1
|
Xu P, Yu D, Wang S, Shi W, Xing G, Wang A, Teng Z, Hao D. Thiamethoxam-Loaded Ethyl Cellulose Microspheres for Extending the Efficacy Duration and Reducing the Toxicity on the Growth of Maize ( Zea mays L.). LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:27270-27278. [PMID: 39690121 DOI: 10.1021/acs.langmuir.4c03077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2024]
Abstract
Thiamethoxam has been widely used in agriculture due to its excellent insecticidal activity. However, thiamethoxam is prone to loss during practical applications, especially in soil application, which seriously reduces its performance. In this work, thiamethoxam is loaded in ethyl cellulose microspheres to solve this issue, and the thiamethoxam-loaded ethyl cellulose microspheres (thiamethoxam/EC) are facilely and effectively fabricated by emulsified solvent volatilization. The exceptional embedding capacity of thiamethoxam/EC was elucidated through a systematic investigation of its controlled release and antiphotolysis properties. The encapsulation efficiency of thiamethoxam/EC was found to be ∼70.36%. Even after 130 h in a phosphate-buffered saline solution, the release of thiamethoxam from the thiamethoxam/EC complex continued, with a cumulative release of ∼52.38%. In contrast, the cumulative release of thiamethoxam/EC in soil after being flushed with 580 mL of water was a mere 14.74%, significantly lower than the value of 42.73% observed for unencapsulated thiamethoxam at the same volume. Additionally, thiamethoxam/EC demonstrated benign biocompatibility with Escherichia coli and maize (Zea mays L.) seedlings. The ultraviolet resistance of thiamethoxam in the thiamethoxam/EC formulation was nearly 3 times greater than that of uncoated thiamethoxam, and the insecticidal efficacy against Mythimna separata improved by 11.46% at a low concentration of 1 mg/L after a 10 day incubation in a greenhouse. The microspheroidization process not only extended the efficacy duration of fluazinam on target crops but also contributed to the sustainable use of pesticides and environmental protection.
Collapse
Affiliation(s)
- Peng Xu
- Co-Innovation Center for Efficient Processing and Utilization of Forest Products, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Dongmei Yu
- Co-Innovation Center for Efficient Processing and Utilization of Forest Products, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Shasha Wang
- Co-Innovation Center for Efficient Processing and Utilization of Forest Products, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Weishan Shi
- Jiangsu Aijin Crop Science and Technology Group Company, Ltd., Shuangxiang Road, Xiongzhou Street, Liuhe District, Nanjing 210000, China
| | - Gang Xing
- Jiangsu Aijin Crop Science and Technology Group Company, Ltd., Shuangxiang Road, Xiongzhou Street, Liuhe District, Nanjing 210000, China
| | - Ao Wang
- Co-Innovation Center for Efficient Processing and Utilization of Forest Products, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Zhaogang Teng
- College of Materials Science and Engineering, Nanjing University of Posts and Telecommunications, Nanjing 210037, China
| | - Dejun Hao
- Co-Innovation Center for the Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
2
|
Ma E, Yi J, Song Y, Li H, Geng L, Zhang C, Hu H, Fu Z, Zhu B, Guo X. Downsizing gum Arabic-based abamectin particles using flash nanoprecipitation method for enhanced pesticide deposition. Int J Biol Macromol 2024; 280:135781. [PMID: 39304046 DOI: 10.1016/j.ijbiomac.2024.135781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 09/15/2024] [Accepted: 09/17/2024] [Indexed: 09/22/2024]
Abstract
Pesticides are vital for ensuring crop protection and stable yields, but their low efficiency and eco-unfriendly carriers raise environmental concerns. In this study, abamectin nanopesticides were designed and fabricated using natural polysaccharides [gum arabic (GA)] and a co-stabiliser via flash nanoprecipitation (FNP) method to reduce the size of nanopesticides and enhance their foliar affinity and deposition. Various co-stabilisers were innovatively introduced into the FNP process; the synergy between GA and the co-stabiliser significantly reduced the particle size (111.5 nm), narrowed the size distribution (polydispersity index = 0.078), and enhanced the stability and release performance of the nanopesticides. Importantly, the downsized nanopesticides effectively improved retention on leaf surfaces, reducing pesticide loss. In addition, because of the excellent control capability of the FNP method, the particle size of the nanopesticides could be flexibly adjusted by modifying the flow-based process parameters. Nanopesticides with small sizes demonstrated good control efficacy against Tetranychus urticae, comparable to those of commercial emulsion in water formulations. This study provides an effective approach for enhancing the utilisation efficiency of pesticide droplets by reducing particle size to ensure sustainable agriculture.
Collapse
Affiliation(s)
- Enguang Ma
- Shandong Provincial Key Laboratory of Monocrystalline Silicon Semiconductor Materials and Technology, College of Chemistry and Chemical Engineering, Dezhou University, Dezhou 253023, China
| | - Jianing Yi
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, 200237 Shanghai, China
| | - Yekai Song
- Shandong Provincial Key Laboratory of Monocrystalline Silicon Semiconductor Materials and Technology, College of Chemistry and Chemical Engineering, Dezhou University, Dezhou 253023, China
| | - Hui Li
- Shandong Provincial Key Laboratory of Monocrystalline Silicon Semiconductor Materials and Technology, College of Chemistry and Chemical Engineering, Dezhou University, Dezhou 253023, China
| | - Longlong Geng
- Shandong Provincial Key Laboratory of Monocrystalline Silicon Semiconductor Materials and Technology, College of Chemistry and Chemical Engineering, Dezhou University, Dezhou 253023, China
| | - Chenkang Zhang
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, 200237 Shanghai, China
| | - Hui Hu
- Shandong Provincial Key Laboratory of Monocrystalline Silicon Semiconductor Materials and Technology, College of Chemistry and Chemical Engineering, Dezhou University, Dezhou 253023, China
| | - Zhinan Fu
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, 200237 Shanghai, China.
| | - Baoyong Zhu
- Shandong Provincial Key Laboratory of Monocrystalline Silicon Semiconductor Materials and Technology, College of Chemistry and Chemical Engineering, Dezhou University, Dezhou 253023, China
| | - Xuhong Guo
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, 200237 Shanghai, China; Institute of Bast Fiber Crops & Center of Southern Economic Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China.
| |
Collapse
|
3
|
Gundogdu S, Saglam O, Isikber AA, Bozkurt H, Unal H. Pesticide Nanoformulations Based on Sunlight-Activated Controlled Release of Abamectin. ACS OMEGA 2024; 9:10380-10390. [PMID: 38463308 PMCID: PMC10918824 DOI: 10.1021/acsomega.3c08015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 01/03/2024] [Accepted: 01/10/2024] [Indexed: 03/12/2024]
Abstract
A controlled release system that enables the sunlight-triggered release of a model agrochemical, abamectin (abm), is presented. The release system consists of polydopamine functionalized halloysite nanotubes (HNT-PDA) utilized as photothermal nanocarriers to encapsulate 25 wt % abm and 37 wt % lauric acid (LA), a phase change material, that acts as a heat-activable gatekeeper stopping or facilitating the abm release. When exposed to sunlight for 20 min at 1 and 3 sun light density, the temperature of the photothermal nanocarriers reaches 51 and 122 °C, respectively, which triggers the melting of LA and the consequent release of abm from the nanocarriers. Abm was shown to be released gradually over a period of 10 days when nanohybrids were exposed to sunlight for 6 h per day and to remain stable and kill Myzus persicae (Sulzer) (Hemiptera: Aphididae), green peach aphids, at a mortality rate of over 70% for at least 10 days. Aqueous dispersions of the LA/abm@HNT-PDA nanohybrids were studied in terms of their potential as aqueous sprayable pesticide nanoformulations and presented over 30% suspensibility, 36 mg/cm2 foliar retention, strong rainwater resistance, and a 50% mortality rate for M. persicae at a concentration of 9 mg/mL. The proposed sunlight-activated controlled release system based on photothermal, LA-functionalized HNT-PDA nanocarriers holds great potential as controlled release pesticide nanoformulations.
Collapse
Affiliation(s)
- Selin
Oyku Gundogdu
- Faculty
of Engineering and Natural Sciences, Sabanci
University, Istanbul 34956, Turkey
- SUNUM
Nanotechnology Research Center, Sabanci
University, Istanbul 34956, Turkey
| | - Ozgur Saglam
- Faculty
of Agriculture, Namık Kemal University, Tekirdağ 59030, Turkey
| | - Ali Arda Isikber
- Agriculture
Faculty, Plant Protection Department, Kahramanmaraş
Sütçü Imam University, Kahramanmaraş 46100, Turkey
| | - Huseyin Bozkurt
- Agriculture
Faculty, Plant Protection Department, Kahramanmaraş
Sütçü Imam University, Kahramanmaraş 46100, Turkey
| | - Hayriye Unal
- SUNUM
Nanotechnology Research Center, Sabanci
University, Istanbul 34956, Turkey
| |
Collapse
|
4
|
Lteif S, Nosratabad NA, Wang S, Xin Y, Weigand SJ, Mattoussi H, Schlenoff JB. Inorganic Nanoparticles Embedded in Polydimethylsiloxane Nanodroplets. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:15748-15755. [PMID: 37882626 DOI: 10.1021/acs.langmuir.3c02326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2023]
Abstract
To stabilize and transport them through complex systems, nanoparticles are often encapsulated in polymeric nanocarriers, which are tailored to specific environments. For example, a hydrophilic polymer capsule maintains the circulation and stability of nanoparticles in aqueous environments. A more highly designed nanocarrier might have a hydrophobic core and a hydrophilic shell to allow the transport of hydrophobic nanoparticles and pharmaceuticals through physiological media. Polydimethylsiloxane, PDMS, is a hydrophobic material in a liquid-like state at room temperature. The preparation of stable, aqueous dispersions of PDMS droplets in water is problematic due to the intense mismatch in surface energies between PDMS and water. The present work describes the encapsulation of hydrophobic metal and metal oxide nanoparticles within PDMS nanodroplets using flash nanoprecipitation. The PDMS is terminated by amino groups, and the nanodroplet is capped with a layer of poly(styrenesulfonate), forming a glassy outer shell. The hydrophobic nanoparticles nucleate PDMS droplet formation, decreasing the droplet size. The resulting nanocomposite nanodroplets are stable in aqueous salt solutions without the use of surfactants. The hierarchical structuring, elucidated with small-angle X-ray scattering, offers a new platform for the isolation and transport of hydrophobic molecules and nanoparticles through aqueous systems.
Collapse
Affiliation(s)
- Sandrine Lteif
- Department of Chemistry and Biochemistry, The Florida State University, Tallahassee, Florida 32306, United States
| | - Neda A Nosratabad
- Department of Chemistry and Biochemistry, The Florida State University, Tallahassee, Florida 32306, United States
| | - Sisi Wang
- Department of Chemistry and Biochemistry, The Florida State University, Tallahassee, Florida 32306, United States
| | - Yan Xin
- National High Magnetic Field Laboratory, Tallahassee, Florida 32310, United States
| | - Steven J Weigand
- DND-CAT Synchrotron Research Center, Northwestern University, APS/ANL 432-A005, 9700 S. Cass Avenue, Argonne, Illinois 60439, United States
| | - Hedi Mattoussi
- Department of Chemistry and Biochemistry, The Florida State University, Tallahassee, Florida 32306, United States
| | - Joseph B Schlenoff
- Department of Chemistry and Biochemistry, The Florida State University, Tallahassee, Florida 32306, United States
| |
Collapse
|
5
|
Fu Z, Ma E, Yang Z, Li L, Guo X. Continuous-Flow Nanoprecipitation Method to Synthesize Degradable Hollow Mesoporous Organosilica Nanoparticles for Insecticide Delivery. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:14718-14725. [PMID: 37789564 DOI: 10.1021/acs.langmuir.3c02089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
Degradable mesoporous organosilica nanoparticles (MONPs) are attracting significant attention in the area of designing smart drug carriers mainly due to their excellent stability and multiple functions. However, the efficient, controllable, and large-scale production of MONPs still faces huge challenges. Herein, a novel and facile continuous-flow nanoprecipitation strategy was reported to synthesize hollow MONPs with highly uniform and tailored properties. The synthesized hollow MONPs possessed a large surface area (SBET > 1070.1 m2 g-1), narrow size distribution, large hollow cavity, and thin shell. Interestingly, the incorporation of organic moieties into silica cross-linked networks led to the timely degradation of nanocarriers with the desired responsiveness. Moreover, the applicability of the as-obtained hollow MONPs has been demonstrated in the loading and pH-responsive release of thiamethoxam (THI). The resultant THI-loaded MONPs possessed long-term storage stability at a low temperature and showed release behaviors in response to a basic environment. Benefiting from the shielding property of MONPs, THI-loaded MONPs manifested superior stability against the photolysis as compared to that of the THI technical. This work provides a new consideration for promoting the advancement of nanotechnology in agricultural fields.
Collapse
Affiliation(s)
- Zhinan Fu
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, 200237 Shanghai, P. R. China
| | - Enguang Ma
- Shandong Provincial Key Laboratory of Monocrystalline Silicon Semiconductor Materials and Technology, College of Chemistry and Chemical Engineering, Dezhou University, 253023 Dezhou, P. R. China
| | - Zheng Yang
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, 200237 Shanghai, P. R. China
| | - Li Li
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, 200237 Shanghai, P. R. China
| | - Xuhong Guo
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, 200237 Shanghai, P. R. China
| |
Collapse
|
6
|
Tang J, Tong X, Chen Y, Wu Y, Zheng Z, Kayitmazer AB, Ahmad A, Ramzan N, Yang J, Huang Q, Xu Y. Deposition and water repelling of temperature-responsive nanopesticides on leaves. Nat Commun 2023; 14:6401. [PMID: 37828020 PMCID: PMC10570302 DOI: 10.1038/s41467-023-41878-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 09/19/2023] [Indexed: 10/14/2023] Open
Abstract
Pesticides are widely used to increase agricultural productivity, however, weak adhesion and deposition lead to low efficient utilization. Herein, we prepare a nanopesticide formulation (tebuconazole nanopesticides) which is leaf-adhesive, and water-dispersed via a rapid nanoparticle precipitation method, flash nanoprecipitation, using temperature-responsive copolymers poly-(2-(dimethylamino)ethylmethylacrylate)-b-poly(ε-caprolactone) as the carrier. Compared with commercial suspensions, the encapsulation by the polymer improves the deposition of TEB, and the contact angle on foliage is lowered by 40.0°. Due to the small size and strong van der Waals interactions, the anti-washing efficiency of TEB NPs is increased by 37% in contrast to commercial ones. Finally, the acute toxicity of TEB NPs to zebrafish shows a more than 25-fold reduction as compared to commercial formulation indicating good biocompatibility of the nanopesticides. This work is expected to enhance pesticide droplet deposition and adhesion, maximize the use of pesticides, tackling one of the application challenges of pesticides.
Collapse
Affiliation(s)
- Jie Tang
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Xiaojing Tong
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Yongjun Chen
- Shanghai Key Lab of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Yue Wu
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Zhiyuan Zheng
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | | | - Ayyaz Ahmad
- Department of Chemical Engineering, Muhammad Nawaz Sharif University of Engineering and Technology, Multan, Pakistan
| | - Naveed Ramzan
- Faculty of Chemical, Metallurgical, and Polymer Engineering, University of Engineering & Technology, Lahore, Pakistan
| | - Jintao Yang
- College of Materials Science & Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Qingchun Huang
- Shanghai Key Lab of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Yisheng Xu
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China.
| |
Collapse
|
7
|
Ma E, Fu Z, Sun L, Chen K, Liu Z, Wei Z, Li L, Guo X. Organosilica-based deformable nanopesticides with enhanced insecticidal activity prepared by flash nanoprecipitation. REACT CHEM ENG 2023. [DOI: 10.1039/d3re00040k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2023]
Abstract
A flash nanoprecipitation technique was developed for the construction of a novel type of deformable hollow organosilica nanoparticle for pesticide delivery.
Collapse
Affiliation(s)
- Enguang Ma
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, 832000 Xinjiang, P.R. China
| | - Zhinan Fu
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, 200237 Shanghai, P.R. China
| | - Liang Sun
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, 832000 Xinjiang, P.R. China
| | - Kai Chen
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, 832000 Xinjiang, P.R. China
| | - Zhiyong Liu
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, 832000 Xinjiang, P.R. China
| | - Zhong Wei
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, 832000 Xinjiang, P.R. China
| | - Li Li
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, 200237 Shanghai, P.R. China
| | - Xuhong Guo
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, 832000 Xinjiang, P.R. China
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, 200237 Shanghai, P.R. China
| |
Collapse
|
8
|
Kumar R, Kumar N, Rajput VD, Mandzhieva S, Minkina T, Saharan BS, Kumar D, Sadh PK, Duhan JS. Advances in Biopolymeric Nanopesticides: A New Eco-Friendly/Eco-Protective Perspective in Precision Agriculture. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:nano12223964. [PMID: 36432250 PMCID: PMC9692690 DOI: 10.3390/nano12223964] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/27/2022] [Accepted: 11/03/2022] [Indexed: 05/26/2023]
Abstract
Pesticides are essential to contemporary agriculture and are required to safeguard plants from hazardous pests, diseases, and weeds. In addition to harming the environment, overusing these pesticides causes pests to become resistant over time. Alternative methods and agrochemicals are therefore required to combat resistance. A potential solution to pesticide resistance and other issues may be found in nanotechnology. Due to their small size, high surface-area-to-volume ratio, and ability to offer novel crop protection techniques, nanoformulations, primarily biopolymer-based ones, can address specific agricultural concerns. Several biopolymers can be employed to load pesticides, including starch, cellulose, chitosan, pectin, agar, and alginate. Other biopolymeric nanomaterials can load pesticides for targeted delivery, including gums, carrageenan, galactomannans, and tamarind seed polysaccharide (TSP). Aside from presenting other benefits, such as reduced toxicity, increased stability/shelf life, and improved pesticide solubility, biopolymeric systems are also cost-effective; readily available; biocompatible; biodegradable; and biosafe (i.e., releasing associated active compounds gradually, without endangering the environment) and have a low carbon footprint. Additionally, biopolymeric nanoformulations support plant growth while improving soil aeration and microbial activity, which may favor the environment. The present review provides a thorough analysis of the toxicity and release behavior of biopolymeric nanopesticides for targeted delivery in precision crop protection.
Collapse
Affiliation(s)
- Ravinder Kumar
- Department of Biotechnology, Chaudhary Devi Lal University, Sirsa 125055, India
| | - Naresh Kumar
- Regional Forensic Science Laboratory, Mandi 175002, India
| | - Vishnu D. Rajput
- Academy of Biology, and Biotechnology, Southern Federal University, 344090 Rostov-on-Don, Russia
| | - Saglara Mandzhieva
- Academy of Biology, and Biotechnology, Southern Federal University, 344090 Rostov-on-Don, Russia
| | - Tatiana Minkina
- Academy of Biology, and Biotechnology, Southern Federal University, 344090 Rostov-on-Don, Russia
| | - Baljeet Singh Saharan
- Department of Microbiology, CCS Haryana Agricultural University, Hisar 125004, India
| | | | - Pardeep Kumar Sadh
- Department of Biotechnology, Chaudhary Devi Lal University, Sirsa 125055, India
| | | |
Collapse
|
9
|
Enhanced Bioactivity of Pomegranate Peel Extract following Controlled Release from CaCO3 Nanocrystals. Bioinorg Chem Appl 2022; 2022:6341298. [PMID: 35190732 PMCID: PMC8858070 DOI: 10.1155/2022/6341298] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 12/24/2021] [Indexed: 12/12/2022] Open
Abstract
Pomegranate peel extract is rich of interesting bioactive chemicals, principally phenolic compounds, which have shown antimicrobial, anticancer, and antioxidative properties. The aim of this work was to improve extract’ bioactivity through the adsorption on calcium carbonate nanocrystals. Nanocrystals revealed as efficient tools for extract adsorption reaching 50% of loading efficiency. Controlled release of the contained metabolites under acidic pH has been found, as it was confirmed by quantitative assay and qualitative study through NMR analysis. Specific functionality of inorganic nanocarriers could be also tuned by biopolymeric coating. The resulting coated nanoformulations showed a great antimicrobial activity against B. cinerea fungus preventing strawberries disease better than a commercial fungicide. Furthermore, nanoformulations demonstrated a good antiproliferative activity in neuroblastoma and breast cancer cells carrying out a higher cytotoxic effect respect to free extract, confirming a crucial role of nanocarriers. Finally, pomegranate peel extract showed a very high radical scavenging ability, equal to ascorbic acid. Antioxidant activity, measured also in intracellular environment, highlighted a protective action of extract-adsorbed nanocrystals twice than free extract, providing a possible application for new nutraceutical formulations.
Collapse
|
10
|
Kumar R, Najda A, Duhan JS, Kumar B, Chawla P, Klepacka J, Malawski S, Kumar Sadh P, Poonia AK. Assessment of Antifungal Efficacy and Release Behavior of Fungicide-Loaded Chitosan-Carrageenan Nanoparticles against Phytopathogenic Fungi. Polymers (Basel) 2021; 14:41. [PMID: 35012063 PMCID: PMC8747246 DOI: 10.3390/polym14010041] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/17/2021] [Accepted: 12/20/2021] [Indexed: 11/30/2022] Open
Abstract
Biopolymeric Chitosan-Carrageenan nanocomposites 66.6-231.82 nm in size containing the chemical fungicide mancozeb (nano CSCRG-M) were synthesized following a green chemistry approach. The physicochemical study of nanoparticles (NPs) was accomplished using a particle size analyzer, SEM and FTIR. TEM exhibited clover leaf-shaped nanoparticles (248.23 nm) with mancozeb on the inside and entrapped outside. Differential scanning calorimetry and TGA thermogravimetry exhibited the thermal behaviour of the nanoform. Nano CSCRG-1.5 at 1.5 ppm exhibited 83.1% inhibition against Alternaria solani in an in vitro study and performed as well as mancozeb (84.6%). Complete inhibition was exhibited in Sclerotinia sclerotiorum at 1.0 and 1.5 ppm with the nanoformulation. The in vivo disease control efficacy of mancozeb-loaded nanoparticles against A. solani in pathogenized plants was found to be relatively higher (79.4 ± 1.7) than that of commercial fungicide (76 ± 1.1%) in pot conditions. Nanomancozeb showed superior efficacy for plant growth parameters, such as germination percentage, root-shoot ratio and dry biomass. The nanoformulation showed higher cell viability compared to mancozeb in Vero cell cultures at 0.25 and 0.50 mg/mL in the resazurin assay. CSCRG-0.5 showed slow-release behavior up to 10 h. Thus, these green nano-based approaches may help combat soil and water pollution caused by harmful chemical pesticides.
Collapse
Affiliation(s)
- Ravinder Kumar
- Department of Biotechnology, Chaudhary Devi Lal University, Sirsa 125055, Haryana, India; (R.K.); (P.K.S.)
| | - Agnieszka Najda
- Department of Vegetable and Herbal Crops, University of Life Science in Lublin, 50A Doświadczalna Street, 20-280 Lublin, Poland
| | - Joginder Singh Duhan
- Department of Biotechnology, Chaudhary Devi Lal University, Sirsa 125055, Haryana, India; (R.K.); (P.K.S.)
| | - Balvinder Kumar
- ICAR-National Research Centre on Equines, Sirsa Road, Hisar 125001, Haryana, India;
| | - Prince Chawla
- Department of Food Technology and Nutrition, School of Agriculture, Lovely Professional University, Phagwara 144411, Punjab, India
| | - Joanna Klepacka
- Department of Commodity Science and Food Analysis, Faculty of Food Science, University of Warmia and Mazury in Olsztyn, 2 Oczapowskiego Street, 10-719 Olsztyn, Poland;
| | - Seweryn Malawski
- Department of Landscape Architecture, University of Life Science in Lublin, 28 Głęboka Street, 20-400 Lublin, Poland;
| | - Pardeep Kumar Sadh
- Department of Biotechnology, Chaudhary Devi Lal University, Sirsa 125055, Haryana, India; (R.K.); (P.K.S.)
| | - Anil Kumar Poonia
- Department of Molecular Biology, Biotechnology & Bioinformatics, CCS HAU, Hisar 125004, Haryana, India;
| |
Collapse
|
11
|
Li N, Sun C, Jiang J, Wang A, Wang C, Shen Y, Huang B, An C, Cui B, Zhao X, Wang C, Gao F, Zhan S, Guo L, Zeng Z, Zhang L, Cui H, Wang Y. Advances in Controlled-Release Pesticide Formulations with Improved Efficacy and Targetability. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:12579-12597. [PMID: 34672558 DOI: 10.1021/acs.jafc.0c05431] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Pesticides are commonly used in modern agriculture and are important for global food security. However, postapplication losses due to degradation, photolysis, evaporation, leaching, surface runoff, and other processes may substantially reduce their efficacy. Controlled-release formulations can achieve the permeation-regulated transfer of an active ingredient from a reservoir to a target surface. Thus, they can maintain an active ingredient at a predetermined concentration for a specified period. This can reduce degradation and dissipation and other losses and has the potential to improve efficacy. Recent developments in controlled-release technology have adapted the concepts of intelligence and precision from the pharmaceutical industry. In this review, we present recent advances in the development of controlled-release formulations and discuss details of the preparation methods, material improvements, and application technologies.
Collapse
Affiliation(s)
- Ningjun Li
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Changjiao Sun
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jiajun Jiang
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Anqi Wang
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Chong Wang
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yue Shen
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Bingna Huang
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Changcheng An
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Bo Cui
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xiang Zhao
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Chunxin Wang
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Fei Gao
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Shenshan Zhan
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Liang Guo
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Zhanghua Zeng
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Liang Zhang
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Haixin Cui
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yan Wang
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
12
|
Liu Q, Liu P, Xu Y, Wang B, Liu P, Hao J, Liu X. Encapsulation of fluazinam to extend efficacy duration in controlling Botrytis cinerea on cucumber. PEST MANAGEMENT SCIENCE 2021; 77:2836-2842. [PMID: 33538400 DOI: 10.1002/ps.6318] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 02/01/2021] [Accepted: 02/04/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Fluazinam is an effective fungicide in controlling gray mold, but has short duration of efficacy. Increasing application dosage may cause phytotoxicity. To overcome this shortage, a controlled-release technology was studied by encapsulating fluazinam. Ethyl cellulose polymer microcapsules were loaded with fluazinam to formulate a fluazinam capsule suspension (FCS). The efficacy for inhibition of B. cinerea and persistency of the FCS were examined by comparing with fluazinam technical concentrate (FTC) and aqueous fluazinam suspension concentrate (FSC) using microscopic observation and high-performance liquid chromatography analysis. RESULTS FCS formed capsules, with median size of 3.17 μm in diameter, had 82.3% encapsulation efficiency. It had a stronger inhibitory activity against B. cinerea than FTC and FSC measured 7 days after the treatments. The half-life of FCS on cucumber leaves was 3.4 days, longer than the 2.3 days of FSC. CONCLUSION FCS formulation significantly improved the inhibition of B. cinerea and resulted in prolonged and sustained release. Moreover, microencapsulation increased the duration of the efficacy of fluazinam on target crops. This formulation could help to sustain pesticides and protect the environment. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Qizheng Liu
- College of Plant Protection, China Agricultural University, Beijing, China
| | - Panqing Liu
- College of Plant Protection, China Agricultural University, Beijing, China
| | - Yanjun Xu
- College of Science, China Agricultural University, Beijing, China
| | - Bin Wang
- State Key Laboratory of the Discovery and Development of Novel Pesticide, Shenyang Sinochem Agrochemicals R&D Co., Ltd, Shenyang, China
| | - Pengfei Liu
- College of Plant Protection, China Agricultural University, Beijing, China
| | - Jianjun Hao
- School of Food and Agriculture, University of Maine, Orono, ME, USA
| | - Xili Liu
- College of Plant Protection, China Agricultural University, Beijing, China
| |
Collapse
|
13
|
Chen Z, Fu Z, Li L, Ma E, Guo X. A Cost-Effective Nano-Sized Curcumin Delivery System with High Drug Loading Capacity Prepared via Flash Nanoprecipitation. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:734. [PMID: 33803989 PMCID: PMC8001153 DOI: 10.3390/nano11030734] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 02/23/2021] [Accepted: 03/10/2021] [Indexed: 12/24/2022]
Abstract
Flash nanoprecipitation (FNP) is an efficient technique for encapsulating drugs in particulate carriers assembled by amphiphilic polymers. In this study, a novel nanoparticular system of a model drug curcumin (CUR) based on FNP technique was developed by using cheap and commercially available amphiphilic poly(vinyl pyrrolidone) (PVP) as stabilizer and natural polymer chitosan (CS) as trapping agent. Using this strategy, high encapsulation efficiency (EE > 95%) and drug loading capacity (DLC > 40%) of CUR were achieved. The resulting CUR-loaded nanoparticles (NPs) showed a long-term stability (at least 2 months) and pH-responsive release behavior. This work offers a new strategy to prepare cost-effective drug-loaded NPs with high drug loading capacity and opens a unique opportunity for industrial scale-up.
Collapse
Affiliation(s)
- Zhuo Chen
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China;
| | - Zhinan Fu
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China;
| | - Li Li
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China;
| | - Enguang Ma
- Engineering Research Center of Materials Chemical Engineering of Xinjiang Bingtuan, Shihezi University, Shihezi 832000, China;
| | - Xuhong Guo
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China;
- Engineering Research Center of Materials Chemical Engineering of Xinjiang Bingtuan, Shihezi University, Shihezi 832000, China;
| |
Collapse
|
14
|
Zhang DX, Liu G, Jing TF, Luo J, Wei G, Mu W, Liu F. Lignin-Modified Electronegative Epoxy Resin Nanocarriers Effectively Deliver Pesticides against Plant Root-Knot Nematodes ( Meloidogyne incognita). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:13562-13572. [PMID: 33175505 DOI: 10.1021/acs.jafc.0c01736] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
It is highly desirable to fabricate a pesticide delivery system with excellent permeability to reduce the damage caused by root-knot nematodes in the soil. In this work, a novel electronegative pesticide nanocarrier was established by bonding anionic lignosulfonate with epoxy resin nanocarriers, which were loaded with abamectin (Aba). The results demonstrated that nanoparticles were negatively charged (-38.4 mV) spheres with an average size of 150 nm, and the encapsulation efficiency of nanocarriers for Aba was 93.4%. Polymer nanocarriers could prevent premature release of Aba and protect active ingredients from microbiological degradation. The adsorption strength of the soil to Aba loaded in nanocarriers was reduced by 6 to 10 times, so nanonematicides have remarkable soil mobility. Meanwhile, nanoparticles could easily penetrate the roots and nematodes. The application test confirmed that the control effect of this nanopesticide was 26-40% higher than that of the other agrochemicals. In consideration of its superior bioactivity and utilization rate, this pesticide delivery system has promising potential to control root-knot nematodes and improve the pesticide's utilization efficiency.
Collapse
Affiliation(s)
- Da-Xia Zhang
- Key Laboratory of Pesticide Toxicology & Application Technique Shandong Agricultural University Tai'an, Shandong 271018, P. R. China
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops Fujian Agriculture and Forestry University Fuzhou, Fujian 350002, P. R. China
| | - Guang Liu
- Key Laboratory of Pesticide Toxicology & Application Technique Shandong Agricultural University Tai'an, Shandong 271018, P. R. China
- College of Plant Protection Shandong Agricultural University Tai'an, Shandong 271018, P. R. China
| | - Tong-Fang Jing
- Key Laboratory of Pesticide Toxicology & Application Technique Shandong Agricultural University Tai'an, Shandong 271018, P. R. China
- College of Plant Protection Shandong Agricultural University Tai'an, Shandong 271018, P. R. China
| | - Jian Luo
- Key Laboratory of Pesticide Toxicology & Application Technique Shandong Agricultural University Tai'an, Shandong 271018, P. R. China
- College of Plant Protection Shandong Agricultural University Tai'an, Shandong 271018, P. R. China
| | - Guang Wei
- Central Research Institute of China Chemical Science and Technology Co. Ltd., Beijing 100011, China
| | - Wei Mu
- Key Laboratory of Pesticide Toxicology & Application Technique Shandong Agricultural University Tai'an, Shandong 271018, P. R. China
- College of Plant Protection Shandong Agricultural University Tai'an, Shandong 271018, P. R. China
| | - Feng Liu
- Key Laboratory of Pesticide Toxicology & Application Technique Shandong Agricultural University Tai'an, Shandong 271018, P. R. China
- College of Plant Protection Shandong Agricultural University Tai'an, Shandong 271018, P. R. China
| |
Collapse
|
15
|
Fu Z, Li L, Li F, Ahmed R, Niu X, Liu D, Guo X. Facile Morphology Control during Rapid Fabrication of Nanosized Organosilica Particles. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.0c02668] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Zhinan Fu
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, 200237 Shanghai, P. R. China
| | - Li Li
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, 200237 Shanghai, P. R. China
| | - Fen Li
- School of Chemistry and Molecular Engineering, East China University of Science and Technology, 200237 Shanghai, P. R. China
| | - Rizwan Ahmed
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, 200237 Shanghai, P. R. China
| | - Xiaofeng Niu
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, 200237 Shanghai, P. R. China
| | - Dianhua Liu
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, 200237 Shanghai, P. R. China
| | - Xuhong Guo
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, 200237 Shanghai, P. R. China
- International Joint Research Center of Green Energy Chemical Engineering, East China University of Science and Technology, 200237 Shanghai, P. R. China
- Engineering Research Center of Materials Chemical Engineering of Xinjiang Bingtuan, Shihezi University, 832000 Shihezi, Xinjiang, P. R. China
| |
Collapse
|
16
|
Cui JG, Mo DM, Jiang Y, Gan CF, Li WG, Wu A, Li XY, Xiao JA, Hu Q, Yuan HY, Lu R, Huang YM. Fabrication, Characterization, and Insecticidal Activity Evaluation of Emamectin Benzoate–Sodium Lignosulfonate Nanoformulation with pH-Responsivity. Ind Eng Chem Res 2019. [DOI: 10.1021/acs.iecr.9b03171] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Jian-Guo Cui
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Nanning Normal University, Nanning 530001, PR China
- Guangxi Tianyuan Biochemical Company Limited, Nanning 530001, PR China
- Guangxi Colleges and University Key Laboratory of Beibu Gulf Oil and Natural Gas Resource Effective Utilization, Beibuwan University, Qinzhou 535000, China
| | - Dong-Mei Mo
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Nanning Normal University, Nanning 530001, PR China
| | - Yang Jiang
- Guangxi Tianyuan Biochemical Company Limited, Nanning 530001, PR China
| | - Chun-Fang Gan
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Nanning Normal University, Nanning 530001, PR China
| | - Wei-Guo Li
- Guangxi Tianyuan Biochemical Company Limited, Nanning 530001, PR China
| | - Ao Wu
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Nanning Normal University, Nanning 530001, PR China
| | - Xiang-Ying Li
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Nanning Normal University, Nanning 530001, PR China
| | - Jun-An Xiao
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Nanning Normal University, Nanning 530001, PR China
| | - Qiang Hu
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Nanning Normal University, Nanning 530001, PR China
| | - Hai-Yan Yuan
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Nanning Normal University, Nanning 530001, PR China
| | - Rui Lu
- Guangxi Tianyuan Biochemical Company Limited, Nanning 530001, PR China
| | - Yan-Min Huang
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Nanning Normal University, Nanning 530001, PR China
| |
Collapse
|
17
|
High-Performance Thermal Management Nanocomposites: Silver Functionalized Graphene Nanosheets and Multiwalled Carbon Nanotube. CRYSTALS 2018. [DOI: 10.3390/cryst8110398] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Polymer composites with high thermal conductivity have a great potential for applications in modern electronics due to their low cost, easy process, and stable physical and chemical properties. Nevertheless, most polymer composites commonly possess unsatisfactory thermal conductivity, primarily because of the high interfacial thermal resistance between inorganic fillers. Herein, we developed a novel method through silver functionalized graphene nanosheets (GNS) and multiwalled carbon nanotube (MWCNT) composites with excellent thermal properties to meet the requirements of thermal management. The effects of composites on interfacial structure and properties of the composites were identified, and the microstructures and properties of the composites were studied as a function of the volume fraction of fillers. An ultrahigh thermal conductivity of 12.3 W/mK for polymer matrix composites was obtained, which is an approximate enhancement of 69.1 times compared to the polyvinyl alcohol (PVA) matrix. Moreover, these composites showed more competitive thermal conductivities compared to untreated fillers/PVA composites applied to the desktop central processing unit, making these composites a high-performance alternative to be used for thermal management.
Collapse
|