1
|
Zubayer A, Ghafoor N, Thórarinsdóttir KA, Stendahl S, Glavic A, Stahn J, Nagy G, Greczynski G, Schwartzkopf M, Le Febvrier A, Eklund P, Birch J, Magnus F, Eriksson F. Reflective, polarizing, and magnetically soft amorphous neutron optics with 11B-enriched B 4C. SCIENCE ADVANCES 2024; 10:eadl0402. [PMID: 38354253 PMCID: PMC10866559 DOI: 10.1126/sciadv.adl0402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 01/12/2024] [Indexed: 02/16/2024]
Abstract
The utilization of polarized neutrons is of great importance in scientific disciplines spanning materials science, physics, biology, and chemistry. However, state-of-the-art multilayer polarizing neutron optics have limitations, particularly low specular reflectivity and polarization at higher scattering vectors/angles, and the requirement of high external magnetic fields to saturate the polarizer magnetization. Here, we show that, by incorporating 11B4C into Fe/Si multilayers, amorphization and smooth interfaces can be achieved, yielding higher neutron reflectivity, less diffuse scattering, and higher polarization. Magnetic coercivity is eliminated, and magnetic saturation can be reached at low external fields (>2 militesla). This approach offers prospects for substantial improvement in polarizing neutron optics with nonintrusive positioning of the polarizer, enhanced flux, increased data accuracy, and further polarizing/analyzing methods at neutron scattering facilities.
Collapse
Affiliation(s)
- Anton Zubayer
- Thin Film Physics Division, Department of Physics, Chemistry and Biology (IFM), Linköping University, SE-581 83 Linköping, Sweden
| | - Naureen Ghafoor
- Thin Film Physics Division, Department of Physics, Chemistry and Biology (IFM), Linköping University, SE-581 83 Linköping, Sweden
| | | | - Sjoerd Stendahl
- Thin Film Physics Division, Department of Physics, Chemistry and Biology (IFM), Linköping University, SE-581 83 Linköping, Sweden
| | - Artur Glavic
- Paul Scherrer Institut, 5232 Villigen PSI, Switzerland
| | - Jochen Stahn
- Paul Scherrer Institut, 5232 Villigen PSI, Switzerland
| | - Gyula Nagy
- Department of Physics and Astronomy, Uppsala University, SE-75120, Uppsala, Sweden
| | - Grzegorz Greczynski
- Thin Film Physics Division, Department of Physics, Chemistry and Biology (IFM), Linköping University, SE-581 83 Linköping, Sweden
| | | | - Arnaud Le Febvrier
- Thin Film Physics Division, Department of Physics, Chemistry and Biology (IFM), Linköping University, SE-581 83 Linköping, Sweden
| | - Per Eklund
- Thin Film Physics Division, Department of Physics, Chemistry and Biology (IFM), Linköping University, SE-581 83 Linköping, Sweden
| | - Jens Birch
- Thin Film Physics Division, Department of Physics, Chemistry and Biology (IFM), Linköping University, SE-581 83 Linköping, Sweden
| | - Fridrik Magnus
- Science Institute, University of Iceland, Dunhaga 3, IS-107 Reykjavik, Iceland
| | - Fredrik Eriksson
- Thin Film Physics Division, Department of Physics, Chemistry and Biology (IFM), Linköping University, SE-581 83 Linköping, Sweden
| |
Collapse
|
2
|
Malik P, Sarker D, Kumar D, Schwartzkopf M, Srivastava P, Ghosh S. Tuning LSPR of Thermal Spike-Induced Shape-Engineered Au Nanoparticles Embedded in Si 3N 4 Thin-Film Matrix for SERS Applications. ACS APPLIED MATERIALS & INTERFACES 2023; 15:45426-45440. [PMID: 37712830 DOI: 10.1021/acsami.3c08834] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/16/2023]
Abstract
While gold nanoparticles (Au NPs) are widely used as surface-enhanced Raman spectroscopy (SERS) substrates, their agglomeration and dynamic movement under laser irradiation result in the major drawback in SERS applications, viz., the repeatability of SERS signals. We tune the optical and structural properties of size- and shape-modified Au NPs embedded in a thin silicon nitride (Si3N4) matrix by intense electronic excitation with swift heavy ion (SHI) irradiation with the aim of overcoming this classical SERS disadvantage. We demonstrate the shape evolution of a single layer of Au NPs inserted between amorphous Si3N4 thin films under fluences of 120 MeV Au9+ ions ranging between 1 × 1011 and 1 × 1013 ions cm-2. This shape modification results in the gradual blue shift of the localized surface plasmon resonance (LSPR) dip until 1 × 1012 ions/cm2 and then a sudden diminishment at 1 × 1013 ions/cm2. Finite domain time difference (FDTD) simulations further justify our experimental optical spectra. The dynamical NP aggregation and dissolution, in addition to NP elongation and deformation at different fluences, are noted from 2D grazing incidence small-angle X-ray scattering (GISAXS) profiles, as well as cross-sectional transmission electron microscopy (X-TEM). The systematic shape evolution of metal NPs embedded in the insulating matrix is shown to be due to thermal spike-induced localized melting and a localized pressure hike upon SHI irradiation. Utilizing this specific control over the characteristics of Au NPs, viz., shape, size, interparticle gap, and corresponding optical response via SHI irradiation, we demonstrate their applications as very stable SERS substrates, where the separation between NPs and analyte does not alter under laser illumination. Thus, these irradiated SERS active substrates with controlled NP size and gap provide the optimal conditions for creating localized electromagnetic hotspots that amplify the SERS signals, which do not alter with time or laser exposure. We found that the film irradiated with 1 × 1011 exhibits the highest SERS intensity due to its optimal NP size distribution and shape. Thus, not only our study provides a SERS substrate for stable and repeatable signals but also the understanding depicted here opens new research avenues in designing SERS substrates, photovoltaics, optoelectronic devices, etc. with ion beam irradiation.
Collapse
Affiliation(s)
- Pariksha Malik
- Nanostech Lab., Department of Physics, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Debalaya Sarker
- UGC-DAE Consortium for Scientific Research, Indore, Madhya Pradesh 452001, India
| | - Dileep Kumar
- UGC-DAE Consortium for Scientific Research, Indore, Madhya Pradesh 452001, India
| | | | - Pankaj Srivastava
- Nanostech Lab., Department of Physics, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Santanu Ghosh
- Nanostech Lab., Department of Physics, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| |
Collapse
|
3
|
Liang S, Schwartzkopf M, Roth SV, Müller-Buschbaum P. State of the art of ultra-thin gold layers: formation fundamentals and applications. NANOSCALE ADVANCES 2022; 4:2533-2560. [PMID: 36132287 PMCID: PMC9418724 DOI: 10.1039/d2na00127f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 03/25/2022] [Indexed: 06/15/2023]
Abstract
Fabrication of ultra-thin gold (Au) layers (UTGLs) has been regarded as the key technique to achieve applications with tunable optical response, flexible sensors and electronic devices. Various strategies have been developed to optimize the wetting process of Au, resulting in the formation of UTGLs at a minimum thickness. The related studies on UTGLs attracted huge attention in recent years. On the one hand, the growth processes of UTGLs on different substrates were in-depth probed by advanced in situ characterization techniques and the effects of optimization strategies on the growth of UTGLs were also revealed. On the other hand, based on the understanding of the growth behavior and the assistance of optimization strategies, various applications of UTGLs were realized based on optical/plasmon responses, surface-enhanced Raman scattering and as electrodes for various sensors and electronic devices, as well as being seed layers for thin film growth. In this focused review, both the fundamental and practical studies on UTGLs in the most recent years are elaborated in detail. The growth processes of UTGLs revealed by in situ characterization techniques, such as grazing-incidence small-angle X-ray scattering (GISAXS), as well as the state of the art of UTGL-based applications, are reviewed.
Collapse
Affiliation(s)
- Suzhe Liang
- Technische Universität München, Lehrstuhl für Funktionelle Materialien, Physik-Department James-Franck-Str 1 85748 Garching Germany
| | | | - Stephan V Roth
- Deutsches Elektronen-Synchrotron DESY Notkestr. 85 22607 Hamburg Germany
- KTH Royal Institute of Technology, Department of Fibre and Polymer Technology Teknikringen 56-58 SE-100 44 Stockholm Sweden
| | - Peter Müller-Buschbaum
- Technische Universität München, Lehrstuhl für Funktionelle Materialien, Physik-Department James-Franck-Str 1 85748 Garching Germany
- Heinz Maier-Leibnitz Zentrum (MLZ), Technische Universität München Lichtenbergstr 85748 Garching Germany
| |
Collapse
|
4
|
Zou X, Chen K, Yao H, Chen C, Lu X, Ding P, Wang M, Hua X, Shan A. Chemical Reaction and Bonding Mechanism at the Polymer-Metal Interface. ACS APPLIED MATERIALS & INTERFACES 2022; 14:27383-27396. [PMID: 35648478 DOI: 10.1021/acsami.2c04971] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Polymer-metal hybrid structures have attracted significant attention recently due to their advantage of great weight reduction and excellent integrated physical/chemical properties. However, due to great physicochemical differences between polymers and metals, obtaining an interface with high bonding strength is a challenge, which makes it critically important to clarify the underlying bonding mechanisms. In the present research, we focused on revealing the underlying bonding mechanisms of a laminated Cr-coated steel-ethylene acrylic acid (EAA) strip prepared by hot roll bonding from the microscale to the molecular scale with experimental evidence. The microscale mechanical interlocking was analyzed and proven by scanning white light interferometry and scanning electron microscopy (SEM) by means of observing the surface and cross-sectional morphologies. Additionally, interfacial phases and chemical compositions were analyzed by transmission electron microscopy (TEM) and energy-dispersive X-ray spectroscopy (EDX). More directly and effectively, the interface was successfully exposed for X-ray photoelectron spectroscopy (XPS) analysis. Combined with time-of-flight secondary ion mass spectroscopy (ToF-SIMS) and depth profiling analysis, the formation of -(O═)C-O-Cr and -C-(O-Cr)2 covalent bonds through chemical reactions at the interface between -COOH and Cr2O3 was verified. Based on these characterization results, interfacial bonding mechanisms for the laminated Cr-coated steel-EAA strip were clearly identified to be chemical bonding and micromechanical interlocking, along with hydrogen bonding, which were all demonstrated with solid experimental evidence. In addition, 3D-render view and cross-section images of typical ion fragments at the interface were used to reveal the interfacial structure more comprehensively. The contributions of hydrogen bonds and covalent bonds to the interface were evaluated and compared for the first time. This study provides both methodological and theoretical guidance for investigating and understanding interfacial bonding formation in polymer-metal hybrid structures.
Collapse
Affiliation(s)
- Xin Zou
- School of Materials Science and Engineering, Shanghai Jiao Tong University, No. 800, Dong Chuan Road, Shanghai 200240, P. R. China
- Shanghai Key Laboratory of Materials Laser Processing and Modification, Shanghai Jiao Tong University, No. 800, Dong Chuan Road, Shanghai 200240, P. R. China
| | - Ke Chen
- School of Materials Science and Engineering, Shanghai Jiao Tong University, No. 800, Dong Chuan Road, Shanghai 200240, P. R. China
- Shanghai Key Laboratory of Materials Laser Processing and Modification, Shanghai Jiao Tong University, No. 800, Dong Chuan Road, Shanghai 200240, P. R. China
| | - Haining Yao
- School of Materials Science and Engineering, Shanghai Jiao Tong University, No. 800, Dong Chuan Road, Shanghai 200240, P. R. China
- Shanghai Key Laboratory of Materials Laser Processing and Modification, Shanghai Jiao Tong University, No. 800, Dong Chuan Road, Shanghai 200240, P. R. China
| | - Cong Chen
- School of Materials Science and Engineering, Shanghai Jiao Tong University, No. 800, Dong Chuan Road, Shanghai 200240, P. R. China
- Shanghai Key Laboratory of Materials Laser Processing and Modification, Shanghai Jiao Tong University, No. 800, Dong Chuan Road, Shanghai 200240, P. R. China
| | - Xueping Lu
- Shanghai Wangxun New Material Co., LTD, No. 1299, Pingan Road, Shanghai 201109, P. R. China
| | - Ping Ding
- Shanghai Wangxun New Material Co., LTD, No. 1299, Pingan Road, Shanghai 201109, P. R. China
| | - Min Wang
- School of Materials Science and Engineering, Shanghai Jiao Tong University, No. 800, Dong Chuan Road, Shanghai 200240, P. R. China
- Shanghai Key Laboratory of Materials Laser Processing and Modification, Shanghai Jiao Tong University, No. 800, Dong Chuan Road, Shanghai 200240, P. R. China
| | - Xueming Hua
- School of Materials Science and Engineering, Shanghai Jiao Tong University, No. 800, Dong Chuan Road, Shanghai 200240, P. R. China
- Shanghai Key Laboratory of Materials Laser Processing and Modification, Shanghai Jiao Tong University, No. 800, Dong Chuan Road, Shanghai 200240, P. R. China
| | - Aidang Shan
- School of Materials Science and Engineering, Shanghai Jiao Tong University, No. 800, Dong Chuan Road, Shanghai 200240, P. R. China
| |
Collapse
|
5
|
Schaper SJ, Löhrer FC, Xia S, Geiger C, Schwartzkopf M, Pandit P, Rubeck J, Fricke B, Frenzke S, Hinz AM, Carstens N, Polonskyi O, Strunskus T, Faupel F, Roth SV, Müller-Buschbaum P. Revealing the growth of copper on polystyrene- block-poly(ethylene oxide) diblock copolymer thin films with in situ GISAXS. NANOSCALE 2021; 13:10555-10565. [PMID: 34100512 DOI: 10.1039/d1nr01480c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Copper (Cu) as an excellent electrical conductor and the amphiphilic diblock copolymer polystyrene-block-poly(ethylene oxide) (PS-b-PEO) as a polymer electrolyte and ionic conductor can be combined with an active material in composite electrodes for polymer lithium-ion batteries (LIBs). As interfaces are a key issue in LIBs, sputter deposition of Cu contacts on PS-b-PEO thin films with high PEO fraction is investigated with in situ grazing-incidence small-angle X-ray scattering (GISAXS) to follow the formation of the Cu layer in real-time. We observe a hierarchical morphology of Cu clusters building larger Cu agglomerates. Two characteristic distances corresponding to the PS-b-PEO microphase separation and the Cu clusters are determined. A selective agglomeration of Cu clusters on the PS domains explains the origin of the persisting hierarchical morphology of the Cu layer even after a complete surface coverage is reached. The spheroidal shape of the Cu clusters growing within the first few nanometers of sputter deposition causes a highly porous Cu-polymer interface. Four growth stages are distinguished corresponding to different kinetics of the cluster growth of Cu on PS-b-PEO thin films: (I) nucleation, (II) diffusion-driven growth, (III) adsorption-driven growth, and (IV) grain growth of Cu clusters. Percolation is reached at an effective Cu layer thickness of 5.75 nm.
Collapse
Affiliation(s)
- Simon J Schaper
- Lehrstuhl für Funktionelle Materialien, Physik-Department, Technische Universität München, James-Franck-Str. 1, 85748 Garching, Germany.
| | - Franziska C Löhrer
- Lehrstuhl für Funktionelle Materialien, Physik-Department, Technische Universität München, James-Franck-Str. 1, 85748 Garching, Germany.
| | - Senlin Xia
- Lehrstuhl für Funktionelle Materialien, Physik-Department, Technische Universität München, James-Franck-Str. 1, 85748 Garching, Germany.
| | - Christina Geiger
- Lehrstuhl für Funktionelle Materialien, Physik-Department, Technische Universität München, James-Franck-Str. 1, 85748 Garching, Germany.
| | - Matthias Schwartzkopf
- Photon Science, Deutsches Elektronen-Synchrotron (DESY), Notkestr. 85, 22607 Hamburg, Germany
| | - Pallavi Pandit
- Photon Science, Deutsches Elektronen-Synchrotron (DESY), Notkestr. 85, 22607 Hamburg, Germany
| | - Jan Rubeck
- Photon Science, Deutsches Elektronen-Synchrotron (DESY), Notkestr. 85, 22607 Hamburg, Germany
| | - Björn Fricke
- Photon Science, Deutsches Elektronen-Synchrotron (DESY), Notkestr. 85, 22607 Hamburg, Germany
| | - Susann Frenzke
- Photon Science, Deutsches Elektronen-Synchrotron (DESY), Notkestr. 85, 22607 Hamburg, Germany
| | - Alexander M Hinz
- Lehrstuhl für Materialverbunde, Institut für Materialwissenschaft, Christian-Albrechts-Universität zu Kiel, Kaiserstr. 2, 24143 Kiel, Germany
| | - Niko Carstens
- Lehrstuhl für Materialverbunde, Institut für Materialwissenschaft, Christian-Albrechts-Universität zu Kiel, Kaiserstr. 2, 24143 Kiel, Germany
| | - Oleksandr Polonskyi
- Lehrstuhl für Materialverbunde, Institut für Materialwissenschaft, Christian-Albrechts-Universität zu Kiel, Kaiserstr. 2, 24143 Kiel, Germany
| | - Thomas Strunskus
- Lehrstuhl für Materialverbunde, Institut für Materialwissenschaft, Christian-Albrechts-Universität zu Kiel, Kaiserstr. 2, 24143 Kiel, Germany
| | - Franz Faupel
- Lehrstuhl für Materialverbunde, Institut für Materialwissenschaft, Christian-Albrechts-Universität zu Kiel, Kaiserstr. 2, 24143 Kiel, Germany
| | - Stephan V Roth
- Photon Science, Deutsches Elektronen-Synchrotron (DESY), Notkestr. 85, 22607 Hamburg, Germany and KTH Royal Institute of Technology, Department of Fibre and Polymer Technology, Teknikringen 56-58, SE-100 44 Stockholm, Sweden
| | - Peter Müller-Buschbaum
- Lehrstuhl für Funktionelle Materialien, Physik-Department, Technische Universität München, James-Franck-Str. 1, 85748 Garching, Germany. and Heinz Maier-Leibniz Zentrum (MLZ), Technische Universität München, Lichtenbergstr. 1, 85748 Garching, Germany
| |
Collapse
|
6
|
Schwartzkopf M, Wöhnert SJ, Waclawek V, Carstens N, Rothkirch A, Rubeck J, Gensch M, Drewes J, Polonskyi O, Strunskus T, Hinz AM, Schaper SJ, Körstgens V, Müller-Buschbaum P, Faupel F, Roth SV. Real-time insight into nanostructure evolution during the rapid formation of ultra-thin gold layers on polymers. NANOSCALE HORIZONS 2021; 6:132-138. [PMID: 33290482 DOI: 10.1039/d0nh00538j] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Ultra-thin metal layers on polymer thin films attract tremendous research interest for advanced flexible optoelectronic applications, including organic photovoltaics, light emitting diodes and sensors. To realize the large-scale production of such metal-polymer hybrid materials, high rate sputter deposition is of particular interest. Here, we witness the birth of a metal-polymer hybrid material by quantifying in situ with unprecedented time-resolution of 0.5 ms the temporal evolution of interfacial morphology during the rapid formation of ultra-thin gold layers on thin polystyrene films. We monitor average non-equilibrium cluster geometries, transient interface morphologies and the effective near-surface gold diffusion. At 1 s sputter deposition, the polymer matrix has already been enriched with 1% gold and an intermixing layer has formed with a depth of over 3.5 nm. Furthermore, we experimentally observe unexpected changes in aspect ratios of ultra-small gold clusters growing in the vicinity of polymer chains. For the first time, this approach enables four-dimensional insights at atomic scales during the gold growth under non-equilibrium conditions.
Collapse
Affiliation(s)
- Matthias Schwartzkopf
- Photon Science, Deutsches Elektronen-Synchrotron (DESY), Notkestr. 85, D-22607 Hamburg, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Colin J, Jamnig A, Furgeaud C, Michel A, Pliatsikas N, Sarakinos K, Abadias G. In Situ and Real-Time Nanoscale Monitoring of Ultra-Thin Metal Film Growth Using Optical and Electrical Diagnostic Tools. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E2225. [PMID: 33182409 PMCID: PMC7697846 DOI: 10.3390/nano10112225] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 10/30/2020] [Accepted: 11/03/2020] [Indexed: 01/08/2023]
Abstract
Continued downscaling of functional layers for key enabling devices has prompted the development of characterization tools to probe and dynamically control thin film formation stages and ensure the desired film morphology and functionalities in terms of, e.g., layer surface smoothness or electrical properties. In this work, we review the combined use of in situ and real-time optical (wafer curvature, spectroscopic ellipsometry) and electrical probes for gaining insights into the early growth stages of magnetron-sputter-deposited films. Data are reported for a large variety of metals characterized by different atomic mobilities and interface reactivities. For fcc noble-metal films (Ag, Cu, Pd) exhibiting a pronounced three-dimensional growth on weakly-interacting substrates (SiO2, amorphous carbon (a-C)), wafer curvature, spectroscopic ellipsometry, and resistivity techniques are shown to be complementary in studying the morphological evolution of discontinuous layers, and determining the percolation threshold and the onset of continuous film formation. The influence of growth kinetics (in terms of intrinsic atomic mobility, substrate temperature, deposition rate, deposition flux temporal profile) and the effect of deposited energy (through changes in working pressure or bias voltage) on the various morphological transition thicknesses is critically examined. For bcc transition metals, like Fe and Mo deposited on a-Si, in situ and real-time growth monitoring data exhibit transient features at a critical layer thickness of ~2 nm, which is a fingerprint of an interface-mediated crystalline-to-amorphous phase transition, while such behavior is not observed for Ta films that crystallize into their metastable tetragonal β-Ta allotropic phase. The potential of optical and electrical diagnostic tools is also explored to reveal complex interfacial reactions and their effect on growth of Pd films on a-Si or a-Ge interlayers. For all case studies presented in the article, in situ data are complemented with and benchmarked against ex situ structural and morphological analyses.
Collapse
Affiliation(s)
- Jonathan Colin
- Institut Pprime, UPR 3346, CNRS-Université de Poitiers-ENSMA, 11 Boulevard Marie et Pierre Curie, TSA 41123, CEDEX 9, 86073 Poitiers, France; (J.C.); (A.J.); (C.F.); (A.M.)
| | - Andreas Jamnig
- Institut Pprime, UPR 3346, CNRS-Université de Poitiers-ENSMA, 11 Boulevard Marie et Pierre Curie, TSA 41123, CEDEX 9, 86073 Poitiers, France; (J.C.); (A.J.); (C.F.); (A.M.)
- Nanoscale Engineering Division, Department of Physics, Chemistry and Biology, Linköping University, SE 581 83 Linköping, Sweden;
| | - Clarisse Furgeaud
- Institut Pprime, UPR 3346, CNRS-Université de Poitiers-ENSMA, 11 Boulevard Marie et Pierre Curie, TSA 41123, CEDEX 9, 86073 Poitiers, France; (J.C.); (A.J.); (C.F.); (A.M.)
| | - Anny Michel
- Institut Pprime, UPR 3346, CNRS-Université de Poitiers-ENSMA, 11 Boulevard Marie et Pierre Curie, TSA 41123, CEDEX 9, 86073 Poitiers, France; (J.C.); (A.J.); (C.F.); (A.M.)
| | - Nikolaos Pliatsikas
- Nanoscale Engineering Division, Department of Physics, Chemistry and Biology, Linköping University, SE 581 83 Linköping, Sweden;
| | - Kostas Sarakinos
- Nanoscale Engineering Division, Department of Physics, Chemistry and Biology, Linköping University, SE 581 83 Linköping, Sweden;
| | - Gregory Abadias
- Institut Pprime, UPR 3346, CNRS-Université de Poitiers-ENSMA, 11 Boulevard Marie et Pierre Curie, TSA 41123, CEDEX 9, 86073 Poitiers, France; (J.C.); (A.J.); (C.F.); (A.M.)
| |
Collapse
|
8
|
Löhrer FC, Körstgens V, Semino G, Schwartzkopf M, Hinz A, Polonskyi O, Strunskus T, Faupel F, Roth SV, Müller-Buschbaum P. Following in Situ the Deposition of Gold Electrodes on Low Band Gap Polymer Films. ACS APPLIED MATERIALS & INTERFACES 2020; 12:1132-1141. [PMID: 31829550 DOI: 10.1021/acsami.9b17590] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Metal top electrodes such as gold are widely used in organic solar cells. The active layer can be optimized by modifications of the polymer band gap via side-chain engineering, and low band gap polymers based on benzodithiophene units such as PTB7 and PTB7-Th are successfully used. The growth of gold contacts on PTB7 and PTB7-Th films is investigated with in situ grazing incidence small-angle X-ray scattering (GISAXS) and grazing incidence wide-angle X-ray scattering (GIWAXS) during the sputter deposition of gold. From GIWAXS, the crystal structure of the gold film is determined. Independent of the type of side chain, gold crystals form in the very early stages and improve in quality during the sputter deposition until the late stages. From GISAXS, the nanoscale structure is determined. Differences in terms of gold cluster size and growth phase limits for the two polymers are caused by the side-chain modification and result in a different surface coverage in the early phases. The changes in the diffusion and coalescence behavior of the forming gold nanoparticles cause differences in the morphology of the gold contact in the fully percolated regime, which is attributed to the different amount of thiophene rings of the side chains acting as nucleation sites.
Collapse
Affiliation(s)
- Franziska C Löhrer
- Physik-Department, Lehrstuhl für Funktionelle Materialien , Technische Universität München , James-Franck-Str. 1 , 85748 Garching , Germany
| | - Volker Körstgens
- Physik-Department, Lehrstuhl für Funktionelle Materialien , Technische Universität München , James-Franck-Str. 1 , 85748 Garching , Germany
| | - Gabriele Semino
- Physik-Department, Lehrstuhl für Funktionelle Materialien , Technische Universität München , James-Franck-Str. 1 , 85748 Garching , Germany
| | | | - Alexander Hinz
- Institut für Materialwissenschaft, Lehrstuhl für Materialverbunde , Christian-Albrechts-Universität zu Kiel , Kaiserstraße 2 , 24143 Kiel , Germany
| | - Oleksandr Polonskyi
- Institut für Materialwissenschaft, Lehrstuhl für Materialverbunde , Christian-Albrechts-Universität zu Kiel , Kaiserstraße 2 , 24143 Kiel , Germany
| | - Thomas Strunskus
- Institut für Materialwissenschaft, Lehrstuhl für Materialverbunde , Christian-Albrechts-Universität zu Kiel , Kaiserstraße 2 , 24143 Kiel , Germany
| | - Franz Faupel
- Institut für Materialwissenschaft, Lehrstuhl für Materialverbunde , Christian-Albrechts-Universität zu Kiel , Kaiserstraße 2 , 24143 Kiel , Germany
| | - Stephan V Roth
- Deutsches Elektronen-Synchrotron (DESY) , Notkestrasse 85 , 22607 Hamburg , Germany
- Department of Fiber and Polymer Technology , KTH Royal Institute of Technology , Teknikringen 56-58 , 10044 Stockholm , Sweden
| | - Peter Müller-Buschbaum
- Physik-Department, Lehrstuhl für Funktionelle Materialien , Technische Universität München , James-Franck-Str. 1 , 85748 Garching , Germany
- Heinz Maier-Leibnitz-Zentrum , Lichtenbergstr. 1 , 85748 Garching , Germany
| |
Collapse
|
9
|
Dzhardimalieva GI, Uflyand IE. Conjugated Thermolysis of Metal-Containing Monomers: Toward Core–Shell Nanostructured Advanced Materials. J Inorg Organomet Polym Mater 2020. [DOI: 10.1007/s10904-019-01275-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
10
|
Gensch M, Schwartzkopf M, Ohm W, Brett CJ, Pandit P, Vayalil SK, Bießmann L, Kreuzer LP, Drewes J, Polonskyi O, Strunskus T, Faupel F, Stierle A, Müller-Buschbaum P, Roth SV. Correlating Nanostructure, Optical and Electronic Properties of Nanogranular Silver Layers during Polymer-Template-Assisted Sputter Deposition. ACS APPLIED MATERIALS & INTERFACES 2019; 11:29416-29426. [PMID: 31313904 DOI: 10.1021/acsami.9b08594] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Tailoring the optical and electronic properties of nanostructured polymer-metal composites demonstrates great potential for efficient fabrication of modern organic optical and electronic devices such as flexible sensors, transistors, diodes, or photovoltaics. Self-assembled polymer-metal nanocomposites offer an excellent perspective for creating hierarchical nanostructures on macroscopic scales by simple bottom-up processes. We investigate the growth processes of nanogranular silver (Ag) layers on diblock copolymer thin film templates during sputter deposition. The Ag growth is strongly driven by self-assembly and selective wetting on the lamella structure of polystyrene-block-poly(methyl methacrylate). We correlate the emerging nanoscale morphologies with collective optical and electronic properties and quantify the difference in Ag growth on the corresponding homopolymer thin films. Thus, we are able to determine the influence of the respective polymer template and observe substrate effects on the Ag cluster percolation threshold, which affects the insulator-to-metal transition (IMT). Optical spectroscopy in the UV-vis regime reveals localized surface plasmon resonance for the metal-polymer composite. Their maximum absorption is observed around the IMT due to the subsequent long-range electron conduction in percolated nanogranular Ag layers. Using X-ray photoelectron spectroscopy and Fourier-transform infrared spectroscopy, we identify the oxidation of Ag at the acrylate side chains as an essential influencing factor driving the selective wetting behavior in the early growth stages. The results of polymer-templated cluster growth are corroborated by atomic force microscopy and field emission scanning electron microscopy.
Collapse
Affiliation(s)
- Marc Gensch
- Deutsches Elektronen-Synchrotron (DESY) , Notkestr. 85 , D-22607 Hamburg , Germany
- Lehrstuhl für Funktionelle Materialien, Physik-Department , Technische Universität München , James-Franck-Str. 1 , D-85748 Garching , Germany
| | | | - Wiebke Ohm
- Deutsches Elektronen-Synchrotron (DESY) , Notkestr. 85 , D-22607 Hamburg , Germany
| | - Calvin J Brett
- Deutsches Elektronen-Synchrotron (DESY) , Notkestr. 85 , D-22607 Hamburg , Germany
- KTH Royal Institute of Technology , Teknikringen 56-58 , SE-100 44 Stockholm , Sweden
| | - Pallavi Pandit
- Deutsches Elektronen-Synchrotron (DESY) , Notkestr. 85 , D-22607 Hamburg , Germany
| | | | - Lorenz Bießmann
- Lehrstuhl für Funktionelle Materialien, Physik-Department , Technische Universität München , James-Franck-Str. 1 , D-85748 Garching , Germany
| | - Lucas P Kreuzer
- Lehrstuhl für Funktionelle Materialien, Physik-Department , Technische Universität München , James-Franck-Str. 1 , D-85748 Garching , Germany
| | - Jonas Drewes
- Lehrstuhl für Materialverbunde, Institut für Materialwissenschaft , Christian Albrechts-Universität zu Kiel , Kaiserstr. 2 , D-24143 Kiel , Germany
| | - Oleksandr Polonskyi
- Lehrstuhl für Materialverbunde, Institut für Materialwissenschaft , Christian Albrechts-Universität zu Kiel , Kaiserstr. 2 , D-24143 Kiel , Germany
| | - Thomas Strunskus
- Lehrstuhl für Materialverbunde, Institut für Materialwissenschaft , Christian Albrechts-Universität zu Kiel , Kaiserstr. 2 , D-24143 Kiel , Germany
| | - Franz Faupel
- Lehrstuhl für Materialverbunde, Institut für Materialwissenschaft , Christian Albrechts-Universität zu Kiel , Kaiserstr. 2 , D-24143 Kiel , Germany
| | - Andreas Stierle
- Deutsches Elektronen-Synchrotron (DESY) , Notkestr. 85 , D-22607 Hamburg , Germany
- Physics Department , University of Hamburg , Luruper Chaussee 149 , D-22761 Hamburg , Germany
| | - Peter Müller-Buschbaum
- Lehrstuhl für Funktionelle Materialien, Physik-Department , Technische Universität München , James-Franck-Str. 1 , D-85748 Garching , Germany
- Heinz Maier-Leibniz Zentrum (MLZ) , Technische Universität München , Lichtenbergstraße 1 , D-85748 Garching , Germany
| | - Stephan V Roth
- Deutsches Elektronen-Synchrotron (DESY) , Notkestr. 85 , D-22607 Hamburg , Germany
- KTH Royal Institute of Technology , Teknikringen 56-58 , SE-100 44 Stockholm , Sweden
| |
Collapse
|
11
|
Schrode B, Pachmajer S, Dohr M, Röthel C, Domke J, Fritz T, Resel R, Werzer O. GIDVis: a comprehensive software tool for geometry-independent grazing-incidence X-ray diffraction data analysis and pole-figure calculations. J Appl Crystallogr 2019; 52:683-689. [PMID: 31236098 PMCID: PMC6557176 DOI: 10.1107/s1600576719004485] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 04/02/2019] [Indexed: 11/10/2022] Open
Abstract
GIDVis is a software package based on MATLAB specialized for, but not limited to, the visualization and analysis of grazing-incidence thin-film X-ray diffraction data obtained during sample rotation around the surface normal. GIDVis allows the user to perform detector calibration, data stitching, intensity corrections, standard data evaluation (e.g. cuts and integrations along specific reciprocal-space directions), crystal phase analysis etc. To take full advantage of the measured data in the case of sample rotation, pole figures can easily be calculated from the experimental data for any value of the scattering angle covered. As an example, GIDVis is applied to phase analysis and the evaluation of the epitaxial alignment of pentacene-quinone crystallites on a single-crystalline Au(111) surface.
Collapse
Affiliation(s)
- Benedikt Schrode
- Institute of Solid State Physics, Graz University of Technology, Petersgasse 16, Graz 8010, Austria
| | - Stefan Pachmajer
- Institute of Solid State Physics, Graz University of Technology, Petersgasse 16, Graz 8010, Austria
| | - Michael Dohr
- Institute of Solid State Physics, Graz University of Technology, Petersgasse 16, Graz 8010, Austria
| | - Christian Röthel
- Institute of Pharmaceutical Sciences, Department of Pharmaceutical Technology, University of Graz, Universitätsplatz 1, Graz 8010, Austria
| | - Jari Domke
- Institute of Solid State Physics, Friedrich Schiller University Jena, Helmholtzweg 5, Jena 07743, Germany
| | - Torsten Fritz
- Institute of Solid State Physics, Friedrich Schiller University Jena, Helmholtzweg 5, Jena 07743, Germany
| | - Roland Resel
- Institute of Solid State Physics, Graz University of Technology, Petersgasse 16, Graz 8010, Austria
| | - Oliver Werzer
- Institute of Pharmaceutical Sciences, Department of Pharmaceutical Technology, University of Graz, Universitätsplatz 1, Graz 8010, Austria
| |
Collapse
|
12
|
Glier TE, Akinsinde L, Paufler M, Otto F, Hashemi M, Grote L, Daams L, Neuber G, Grimm-Lebsanft B, Biebl F, Rukser D, Lippmann M, Ohm W, Schwartzkopf M, Brett CJ, Matsuyama T, Roth SV, Rübhausen M. Functional Printing of Conductive Silver-Nanowire Photopolymer Composites. Sci Rep 2019; 9:6465. [PMID: 31015552 PMCID: PMC6478917 DOI: 10.1038/s41598-019-42841-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 04/08/2019] [Indexed: 11/09/2022] Open
Abstract
We investigated the fabrication and functional behaviour of conductive silver-nanowire-polymer composites for prospective use in printing applications. Silver-nanowires with an aspect ratio of up to 1000 were synthesized using the polyol route and embedded in a UV-curable and printable polymer matrix. Sheet resistances in the composites down to 13 Ω/sq at an optical transmission of about 90% were accomplished. The silver-nanowire composite morphology and network structure was investigated by electron microscopy, atomic force microscopy, profilometry, ellipsometry as well as surface sensitive X-ray scattering. By implementing different printing applications, we demonstrate that our silver nanowires can be used in different polymer composites. On the one hand, we used a tough composite for a 2D-printed film as top contact on a solar cell. On the other hand, a flexible composite was applied for a 3D-printed flexible capacitor.
Collapse
Affiliation(s)
- Tomke E Glier
- Institut für Nanostruktur- und Festkörperphysik, Center for Free Electron Laser Science (CFEL), Universität Hamburg, Luruper Chaussee 149, 22761, Hamburg, Germany.
| | - Lewis Akinsinde
- Institut für Nanostruktur- und Festkörperphysik, Center for Free Electron Laser Science (CFEL), Universität Hamburg, Luruper Chaussee 149, 22761, Hamburg, Germany
| | - Malwin Paufler
- Institut für Nanostruktur- und Festkörperphysik, Center for Free Electron Laser Science (CFEL), Universität Hamburg, Luruper Chaussee 149, 22761, Hamburg, Germany
| | - Ferdinand Otto
- Institut für Nanostruktur- und Festkörperphysik, Center for Free Electron Laser Science (CFEL), Universität Hamburg, Luruper Chaussee 149, 22761, Hamburg, Germany
| | - Maryam Hashemi
- Institut für Nanostruktur- und Festkörperphysik, Center for Free Electron Laser Science (CFEL), Universität Hamburg, Luruper Chaussee 149, 22761, Hamburg, Germany
| | - Lukas Grote
- Institut für Nanostruktur- und Festkörperphysik, Center for Free Electron Laser Science (CFEL), Universität Hamburg, Luruper Chaussee 149, 22761, Hamburg, Germany
| | - Lukas Daams
- Institut für Nanostruktur- und Festkörperphysik, Center for Free Electron Laser Science (CFEL), Universität Hamburg, Luruper Chaussee 149, 22761, Hamburg, Germany
| | - Gerd Neuber
- Institut für Nanostruktur- und Festkörperphysik, Center for Free Electron Laser Science (CFEL), Universität Hamburg, Luruper Chaussee 149, 22761, Hamburg, Germany
| | - Benjamin Grimm-Lebsanft
- Institut für Nanostruktur- und Festkörperphysik, Center for Free Electron Laser Science (CFEL), Universität Hamburg, Luruper Chaussee 149, 22761, Hamburg, Germany
| | - Florian Biebl
- Institut für Nanostruktur- und Festkörperphysik, Center for Free Electron Laser Science (CFEL), Universität Hamburg, Luruper Chaussee 149, 22761, Hamburg, Germany
| | - Dieter Rukser
- Institut für Nanostruktur- und Festkörperphysik, Center for Free Electron Laser Science (CFEL), Universität Hamburg, Luruper Chaussee 149, 22761, Hamburg, Germany
| | | | - Wiebke Ohm
- DESY, Notkestrasse 85, 22607, Hamburg, Germany
| | | | - Calvin J Brett
- DESY, Notkestrasse 85, 22607, Hamburg, Germany
- Department of Mechanics, KTH Royal Institute of Technology, Teknikringen 8, 100 44, Stockholm, Sweden
- Wallenberg Wood Science Center, Teknikringen 56-58, 100 44, Stockholm, Sweden
| | - Toru Matsuyama
- Max-Planck Institute for the Structure and Dynamics of Matter, Luruper Chaussee 149, 22761, Hamburg, Germany
| | - Stephan V Roth
- DESY, Notkestrasse 85, 22607, Hamburg, Germany.
- Department of Fiber and Polymertechnology, KTH Royal Institute of Technology, Teknikringen 56-58, 100 44, Stockholm, Sweden.
| | - Michael Rübhausen
- Institut für Nanostruktur- und Festkörperphysik, Center for Free Electron Laser Science (CFEL), Universität Hamburg, Luruper Chaussee 149, 22761, Hamburg, Germany.
| |
Collapse
|
13
|
Kousal J, Shelemin A, Schwartzkopf M, Polonskyi O, Hanuš J, Solař P, Vaidulych M, Nikitin D, Pleskunov P, Krtouš Z, Strunskus T, Faupel F, Roth SV, Biederman H, Choukourov A. Magnetron-sputtered copper nanoparticles: lost in gas aggregation and found by in situ X-ray scattering. NANOSCALE 2018; 10:18275-18281. [PMID: 30246834 DOI: 10.1039/c8nr06155f] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Magnetron discharge in a cold buffer gas represents a liquid-free approach to the synthesis of metal nanoparticles (NPs) with tailored structure, chemical composition and size. Despite a large number of metal NPs that were successfully produced by this method, the knowledge of the mechanisms of their nucleation and growth in the discharge is still limited, mainly because of the lack of in situ experimental data. In this work, we present the results of in situ Small Angle X-ray Scattering measurements performed in the vicinity of a Cu magnetron target with Ar used as a buffer gas. Condensation of atomic metal vapours is found to occur mainly at several mm distance from the target plane. The NPs are found to be captured preferentially within a region circumscribed by the magnetron plasma ring. In this capture zone, the NPs grow to the size of 90 nm whereas smaller ones sized 10-20 nm may escape and constitute a NP beam. Time-resolved measurements of the discharge indicate that the electrostatic force acting on the charged NPs may be largely responsible for their capturing nearby the magnetron.
Collapse
Affiliation(s)
- Jaroslav Kousal
- Department of Macromolecular Physics, Faculty of Mathematics and Physics, Charles University, V Holesovickach 2, 18000 Prague, Czech Republic.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Towards the geometric structure of small supported Au 9 clusters on Si. Sci Rep 2018; 8:12371. [PMID: 30120308 PMCID: PMC6098063 DOI: 10.1038/s41598-018-30750-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 08/03/2018] [Indexed: 11/08/2022] Open
Abstract
Ultra-small clusters containing few atoms are of high interest in both fundamental research and applications due to their specific functional, magnetic or chemical properties which depend on size and composition. The experimental results of the morphology of the size-selected clusters, consisting of few atoms can be an ideal benchmark for sophisticated theoretical models. With this motivation we have investigated the geometrical structure of mass-selected Au9 clusters deposited on a silicon substrate prepared by soft-landing conditions. We present results obtained experimentally by Grazing-Incidence Small-Angle X-ray Scattering (GISAXS). Considering the ultra-small size of the clusters and small quantities of material on the surface, we combined advanced techniques which allowed us to investigate the surface structure of the sample. The resulting structural sizes are in concordance with cluster theory. Using a model-based approach, the advanced X-ray techniques allow for understanding how to resolve the possible cluster structure, identify optimal experimental conditions and obtain the probable morphological information which is challenging to be obtained otherwise.
Collapse
|
15
|
Independent tuning of size and coverage of supported Pt nanoparticles using atomic layer deposition. Nat Commun 2017; 8:1074. [PMID: 29057871 PMCID: PMC5651928 DOI: 10.1038/s41467-017-01140-z] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Accepted: 08/22/2017] [Indexed: 11/30/2022] Open
Abstract
Synthetic methods that allow for the controlled design of well-defined Pt nanoparticles are highly desirable for fundamental catalysis research. In this work, we propose a strategy that allows precise and independent control of the Pt particle size and coverage. Our approach exploits the versatility of the atomic layer deposition (ALD) technique by combining two ALD processes for Pt using different reactants. The particle areal density is controlled by tailoring the number of ALD cycles using trimethyl(methylcyclopentadienyl)platinum and oxygen, while subsequent growth using the same Pt precursor in combination with nitrogen plasma allows for tuning of the particle size at the atomic level. The excellent control over the particle morphology is clearly demonstrated by means of in situ and ex situ X-ray fluorescence and grazing incidence small angle X-ray scattering experiments, providing information about the Pt loading, average particle dimensions, and mean center-to-center particle distance. The performance of supported nanoparticle catalysts is closely related to their size, shape and interparticle distance. Here, the authors introduce an atomic layer deposition-based strategy to independently tune the size and coverage of platinum nanoparticles with atomic-level precision.
Collapse
|
16
|
Schwartzkopf M, Hinz A, Polonskyi O, Strunskus T, Löhrer FC, Körstgens V, Müller-Buschbaum P, Faupel F, Roth SV. Role of Sputter Deposition Rate in Tailoring Nanogranular Gold Structures on Polymer Surfaces. ACS APPLIED MATERIALS & INTERFACES 2017; 9:5629-5637. [PMID: 28106380 DOI: 10.1021/acsami.6b15172] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
The reproducible low-cost fabrication of functional polymer-metal interfaces via self-assembly is of crucial importance in organic electronics and organic photovoltaics. In particular, submonolayer and nanogranular systems expose highly interesting electrical, plasmonic, and catalytic properties. The exploitation of their great potential requires tailoring of the structure on the nanometer scale and below. To obtain full control over the complex nanostructural evolution at the polymer-metal interface, we monitor the evolution of the metallic layer morphology with in situ time-resolved grazing-incidence small-angle X-ray scattering during sputter deposition. We identify the impact of different deposition rates on the growth regimes: the deposition rate affects primarily the nucleation process and the adsorption-mediated growth, whereas rather small effects on diffusion-mediated growth processes are observed. Only at higher rates are initial particle densities higher due to an increasing influence of random nucleation, and an earlier onset of thin film percolation occurs. The obtained results are discussed to identify optimized morphological parameters of the gold cluster ensemble relevant for various applications as a function of the effective layer thickness and deposition rate. Our study opens up new opportunities to improve the fabrication of tailored metal-polymer nanostructures for plasmonic-enhanced applications such as organic photovoltaics and sensors.
Collapse
Affiliation(s)
- Matthias Schwartzkopf
- Photon Science, Deutsches Elektronen-Synchrotron (DESY) , Notkestr. 85, D-22607 Hamburg, Germany
| | - Alexander Hinz
- Lehrstuhl für Materialverbunde, Institut für Materialwissenschaft, Christian Albrechts-Universität zu Kiel , Kaiserstr. 2, D-24143 Kiel, Germany
| | - Oleksandr Polonskyi
- Lehrstuhl für Materialverbunde, Institut für Materialwissenschaft, Christian Albrechts-Universität zu Kiel , Kaiserstr. 2, D-24143 Kiel, Germany
| | - Thomas Strunskus
- Lehrstuhl für Materialverbunde, Institut für Materialwissenschaft, Christian Albrechts-Universität zu Kiel , Kaiserstr. 2, D-24143 Kiel, Germany
| | - Franziska C Löhrer
- Lehrstuhl für Funktionelle Materialien, Physik-Department, Technische Universität München , James-Franck-Str. 1, D-85748 Garching, Germany
| | - Volker Körstgens
- Lehrstuhl für Funktionelle Materialien, Physik-Department, Technische Universität München , James-Franck-Str. 1, D-85748 Garching, Germany
| | - Peter Müller-Buschbaum
- Lehrstuhl für Funktionelle Materialien, Physik-Department, Technische Universität München , James-Franck-Str. 1, D-85748 Garching, Germany
| | - Franz Faupel
- Lehrstuhl für Materialverbunde, Institut für Materialwissenschaft, Christian Albrechts-Universität zu Kiel , Kaiserstr. 2, D-24143 Kiel, Germany
| | - Stephan V Roth
- Photon Science, Deutsches Elektronen-Synchrotron (DESY) , Notkestr. 85, D-22607 Hamburg, Germany
- KTH Royal Institute of Technology , Department of Fibre and Polymer Technology, Teknikringen 56-58, SE-100 44 Stockholm, Sweden
| |
Collapse
|