Medicine and Pharmacy, Pasteur 4, 400349 Cluj-Napoca, Romania; (R.-M.B.); (C.-M.D.); (S.B.); (H.-O.O.); (S.V.); (F.O.-G.); (M.-F.B.)
- Department of Maxillofacial Surgery and Implantology, “Iuliu Hațieganu” University of Medicine and Pharmacy, Iuliu Hossu 37, 400029 Cluj-Napoca, Romania
- County Emergency Hospital Cluj, Clinicilor 3-5, 400006 Cluj-Napoca, Romania;
| | - Cristina-Adela Iuga
- Research Center for Advanced Medicine—MedFuture, “Iuliu Hatieganu” University of Medicine and Pharmacy, Pasteur 4-6, 400337 Cluj-Napoca, Romania; (V.T.); (A.O.); (C.-S.M.); (R.M.); (D.C.); (C.-A.I.)
- Department of Pharmaceutical Analysis, Faculty of Pharmacy, “Iuliu Hațieganu” University of Medicine and Pharmacy, Pasteur 6, 400349 Cluj-Napoca, Romania
| | - Rareș-Ionuț Știufiuc
- Research Center for Advanced Medicine—MedFuture, “Iuliu Hatieganu” University of Medicine and Pharmacy, Pasteur 4-6, 400337 Cluj-Napoca, Romania; (V.T.); (A.O.); (C.-S.M.); (R.M.); (D.C.); (C.-A.I.)
- Department of Pharmaceutical Physics-Biophysics, Faculty of Pharmacy, “Iuliu Hatieganu” University of Medicine and Pharmacy, Pasteur 6, 400349 Cluj-Napoca, Romania
- TRANSCEND Research Center, Regional Institute of Oncology, 700483 Iasi, Romania
| |
Collapse
|