1
|
Sharif V, Saberi H, Pakarzadeh H. Designing a terahertz optical sensor based on helically twisted photonic crystal fiber for toxic gas sensing. Sci Rep 2025; 15:2268. [PMID: 39824962 PMCID: PMC11742424 DOI: 10.1038/s41598-024-82704-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 12/09/2024] [Indexed: 01/20/2025] Open
Abstract
A novel helically twisted photonic crystal fiber (PCF) is designed and proposed for sensing toxic gases with refractive indices ranging from 1.00 to 1.08. The PCF consists of twelve hollow pipes arranged circularly around the hollow core to support THz radiation propagation. Low-loss polymer Topas is used as the background material of cladding. The fiber is twisted 360° over 50 cm to enhance anti-resonance in the THz region. The fundamental LP01 mode is analyzed using the finite-difference eigenmode (FDE) method. The sensor operates across four frequency bands (0.2 to 3.0 THz) with minimal transmission loss (~ 10⁻⁴ 1/cm). Key parameters such as refractive index sensitivity, relative sensitivity, resolution, and figure of merit (FOM) are evaluated. The average refractive index sensitivities are 1450, 2250, 3000, and 2550 for Bands 1 to 4, respectively, with 100% relative sensitivity across all bands. The sensor detects refractive index changes as small as 10⁻⁴. The FOM, defined as the inverse of the full width at half maximum, exceeds 30 1/RIU, reaching up to 250 1/RIU due to sharp resonance peaks. Compared to other THz sensors, this design offers enhanced performance in sensing gases like SOx, NOx, and CO, while maintaining a simple structure.
Collapse
Affiliation(s)
- Vahid Sharif
- Department of Electrical, Electronic and Communication Engineering, Public University of Navarra, Universidad Pública de Navarra), Campus de Arrosadia, Pamplona, Navarra, 31006, Spain
| | - Hana Saberi
- Department of Physics, Shiraz university of technology, Shiraz, Iran
| | - Hassan Pakarzadeh
- Department of Physics, Shiraz university of technology, Shiraz, Iran.
| |
Collapse
|
2
|
Solangi NH, Karri RR, Mubarak NM, Mazari SA, Sharma BP. Holistic insights into carbon nanotubes and MXenes as a promising route to bio-sensing applications. NANOSCALE 2024; 16:21216-21263. [PMID: 39470605 DOI: 10.1039/d4nr03008g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/30/2024]
Abstract
Essential biosensor use has become increasingly important in drug discovery and recognition, biomedicine, food safety, security, and environmental research. It directly contributed to the development of specialized, reliable diagnostic instruments known as biosensors, which use biological sensing components. Traditional biosensors have poor performance, so scientists need to develop advanced biosensors with promising selectivity, sensitivity, stability, and reusability. These are all parameter modifications associated with the characteristics of the sensing material. Carbon nanotubes (CNTs) and MXenes are promising as targeted sensing agents in advanced functional materials because of their promising chemical and physical properties and limited toxic effects. Based on available data and sensing performance, MXene is better for biosensing applications than CNTs. Because of their large specific surface area (SSA), superior electrical conductivity, and adaptable surface chemistry that facilitates simple functionalization and robust interactions with biomolecules, MXenes are typically regarded as the superior option for biosensors. Additionally, because of their hydrophilic nature, they are more suited to biological settings, which increases their sensitivity and efficacy in identifying biological targets. MXenes are more suitable for biosensing applications due to their versatility and compatibility with aquatic environments, even if CNTs have demonstrated stability and muscular mechanical strength. However, MXenes offer better thermal stability, which is crucial for applications in diverse temperature environments. This study reviews and compares the biosensing capabilities, synthesis methods, unique properties, and toxicity of CNTs and MXenes. Both nanomaterials effectively detect various pollutants in food, biological substances, and human bodies, making them invaluable in environmental monitoring and medical diagnostics. In conclusion, CNTs work better for biosensors that must be strong, flexible, and long-lasting under different conditions. MXenes, on the other hand, work better when chemical flexibility and compatibility with wet environments are essential.
Collapse
Affiliation(s)
- Nadeem Hussain Solangi
- State Key Laboratory of Chemical Resource Engineering and College of Chemistry, Beijing University of Chemical Technology, P. Box 98, Beisanhuan East Road 15, Beijing 100029, PR China
| | - Rama Rao Karri
- Petroleum and Chemical Engineering, Faculty of Engineering, Universiti Teknologi Brunei, Bandar Seri Begawan, BE1410, Brunei Darussalam.
- Faculty of Engineering, INTI International University, 71800, Nilai, Malaysia
| | - Nabisab Mujawar Mubarak
- Petroleum and Chemical Engineering, Faculty of Engineering, Universiti Teknologi Brunei, Bandar Seri Begawan, BE1410, Brunei Darussalam.
- University Centre for Research and Development, Chandigarh University, Mohali, Punjab, 140413, India
| | - Shaukat Ali Mazari
- Department of Chemical Engineering, Dawood University of Engineering and Technology, Karachi 74800, Pakistan.
| | - Bharat Prasad Sharma
- Beijing Key Laboratory of Electrochemical Process and Technology of Materials, College of Material Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
- CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
3
|
Houari F, El Barghouti M, Mir A, Akjouj A. Nanosensors Based on Bimetallic Plasmonic Layer and Black Phosphorus: Application to Urine Glucose Detection. SENSORS (BASEL, SWITZERLAND) 2024; 24:5058. [PMID: 39124105 PMCID: PMC11315007 DOI: 10.3390/s24155058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 07/26/2024] [Accepted: 07/31/2024] [Indexed: 08/12/2024]
Abstract
This paper presents a new biosensor design based on the Kretschmann configuration, for the detection of analytes at different refractive indices. Our studied design consists of a TiO2/SiO2 bi-layer sandwiched between a BK7 prism and a bimetallic layer of Ag/Au plasmonic materials, covered by a layer of black phosphorus placed below the analyte-containing detection medium. The different layers of our structure and analyte detection were optimized using the angular interrogation method. High performance was achieved, with a sensitivity of 240 deg/RIU and a quality factor of 34.7 RIU-1. This biosensor can detect analytes with a wide refractive index range between 1.330 and 1.347, such as glucose detection in urine samples using a refractive index variation of 10-3. This capability offers a wide range of applications for biomedical and biochemical detection and selectivity.
Collapse
Affiliation(s)
- Fatima Houari
- Laboratory of Advanced Materials Studies and Applications (LEM2A), Physics Department, Faculty of Science, Moulay Ismail University of Meknes, B.P. 11201 Zitoune Meknès, Morocco; (F.H.); or (M.E.B.); (A.M.)
| | - Mohamed El Barghouti
- Laboratory of Advanced Materials Studies and Applications (LEM2A), Physics Department, Faculty of Science, Moulay Ismail University of Meknes, B.P. 11201 Zitoune Meknès, Morocco; (F.H.); or (M.E.B.); (A.M.)
- Faculty of Medicine and Pharmacy of Beni Mellal, Sultane Moulay Slimane University, M’ghila Campus, 23030 Beni Mellal, Morocco
| | - Abdellah Mir
- Laboratory of Advanced Materials Studies and Applications (LEM2A), Physics Department, Faculty of Science, Moulay Ismail University of Meknes, B.P. 11201 Zitoune Meknès, Morocco; (F.H.); or (M.E.B.); (A.M.)
| | - Abdellatif Akjouj
- Univ. Lille, Institute of Electronics, Microelectronics and Nanotechnology, UMR CNRS 8520, FST, Department of Physics, 59655 Villeneuve d’Ascq, France
| |
Collapse
|
4
|
Yadav PK, Kumar A, Upadhyay S, Kumar A, Srivastava A, Srivastava M, Srivastava SK. 2D material-based surface plasmon resonance biosensors for applications in different domains: an insight. Mikrochim Acta 2024; 191:373. [PMID: 38842697 DOI: 10.1007/s00604-024-06442-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 05/16/2024] [Indexed: 06/07/2024]
Abstract
The design of surface plasmon resonance (SPR) sensors has been greatly enhanced in recent years by the advancements in the production and integration of nanostructures, leading to more compact and efficient devices. There have been reports of novel SPR sensors having distinct nanostructures, either as signal amplification tags like gold nanoparticles (AuNPs) or as sensing substrate-like two-dimensional (2D) materials including graphene, transition metal dichalcogenides (TMDCs), MXene, black phosphorus (BP), metal-organic frameworks (MOFs), and antimonene. Such 2D-based SPR biosensors offer advantages over conventional sensors due to significant increases in their sensitivity with a good figure of merit and limit of detection (LOD). Due to their atomically thin structure, improved sensitivity, and sophisticated functionalization capabilities, 2D materials can open up new possibilities in the field of healthcare, particularly in point-of-care diagnostics, environmental and food monitoring, homeland security protection, clinical diagnosis and treatment, and flexible or transient bioelectronics. The present study articulates an in-depth analysis of the most recent developments in 2D material-based SPR sensor technology. Moreover, in-depth research of 2D materials, their integration with optoelectronic technology for a new sensing platform, and the predicted and experimental outcomes of various excitation approaches are highlighted, along with the principles of SPR biosensors. Furthermore, the review projects the potential prospects and future trends of these emerging materials-based SPR biosensors to advance in clinical diagnosis, healthcare biochemical, and biological applications.
Collapse
Affiliation(s)
- Prateek Kumar Yadav
- Department of Physics, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Awadhesh Kumar
- Department of Physics, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Satyam Upadhyay
- Department of Physics, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Anil Kumar
- Department of Physics, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Amit Srivastava
- Department of Physics TDPG College, VBS Purvanchal University, Jaunpur, 222001, India
| | - Monika Srivastava
- School of Materials Science and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, India
| | - S K Srivastava
- Department of Physics, Institute of Science, Banaras Hindu University, Varanasi, 221005, India.
| |
Collapse
|
5
|
Ullah N, Bruce-Tagoe TA, Asamoah GA, Danquah MK. Multimodal Biosensing of Foodborne Pathogens. Int J Mol Sci 2024; 25:5959. [PMID: 38892147 PMCID: PMC11172999 DOI: 10.3390/ijms25115959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/14/2024] [Accepted: 05/27/2024] [Indexed: 06/21/2024] Open
Abstract
Microbial foodborne pathogens present significant challenges to public health and the food industry, requiring rapid and accurate detection methods to prevent infections and ensure food safety. Conventional single biosensing techniques often exhibit limitations in terms of sensitivity, specificity, and rapidity. In response, there has been a growing interest in multimodal biosensing approaches that combine multiple sensing techniques to enhance the efficacy, accuracy, and precision in detecting these pathogens. This review investigates the current state of multimodal biosensing technologies and their potential applications within the food industry. Various multimodal biosensing platforms, such as opto-electrochemical, optical nanomaterial, multiple nanomaterial-based systems, hybrid biosensing microfluidics, and microfabrication techniques are discussed. The review provides an in-depth analysis of the advantages, challenges, and future prospects of multimodal biosensing for foodborne pathogens, emphasizing its transformative potential for food safety and public health. This comprehensive analysis aims to contribute to the development of innovative strategies for combating foodborne infections and ensuring the reliability of the global food supply chain.
Collapse
Affiliation(s)
| | | | | | - Michael K. Danquah
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, TN 37996, USA; (N.U.); (T.A.B.-T.); (G.A.A.)
| |
Collapse
|
6
|
Elsayed HA, Awasthi SK, Almawgani AHM, Mehaney A, Abdelrahman Ali YA, Alzahrani A, Ahmed AM. High-performance biosensors based on angular plasmonic of a multilayer design: new materials for enhancing sensitivity of one-dimensional designs. RSC Adv 2024; 14:7877-7890. [PMID: 38449824 PMCID: PMC10915466 DOI: 10.1039/d3ra08731j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 02/29/2024] [Indexed: 03/08/2024] Open
Abstract
In this study, a theoretical examination is conducted to investigate the biosensing capabilities of different surface plasmon resonance (SPR) based hybrid multilayer structures, which are composed of two-dimensional (2D) materials. The transfer matrix formulation is implemented to calibrate the results of this study. A He-Ne laser of wavelength = 632.8 nm is used to simulate the results. Many permutations and combinations of layers of silver (Ag), aluminum oxynitride (AlON), and 2D materials were utilized to obtain the optimized structure. Ten dielectrics and twelve 2D materials were tested for a highly sensitive multilayer hybrid sensing design, which is composed of the prism (Ohara S-FPL53)/Ag/AlON/WS2/AlON/sensing medium. The optimized biosensing design is capable of sensing and detecting analytes whose refractive variation is limited between 1.33 and 1.34. The maximum sensitivity, which is achieved by using the proposed design is 488.2° per RIU. Additionally, the quality factor, figure of merit, detection limit, and qualification limit values of the optimized design were also calculated to obtain a true picture of the sensing capabilities. The designing approach based on the multilayer hybrid SPR biosensors has the potential to develop various plasmonic biosensors that are related to food, chemical, and biomedical engineering fields.
Collapse
Affiliation(s)
- Hussein A Elsayed
- Department of Physics, College of Science, University of Ha'il Ha'il P.O. Box 2440 Saudi Arabia
- Physics Department, Faculty of Science, Beni-Suef University Beni-Suef 62512 Egypt
| | - Suneet Kumar Awasthi
- Department of Physics and Material Science and Engineering, Jaypee Institute of Information Technology Noida 201304 UP India
| | - Abdulkarem H M Almawgani
- Electrical Engineering Department, College of Engineering, Najran University Najran Saudi Arabia
| | - Ahmed Mehaney
- Physics Department, Faculty of Science, Beni-Suef University Beni-Suef 62512 Egypt
| | - Yahya Ali Abdelrahman Ali
- Information Systems Department, College of Computer Sciences and Information Systems, Najran University Najran Saudi Arabia
| | - Ahmad Alzahrani
- Electrical Engineering Department, College of Engineering, Najran University Najran Saudi Arabia
- Scientific and Engineering Research Centre, Deanship of Scientific Research, Najran University Najran Saudi Arabia
| | - Ashour M Ahmed
- Physics Department, Faculty of Science, Beni-Suef University Beni-Suef 62512 Egypt
- Physics Department, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU) Riyadh 11623 Saudi Arabia
| |
Collapse
|
7
|
Shin M, Lim J, Park Y, Lee JY, Yoon J, Choi JW. Carbon-based nanocomposites for biomedical applications. RSC Adv 2024; 14:7142-7156. [PMID: 38419681 PMCID: PMC10900039 DOI: 10.1039/d3ra08946k] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 02/19/2024] [Indexed: 03/02/2024] Open
Abstract
Carbon nanomaterials have attracted significant attention in the biomedical field, including for biosensing, drug delivery, and tissue engineering applications. Based on their inherent properties such as their unique structure and high conductivity, carbon nanomaterials can overcome the current limitations in biomedical research such as poor stability of biomolecules, low sensitivity and selectivity of biosensors, and difficulty in precise drug delivery. In addition, recently, several novel nanomaterials have been integrated with carbon nanomaterials to develop carbon-based nanocomposites for application in biomedical research. In this review, we discuss recent studies on carbon-based nanocomposites and their biomedical applications. First, we discuss the representative carbon nanomaterials and nanocomposites composed of carbon and other novel nanomaterials. Next, applications of carbon nanomaterials and nanocomposites in the biomedical field are discussed according to topics in the biomedical field. We have discussed the recent studies on biosensors, drug delivery, and tissue engineering. In conclusion, we believe that this review provides the potential and applicability of carbon nanomaterials and their nanocomposites and suggests future directions of the application of carbon-based nanocomposites in biomedical applications.
Collapse
Affiliation(s)
- Minkyu Shin
- Department of Chemical & Biomolecular Engineering, Sogang University 35 Baekbeom-ro, Mapo-gu Seoul 04107 Republic of Korea
| | - Joungpyo Lim
- Department of Chemical & Biomolecular Engineering, Sogang University 35 Baekbeom-ro, Mapo-gu Seoul 04107 Republic of Korea
| | - Yongseon Park
- Department of Chemical & Biomolecular Engineering, Sogang University 35 Baekbeom-ro, Mapo-gu Seoul 04107 Republic of Korea
| | - Ji-Young Lee
- Department of Chemical & Biomolecular Engineering, Sogang University 35 Baekbeom-ro, Mapo-gu Seoul 04107 Republic of Korea
| | - Jinho Yoon
- Department of Biomedical-Chemical Engineering, The Catholic University of Korea 43 Jibong-ro, Wonmi-gu Bucheon-si Gyeonggi-do 14662 Republic of Korea
| | - Jeong-Woo Choi
- Department of Chemical & Biomolecular Engineering, Sogang University 35 Baekbeom-ro, Mapo-gu Seoul 04107 Republic of Korea
| |
Collapse
|
8
|
Yang W, Ang LK, Zhang W, Han J, Xu Y. High sensitivity gas sensor based on surface exciton polariton enhanced photonic spin Hall effect. OPTICS EXPRESS 2023; 31:27041-27053. [PMID: 37710551 DOI: 10.1364/oe.497262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 07/17/2023] [Indexed: 09/16/2023]
Abstract
In this paper, the sub-wavelength transverse displacement of photonic spin Hall effect (PSHE) is significantly enhanced by the surface exciton polariton (SEP) for application in gas sensing. The transverse displacement of 14.4 times the wavelength of incident light is achieved with the SEP enhanced PSHE, which is about 3 times that of surface plasmon resonance enhanced PSHE. A gas sensor based on SEP enhanced PSHE is proposed for the detection of SO2, and the refractive index sensitivity of 6320.4 µm/RIU is obtained in the refractive index range from 1.00027281 to 1.00095981. These results undoubtedly demonstrate SEP to be a promising mechanism for PSHE enhancement, and open up new opportunities for highly sensitive gas sensing, biosensing, and chemical sensing.
Collapse
|
9
|
Han L, Xu W, Liu T, Zhang Y, Ma Y, Jin M, Xu C. Improved Differential Evolution Algorithm for Sensitivity Enhancement of Surface Plasmon Resonance Biosensor Based on Two-Dimensional Material for Detection of Waterborne Bacteria. BIOSENSORS 2023; 13:600. [PMID: 37366965 DOI: 10.3390/bios13060600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/29/2023] [Accepted: 05/29/2023] [Indexed: 06/28/2023]
Abstract
Due to the large number of waterborne bacteria presenting in drinking water, their rapid and accurate identification has become a global priority. The surface plasmon resonance (SPR) biosensor with prism (BK7)-silver(Ag)-MXene(Ti3T2Cx)-graphene- affinity-sensing medium is examined in this paper, in which the sensing medium includes pure water, vibrio cholera (V. cholera), and escherichia coli (E. coli). For the Ag-affinity-sensing medium, the maximum sensitivity is obtained by E. coli, followed by V. cholera, and the minimum is pure water. Based on the fixed-parameter scanning (FPS) method, the highest sensitivity is 246.2 °/RIU by the MXene and graphene with monolayer, and with E. coli sensing medium. Therefore, the algorithm of improved differential evolution (IDE) is obtained. By the IDE algorithm, after three iterations, the maximum fitness value (sensitivity) of the SPR biosensor achieves 246.6 °/RIU by using the structure of Ag (61 nm)-MXene (monolayer)-graphene (monolayer)-affinity (4 nm)-E. coli. Compared with the FPS and differential evolution (DE) algorithm, the highest sensitivity is more accurate and efficient, and with fewer iterations. The performance optimization of multilayer SPR biosensors provides an efficient platform.
Collapse
Affiliation(s)
- Lei Han
- College of Mechanical and Electrical Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Wentao Xu
- College of Mechanical and Electrical Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Tao Liu
- College of Mechanical and Electrical Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Yong Zhang
- College of Mechanical and Electrical Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Yanhua Ma
- College of Mechanical and Electrical Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Min Jin
- College of Mechanical and Electrical Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Chaoyu Xu
- School of Mechanical Engineering and Electronic Information, China University of Geosciences (Wuhan), Wuhan 430074, China
| |
Collapse
|
10
|
Tan J, Chen Y, He J, Occhipinti LG, Wang Z, Zhou X. Two-dimensional material-enhanced surface plasmon resonance for antibiotic sensing. JOURNAL OF HAZARDOUS MATERIALS 2023; 455:131644. [PMID: 37209558 DOI: 10.1016/j.jhazmat.2023.131644] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 05/12/2023] [Accepted: 05/13/2023] [Indexed: 05/22/2023]
Abstract
Two-dimensional (2D) materials attract attention from the academic community due to their excellent properties, and their wide application in sensing is expected to revolutionize environmental monitoring, medical diagnostics, and food safety. In this work, we systematically evaluate the effects of 2D materials on the Au chip surface plasmon resonance (SPR) sensor. The results reveal that 2D materials cannot improve the sensitivity of intensity-modulated SPR sensors. However, there exists an optimal real part of RI of 3.5-4.0 and optimal thickness when choosing nanomaterials for sensitivity enhancement of SPR sensors in angular modulation. In addition, the smaller the imaginary part of the nanomaterial RI, the higher the sensitivity of the proposed Au SPR sensor. The 2D material's thickness needed for the highest sensitivity decreases with increasing real part and imaginary part of the RI. As a case study, we developed a 5 nm-thickness MoS2-enhanced SPR biosensor, which exhibited a low sulfonamides (SAs) detection limit of 0.05 μg/L based on a group-targeting indirect competitive immunoassay, nearly 12-fold lower than that of the bare Au SPR system. The proposed criteria help to shed light on the 2D material-Au surface interaction, which has greatly promoted the development of novel SPR biosensing with outstanding sensitivity.
Collapse
Affiliation(s)
- Jisui Tan
- State Key Joint Laboratory of ESPC, School of Environment, Tsinghua University, Beijing 100084, China
| | - Yangyang Chen
- State Key Joint Laboratory of ESPC, School of Environment, Tsinghua University, Beijing 100084, China
| | - Jing He
- Cambridge Graphene Centre, Department of Engineering, University of Cambridge, Cambridge CB3 0FA, United Kingdom
| | - Luigi G Occhipinti
- Cambridge Graphene Centre, Department of Engineering, University of Cambridge, Cambridge CB3 0FA, United Kingdom
| | - Zhanhui Wang
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Xiaohong Zhou
- State Key Joint Laboratory of ESPC, School of Environment, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
11
|
Sharif V, Pakarzadeh H. High-performance surface plasmon resonance fiber sensor based on cylindrical vector modes. Sci Rep 2023; 13:4563. [PMID: 36941280 PMCID: PMC10027844 DOI: 10.1038/s41598-023-31524-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 03/13/2023] [Indexed: 03/23/2023] Open
Abstract
Cylindrical vector modes with azimuthal polarization and low transmission loss are proposed for the first time to be utilized in a novel design of a surface plasmon resonance (SPR) sensor based on a circular photonic crystal fiber (C-PCF). A C-PCF with a ring of air holes in the cladding is designed where a gold layer with a thickness of 44 nm is coated on the outer cladding surface. The optimal geometric parameters are determined using the finite-element method (FEM) for a high-quality TE01 mode and high sensitivity of the sensor. The proposed SPR sensor shows high sensitivity for analyte refractive index (RI) ranging from na = 1.29 to 1.34 over the wavelength range of 1400-2000 nm. It is expected that the proposed sensor can sense low concentrations of hemoglobin, lymphocytes and monocytes of red and white blood cells which are effective in diagnosing the progress of cancer tumors. The maximum sensitivity of 13,800 nm/RIU is obtained in the refractive index environment of 1.33-1.34. The sensor resolution is of the order of 10-6 and the amplitude sensitivity reaches its maximum of 2380 RIU-1 at na = 1.30 which is the highest value ever reported. Our proposed sensor shows high sensitivity and simultaneously simple design with high performance.
Collapse
Affiliation(s)
- Vahid Sharif
- Department of Physics, Shiraz University of Technology, Shiraz, Iran
| | - Hassan Pakarzadeh
- Department of Physics, Shiraz University of Technology, Shiraz, Iran.
| |
Collapse
|
12
|
Ma Z, Jiao Y, Zhang C, Lou J, Zhao P, Zhang B, Wang Y, Yu Y, Sun W, Yan Y, Yang X, Sun L, Wang R, Chang C, Li X, Du X. Identification and quantitative detection of two pathogenic bacteria based on a terahertz metasensor. NANOSCALE 2023; 15:515-521. [PMID: 36519408 DOI: 10.1039/d2nr05038b] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Bacterial infection can cause a series of diseases and play a vital role in medical care. Therefore, early diagnosis of pathogenic bacteria is crucial for effective treatment and the prevention of further infection. However, restricted by the current technology, bacterial detection is usually time-consuming and laborious and the samples need tedious processing even to be tested. Herein, we present a terahertz metasensor based on the coupling of electrical and toroidal dipoles to achieve rapid, non-destructive, label-free identification and highly sensitive quantitative detection of the two most common pathogenic bacteria. The reinforcement of the toroidal dipole significantly boosts the light-matter interactions around the surface of the microstructure, and thus the sensitivity and Q factor of the designed metasensor reach as high as 378 GHz per refractive index unit (RIU) and 21.28, respectively. Combined with the aforementioned advantages, the proposed metasensor successfully identified Escherichia coli and Staphylococcus aureus and quantitatively detected four concentrations with the lowest detectable concentration being ∼104 cfu mL-1 in the experiment. This work naturally enriches the research on THz metasensors based on the interference mechanism and inspires more innovations to facilitate the development of biosensing applications.
Collapse
Affiliation(s)
- Zhaofu Ma
- Department of General Surgery, First Medical Center, Chinese PLA General Hospital, Beijing 100853, China.
- Innovation Laboratory of Terahertz Biophysics, National Innovation Institute of Defense Technology, Beijing 100071, China.
| | - Yanan Jiao
- Department of General Surgery, First Medical Center, Chinese PLA General Hospital, Beijing 100853, China.
- Innovation Laboratory of Terahertz Biophysics, National Innovation Institute of Defense Technology, Beijing 100071, China.
| | - Chiben Zhang
- Air and Missile Defense College, Air Force Engineering University, Xi'an 710051, China
| | - Jing Lou
- Innovation Laboratory of Terahertz Biophysics, National Innovation Institute of Defense Technology, Beijing 100071, China.
- Air and Missile Defense College, Air Force Engineering University, Xi'an 710051, China
| | - Pengyue Zhao
- Department of General Surgery, First Medical Center, Chinese PLA General Hospital, Beijing 100853, China.
| | - Bin Zhang
- Department of General Surgery, First Medical Center, Chinese PLA General Hospital, Beijing 100853, China.
| | - Yujia Wang
- Department of General Surgery, First Medical Center, Chinese PLA General Hospital, Beijing 100853, China.
| | - Ying Yu
- Air and Missile Defense College, Air Force Engineering University, Xi'an 710051, China
| | - Wen Sun
- Department of Anesthesiology, The Second Affiliated Hospital, Tianjin University of Traditional Chinese Medicine, Tianjin 300250, China
| | - Yang Yan
- Department of General Surgery, First Medical Center, Chinese PLA General Hospital, Beijing 100853, China.
| | - Xingpeng Yang
- Department of General Surgery, First Medical Center, Chinese PLA General Hospital, Beijing 100853, China.
| | - Lang Sun
- Innovation Laboratory of Terahertz Biophysics, National Innovation Institute of Defense Technology, Beijing 100071, China.
| | - Ride Wang
- Innovation Laboratory of Terahertz Biophysics, National Innovation Institute of Defense Technology, Beijing 100071, China.
| | - Chao Chang
- Innovation Laboratory of Terahertz Biophysics, National Innovation Institute of Defense Technology, Beijing 100071, China.
| | - Xiru Li
- Department of General Surgery, First Medical Center, Chinese PLA General Hospital, Beijing 100853, China.
| | - Xiaohui Du
- Department of General Surgery, First Medical Center, Chinese PLA General Hospital, Beijing 100853, China.
| |
Collapse
|
13
|
Mousavi SM, Hashemi SA, Kalashgrani MY, Rahmanian V, Gholami A, Chiang WH, Lai CW. Biomedical Applications of an Ultra-Sensitive Surface Plasmon Resonance Biosensor Based on Smart MXene Quantum Dots (SMQDs). BIOSENSORS 2022; 12:743. [PMID: 36140128 PMCID: PMC9496527 DOI: 10.3390/bios12090743] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/28/2022] [Accepted: 09/07/2022] [Indexed: 11/17/2022]
Abstract
In today's world, the use of biosensors occupies a special place in a variety of fields such as agriculture and industry. New biosensor technologies can identify biological compounds accurately and quickly. One of these technologies is the phenomenon of surface plasmon resonance (SPR) in the development of biosensors based on their optical properties, which allow for very sensitive and specific measurements of biomolecules without time delay. Therefore, various nanomaterials have been introduced for the development of SPR biosensors to achieve a high degree of selectivity and sensitivity. The diagnosis of deadly diseases such as cancer depends on the use of nanotechnology. Smart MXene quantum dots (SMQDs), a new class of nanomaterials that are developing at a rapid pace, are perfect for the development of SPR biosensors due to their many advantageous properties. Moreover, SMQDs are two-dimensional (2D) inorganic segments with a limited number of atomic layers that exhibit excellent properties such as high conductivity, plasmonic, and optical properties. Therefore, SMQDs, with their unique properties, are promising contenders for biomedicine, including cancer diagnosis/treatment, biological sensing/imaging, antigen detection, etc. In this review, SPR biosensors based on SMQDs applied in biomedical applications are discussed. To achieve this goal, an introduction to SPR, SPR biosensors, and SMQDs (including their structure, surface functional groups, synthesis, and properties) is given first; then, the fabrication of hybrid nanoparticles (NPs) based on SMQDs and the biomedical applications of SMQDs are discussed. In the next step, SPR biosensors based on SMQDs and advanced 2D SMQDs-based nanobiosensors as ultrasensitive detection tools are presented. This review proposes the use of SMQDs for the improvement of SPR biosensors with high selectivity and sensitivity for biomedical applications.
Collapse
Affiliation(s)
- Seyyed Mojtaba Mousavi
- Chemical Engineering Department, National Taiwan University of Science and Technology, Taipei City 106335, Taiwan
| | - Seyyed Alireza Hashemi
- Nano-Materials and Polymer Nano-Composites Laboratory, School of Engineering, University of British Columbia, Kelowna, BC V1V 1V7, Canada
| | - Masoomeh Yari Kalashgrani
- The Center of Biotechnology Research, Shiraz University of Medical Science, Shiraz 71468-64685, Iran
| | - Vahid Rahmanian
- The Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Lodz, Poland
| | - Ahmad Gholami
- The Center of Biotechnology Research, Shiraz University of Medical Science, Shiraz 71468-64685, Iran
| | - Wei-Hung Chiang
- Chemical Engineering Department, National Taiwan University of Science and Technology, Taipei City 106335, Taiwan
| | - Chin Wei Lai
- Nanotechnology & Catalysis Research Centre (NANOCAT), Level 3, Block A, Institute for Advanced Studies (IAS), Universiti Malaya (MU), Kuala Lumpur 50603, Malaysia
| |
Collapse
|
14
|
Babar ZUD, Della Ventura B, Velotta R, Iannotti V. Advances and emerging challenges in MXenes and their nanocomposites for biosensing applications. RSC Adv 2022; 12:19590-19610. [PMID: 35865615 PMCID: PMC9258029 DOI: 10.1039/d2ra02985e] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 06/21/2022] [Indexed: 12/14/2022] Open
Abstract
Two-dimensional materials have unique properties and their better functionality has created new paradigms in the field of sensing. Over the past decade, a new family of 2D materials known as MXenes has emerged as a promising material for numerous applications, including biosensing. Their metallic conductivity, rich surface chemistry, hydrophilicity, good biocompatibility, and high anchoring capacity for biomaterials make them an attractive candidate to detect a variety of analytes. Despite such notable properties, there are certain limitations associated with them. This review aims to present a detailed survey of MXene's synthesis; in particular, their superiority in the field of biosensing as compared to other 2D materials is addressed. Their low oxidative stability is still an open challenge, and recent investigations on MXene's oxidation are summarized. The hexagonal stacking network of MXenes acts as a distinctive matrix to load nanoparticles, and the embedded nanoparticles can bind an excess number of biomolecules (e.g., antibodies) thereby improving biosensor performance. We will also discuss the synthesis and corresponding performance of MXenes nanocomposites with noble metal nanoparticles and magnetic nanoparticles. Furthermore, Nb and Ti2C-based MXenes, and Ti3C2-MXene sandwich immunoassays are also reviewed in view of their importance. Different aspects and challenges associated with MXenes (from their synthesis to final applications) and the future perspectives described give new directions to fabricate novel biosensors.
Collapse
Affiliation(s)
- Zaheer Ud Din Babar
- Scuola Superiore Meridionale (SSM), University of Naples Federico II Largo S. Marcellino, 10 80138 Italy
- Department of Physics "E. Pancini", University of Naples Federico II Via Cintia 26 80126 Naples Italy
| | - Bartolomeo Della Ventura
- Department of Physics "E. Pancini", University of Naples Federico II Via Cintia 26 80126 Naples Italy
| | - Raffaele Velotta
- Department of Physics "E. Pancini", University of Naples Federico II Via Cintia 26 80126 Naples Italy
| | - Vincenzo Iannotti
- Department of Physics "E. Pancini", University of Naples Federico II Via Cintia 26 80126 Naples Italy
- CNR-SPIN (Institute for Superconductors, Oxides and Other Innovative Materials and Devices) Piazzale V. Tecchio 80 80125 Naples Italy
| |
Collapse
|
15
|
Zheng F, Chen Z, Li J, Wu R, Zhang B, Nie G, Xie Z, Zhang H. A Highly Sensitive CRISPR-Empowered Surface Plasmon Resonance Sensor for Diagnosis of Inherited Diseases with Femtomolar-Level Real-Time Quantification. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2105231. [PMID: 35343100 PMCID: PMC9108660 DOI: 10.1002/advs.202105231] [Citation(s) in RCA: 88] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 02/21/2022] [Indexed: 05/25/2023]
Abstract
The clustered regularly interspaced short palindromic repeats (CRISPR) molecular system has emerged as a promising technology for the detection of nucleic acids. Herein, the development of a surface plasmon resonance (SPR) sensor that is functionalized with a layer of locally grown graphdiyne film, achieving excellent sensing performance when coupled with catalytically deactivated CRISPR-associated protein 9 (dCas9), is reported. dCas9 protein is immobilized on the sensor surface and complexed with a specific single-guide RNA, enabling the amplification-free detection of target sequences within genomic DNA. The sensor, termed CRISPR-SPR-Chip, is used to successfully analyze recombinant plasmids with only three-base mutations with a limit of detection as low as 1.3 fM. Real-time monitoring CRISPR-SPR-Chip is used to analyze clinical samples of patients with Duchenne muscular dystrophy with two exon deletions, which are detected without any pre-amplification step, yielding significantly positive results within 5 min. The ability of this novel CRISPR-empowered SPR (CRISPR-eSPR) sensing platform to rapidly, precisely, sensitively, and specifically detect a target gene sequence provides a new on-chip optic approach for clinical gene analysis.
Collapse
Affiliation(s)
- Fei Zheng
- Shenzhen Engineering Laboratory of phosphorene and OptoelectronicsInternational Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of EducationShenzhen Institute of Translational MedicineDepartment of OtolaryngologyShenzhen Second People's Hospitalthe First Affiliated HospitalInstitute of Microscale OptoelectronicsShenzhen UniversityShenzhen518060P.R. China
| | - Zhi Chen
- Shenzhen Engineering Laboratory of phosphorene and OptoelectronicsInternational Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of EducationShenzhen Institute of Translational MedicineDepartment of OtolaryngologyShenzhen Second People's Hospitalthe First Affiliated HospitalInstitute of Microscale OptoelectronicsShenzhen UniversityShenzhen518060P.R. China
| | - Jingfeng Li
- Shenzhen Engineering Laboratory of phosphorene and OptoelectronicsInternational Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of EducationShenzhen Institute of Translational MedicineDepartment of OtolaryngologyShenzhen Second People's Hospitalthe First Affiliated HospitalInstitute of Microscale OptoelectronicsShenzhen UniversityShenzhen518060P.R. China
- Shenzhen International Institute for Biomedical ResearchShenzhen518110China
| | - Rui Wu
- Laboratory of Robotics and SystemHarbin Institute of TechnologyHarbin150001P. R. China
| | - Bin Zhang
- Shenzhen Engineering Laboratory of phosphorene and OptoelectronicsInternational Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of EducationShenzhen Institute of Translational MedicineDepartment of OtolaryngologyShenzhen Second People's Hospitalthe First Affiliated HospitalInstitute of Microscale OptoelectronicsShenzhen UniversityShenzhen518060P.R. China
| | - Guohui Nie
- Shenzhen Engineering Laboratory of phosphorene and OptoelectronicsInternational Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of EducationShenzhen Institute of Translational MedicineDepartment of OtolaryngologyShenzhen Second People's Hospitalthe First Affiliated HospitalInstitute of Microscale OptoelectronicsShenzhen UniversityShenzhen518060P.R. China
| | - Zhongjian Xie
- Institute of PediatricsShenzhen Children's HospitalShenzhenGuangdong518038P. R. China
- Shenzhen International Institute for Biomedical ResearchShenzhenGuangdong518116P. R. China
| | - Han Zhang
- Shenzhen Engineering Laboratory of phosphorene and OptoelectronicsInternational Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of EducationShenzhen Institute of Translational MedicineDepartment of OtolaryngologyShenzhen Second People's Hospitalthe First Affiliated HospitalInstitute of Microscale OptoelectronicsShenzhen UniversityShenzhen518060P.R. China
| |
Collapse
|
16
|
Bhardwaj SK, Singh H, Khatri M, Kim KH, Bhardwaj N. Advances in MXenes-based optical biosensors: A review. Biosens Bioelectron 2022; 202:113995. [DOI: 10.1016/j.bios.2022.113995] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 10/22/2021] [Accepted: 01/10/2022] [Indexed: 12/20/2022]
|
17
|
Wu H, Xie Y, Ma Y, Zhang B, Xia B, Zhang P, Qian W, He D, Zhang X, Li BW, Nan CW. Aqueous MXene/Xanthan Gum Hybrid Inks for Screen-Printing Electromagnetic Shielding, Joule Heater, and Piezoresistive Sensor. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2107087. [PMID: 35274448 DOI: 10.1002/smll.202107087] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 01/21/2022] [Indexed: 06/14/2023]
Abstract
MXenes have exhibited potential for application in flexible devices owing to their remarkable electronic, optical, and mechanical properties. Printing strategies have emerged as a facile route for additive manufacturing of MXene-based devices, which relies on the rational design of functional inks with appropriate rheological properties. Herein, aqueous MXene/xanthan gum hybrid inks with tunable viscosity, excellent printability, and long-term stability are designed. Screen-printed flexible MXene films using such hybrid inks exhibit a high conductivity up to 4.8 × 104 S m-1 , which is suitable to construct multifunctional devices mainly including electromagnetic shielding, Joule heaters, and piezoresistive sensors. The average electromagnetic interference (EMI) shielding value can reach to 40.1 dB. In the Joule heater, the heating rate of printed MXene film can reach 20 °C s-1 under a driving voltage of 4 V, with a highest steady-state temperature of 130.8 °C. An MXene-based piezoresistive sensor prepared by the printing interdigital electrode also presents good sensing performance with a short response time of 130 ms and wide pressure region up to 30 kPa. As a result, screen-printed MXene film exhibits reinforced multifunctional performance, which is promising for application in the next-generation of intelligent and wearable devices.
Collapse
Affiliation(s)
- Han Wu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Center of Smart Materials and Devices, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Yimei Xie
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Center of Smart Materials and Devices, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Yanan Ma
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Center of Smart Materials and Devices, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Binbin Zhang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Center of Smart Materials and Devices, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Bin Xia
- Hubei Engineering Research Center of RF-Microwave Technology and Application, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Pengxiang Zhang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Center of Smart Materials and Devices, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Wei Qian
- Hubei Engineering Research Center of RF-Microwave Technology and Application, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Daping He
- Hubei Engineering Research Center of RF-Microwave Technology and Application, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Xin Zhang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Center of Smart Materials and Devices, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Bao-Wen Li
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Center of Smart Materials and Devices, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Ce-Wen Nan
- State Key Lab of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, P. R. China
| |
Collapse
|
18
|
Cheng Q, Wang S, Lv J, Liu N. Topological photonic crystal biosensor with valley edge modes based on a silicon-on-insulator slab. OPTICS EXPRESS 2022; 30:10792-10801. [PMID: 35473038 DOI: 10.1364/oe.443907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 02/07/2022] [Indexed: 06/14/2023]
Abstract
In the development of integrated sensing, how to reduce losses and improve robustness has always been one of the key problems to be solved. The topological photonic crystal structure based on the quantum Hall effect has gradually attracted the attention of researchers due to its unique immune defect performance and anti-scattering performance. Here, we have successfully applied the valley photonic crystal structures to topologically manipulate the light within the band gap of 252 THz-317 THz in a silicon-on-insulator platform. We experimentally demonstrated that satisfactory transmission performance can be obtained using the valley-dependent topological edge states below light cone, even if there are structure defects such as lattice missing and lattice mistake near the interface between two kinds VPCs. Based on the features of topological protection, a triangular cavity consisting of three 10×a-length sides is proposed, and the Q factor value reaches 1.83×105 with little influence from defects. Finally, based on drying etching technology, a biosensor with cavity-coupled waveguide structure was prepared, and the RI sensitivity was 1228 nm/RIU.
Collapse
|
19
|
Lei Z, Guo B. 2D Material-Based Optical Biosensor: Status and Prospect. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2102924. [PMID: 34898053 PMCID: PMC8811838 DOI: 10.1002/advs.202102924] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 09/05/2021] [Indexed: 05/07/2023]
Abstract
The combination of 2D materials and optical biosensors has become a hot research topic in recent years. Graphene, transition metal dichalcogenides, black phosphorus, MXenes, and other 2D materials (metal oxides and degenerate semiconductors) have unique optical properties and play a unique role in the detection of different biomolecules. Through the modification of 2D materials, optical biosensor has the advantages that traditional sensors (such as electrical sensing) do not have, and the sensitivity and detection limit are greatly improved. Here, optical biosensors based on different 2D materials are reviewed. First, various detection methods of biomolecules, including surface plasmon resonance (SPR), fluorescence resonance energy transfer (FRET), and evanescent wave and properties, preparation and integration strategies of 2D material, are introduced in detail. Second, various biosensors based on 2D materials are summarized. Furthermore, the applications of these optical biosensors in biological imaging, food safety, pollution prevention/control, and biological medicine are discussed. Finally, the future development of optical biosensors is prospected. It is believed that with their in-depth research in the laboratory, optical biosensors will gradually become commercialized and improve people's quality of life in many aspects.
Collapse
Affiliation(s)
- Zong‐Lin Lei
- Key Lab of In‐Fiber Integrated Optics of Ministry of Education of ChinaHarbin Engineering UniversityHarbin150001China
| | - Bo Guo
- Key Lab of In‐Fiber Integrated Optics of Ministry of Education of ChinaHarbin Engineering UniversityHarbin150001China
| |
Collapse
|
20
|
Pandey AK, Hashemi M. Plasmonic Sensor Based on Molybdenum Trioxide-MXene Heterojunction for Refractive Index Sensing. ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING 2022. [DOI: 10.1007/s13369-021-05551-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
21
|
Abstract
MXenes and their related nanocomposites with superior physicochemical properties such as high surface area, ease of synthesis and functionalization, high drug loading capacity, collective therapy potentials, pH-triggered drug release behavior,...
Collapse
|
22
|
Wan H, Xiao X, Ang YS. Edge Doping Engineering of High-Performance Graphene Nanoribbon Molecular Spintronic Devices. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 12:56. [PMID: 35010006 PMCID: PMC8746629 DOI: 10.3390/nano12010056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 12/18/2021] [Accepted: 12/21/2021] [Indexed: 06/14/2023]
Abstract
We study the quantum transport properties of graphene nanoribbons (GNRs) with a different edge doping strategy using density functional theory combined with nonequilibrium Green's function transport simulations. We show that boron and nitrogen edge doping on the electrodes region can substantially modify the electronic band structures and transport properties of the system. Remarkably, such an edge engineering strategy effectively transforms GNR into a molecular spintronic nanodevice with multiple exceptional transport properties, namely: (i) a dual spin filtering effect (SFE) with 100% filtering efficiency; (ii) a spin rectifier with a large rectification ratio (RR) of 1.9 ×106; and (iii) negative differential resistance with a peak-to-valley ratio (PVR) of 7.1 ×105. Our findings reveal a route towards the development of high-performance graphene spintronics technology using an electrodes edge engineering strategy.
Collapse
Affiliation(s)
- Haiqing Wan
- Department of Ecology and Environment, Yuzhang Normal University, Nanchang 330029, China
- Science, Mathematics and Technology (SMT), Singapore University of Technology and Design, Singapore 487372, Singapore
| | - Xianbo Xiao
- School of Computer Science, Jiangxi University of Chinese Medicine, Nanchang 330004, China;
| | - Yee Sin Ang
- Science, Mathematics and Technology (SMT), Singapore University of Technology and Design, Singapore 487372, Singapore
| |
Collapse
|
23
|
High Sensitivity Surface Plasmon Resonance Sensor Based on Periodic Multilayer Thin Films. NANOMATERIALS 2021; 11:nano11123399. [PMID: 34947748 PMCID: PMC8703543 DOI: 10.3390/nano11123399] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/09/2021] [Accepted: 12/10/2021] [Indexed: 01/04/2023]
Abstract
Surface plasmon resonance (SPR) biosensors consisting of alternate layers of silver (Ag) and TiO2 thin film have been proposed as a high sensitivity biosensor. The structure not only prevents the Ag film from oxidation, but also enhances the field inside the structure, thereby improving the performance of the sensor. Genetic algorithm (GA) was used to optimize the proposed structure and its maximum angular sensitivity was 384°/RIU (refractive index unit) at the refractive index environment of 1.3425, which is about 3.12 times that of the conventional Ag-based biosensor. A detailed discussion, based on the finite difference time domain (FDTD) method, revealed that an enhanced evanescent field at the top layer–analyte region results in the ultra-sensitivity characteristic. We expect that the proposed structure can be a suitable biosensor for chemical detection, clinical diagnostics, and biological examination.
Collapse
|
24
|
Zhang J, Jiang B, Song Y, Xu Y. Surface phonon resonance enhanced Goos-Hänchen shift and its sensing application in the mid-infrared region. OPTICS EXPRESS 2021; 29:32973-32982. [PMID: 34809118 DOI: 10.1364/oe.439607] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 09/19/2021] [Indexed: 06/13/2023]
Abstract
The effect of surface phonon resonance (SPhR) and long range SPhR (LRSPhR) on the Goos-Hänchen shift (GHS) in the mid-infrared wavelength region are investigated. The GHS is significantly enhanced around the resonant angles of SPhR and LRSPhR with the p-polarized incident light. A highly sensitive refractive index sensor based on the enhanced GHS is proposed. The LRSPhR shows higher GHS and sensitivity than those of SPhR. The GHS and refractive index sensitivity can be further enhanced by engineering the damping rate of the phononic material. These results provide a potential route toward the large GHS and high refractive index sensitivity, thus opening up new opportunities for high sensitivity optical sensors based on GHS at the mid-infrared wavelength range.
Collapse
|
25
|
Chen C, Li H, Li H, Yang T. Scanning probe microscopy by localized surface plasmon resonance at fiber taper tips. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2021; 92:093702. [PMID: 34598521 DOI: 10.1063/5.0059747] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 08/21/2021] [Indexed: 06/13/2023]
Abstract
Plasmonic antenna probes have been widely investigated for detecting electrical permittivity changes on the nanometer scale by employing high-sensitivity localized surface plasmon resonance (LSPR). Although it is intuitive to integrate such a probe onto an atomic force microscope (AFM) to add one more measurable quantity to the family of scanning probe microscopy techniques, the strong scattering background of the AFM tip overwhelms the LSPR scattering signal. To solve this problem, we combined evanescent coupling, polarization and spatial filtering, confocal spectroscopy, and numerical methods to extract clean LSPR spectra from a gold nanosphere-antenna probe attached to the tip of a fiber taper. By mounting the fiber taper on a custom quartz-tuning-fork SPM, we achieved high-quality nanometer-scale imaging of gold nanospheres on glass slides by mapping the LSPR wavelength shift. In addition, we reported an LSPR wavelength shift enhancement by more complicated probe designs and the consequent promise for higher-sensitivity microscopy. Our optical system and spectral processing method provide an effective solution to the long-standing quest for LSPR scanning microscopy.
Collapse
Affiliation(s)
- Cheng Chen
- State Key Laboratory of Advanced Optical Communication Systems and Networks, Key Laboratory for Thin Film and Microfabrication of the Ministry of Education, Department of Instrument Science & Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Hui Li
- State Key Laboratory of Advanced Optical Communication Systems and Networks, Key Laboratory for Thin Film and Microfabrication of the Ministry of Education, Department of Instrument Science & Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Hongquan Li
- State Key Laboratory of Advanced Optical Communication Systems and Networks, Key Laboratory for Thin Film and Microfabrication of the Ministry of Education, Department of Instrument Science & Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Tian Yang
- State Key Laboratory of Advanced Optical Communication Systems and Networks, Key Laboratory for Thin Film and Microfabrication of the Ministry of Education, Department of Instrument Science & Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
26
|
Improved Refractive Index-Sensing Performance of Multimode Fano-Resonance-Based Metal-Insulator-Metal Nanostructures. NANOMATERIALS 2021; 11:nano11082097. [PMID: 34443927 PMCID: PMC8402130 DOI: 10.3390/nano11082097] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 08/12/2021] [Accepted: 08/16/2021] [Indexed: 01/29/2023]
Abstract
This work proposed a multiple mode Fano resonance-based refractive index sensor with high sensitivity that is a rarely investigated structure. The designed device consists of a metal–insulator–metal (MIM) waveguide with two rectangular stubs side-coupled with an elliptical resonator embedded with an air path in the resonator and several metal defects set in the bus waveguide. We systematically studied three types of sensor structures employing the finite element method. Results show that the surface plasmon mode’s splitting is affected by the geometry of the sensor. We found that the transmittance dips and peaks can dramatically change by adding the dual air stubs, and the light–matter interaction can effectively enhance by embedding an air path in the resonator and the metal defects in the bus waveguide. The double air stubs and an air path contribute to the cavity plasmon resonance, and the metal defects facilitate the gap plasmon resonance in the proposed plasmonic sensor, resulting in remarkable characteristics compared with those of plasmonic sensors. The high sensitivity of 2600 nm/RIU and 1200 nm/RIU can simultaneously achieve in mode 1 and mode 2 of the proposed type 3 structure, which considerably raises the sensitivity by 216.67% for mode 1 and 133.33% for mode 2 compared to its regular counterpart, i.e., type 2 structure. The designed sensing structure can detect the material’s refractive index in a wide range of gas, liquids, and biomaterials (e.g., hemoglobin concentration).
Collapse
|
27
|
A Multi-Objective Optimization of 2D Materials Modified Surface Plasmon Resonance (SPR) Based Sensors: An NSGA II Approach. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11104353] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Modifying the structure of surface plasmon resonance based sensors by adding 2D materials has been proven to considerably enhance the sensor’s sensitivity in comparison to a traditional three layer configuration. Moreover, a thin semiconductor film placed on top of the metallic layer and stacked together with 2D materials enhances even more sensitivity, but at the cost of worsening the plasmonic couplic strength at resonance (minimum level of reflectivity) and broadening the response. With each supplementary layer added, the complexity of optimizing the performance increases due to the extended parameter space of the sensor. This study focused on overcoming these difficulties in the design process of sensors by employing a multi-objective genetic algorithm (NSGA II) alongside a transfer matrix method (TMM) and, at the same time, optimizing the sensitivity to full width at half maximum (FWHM), and the reflectivity level at a resonance for a four layer sensor structure. Firstly, the thin semiconductor’s refractive index was optimized to obtain the maximum achievable sensitivity with a narrow FWHM and a reflectivity level at a resonance of almost zero. Secondly, it was shown that refractive indices of barium titanate (BaTiO3) and silicon (Si) are the closest to the optimal indices for the silver—graphene/WS2 and MoS2 modified structures, respectively. Sensitivities up to 302 deg/RIU were achieved by Ag–BaTIO3–graphene/WS2 configurations with an FWHM smaller than 8 deg and a reflectivity level less than 0.5% at resonance.
Collapse
|
28
|
Ti 2CT x MXene as a Saturable Absorber for Passively Q-Switched Solid-State Lasers. Polymers (Basel) 2021; 13:polym13020247. [PMID: 33450949 PMCID: PMC7828443 DOI: 10.3390/polym13020247] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/08/2021] [Accepted: 01/10/2021] [Indexed: 11/23/2022] Open
Abstract
In this work, we successfully fabricated a transmissive saturable absorber (SA) with Ti2CTx MXene using the spin-coating method. By inserting the Ti2CTx saturable absorber into the diode-pumped solid-state (DPSS) Nd:YAG laser, a stable passively Q-switched operation was obtained near 1.06 μm. At a pump power of 4.5 W, we obtained the shortest pulse duration of 163 ns with a repetition rate of 260 kHz. The corresponding single pulse energy and peak pulse power were 3.638 μJ and 22.3 W, respectively. The slope efficiency and the optical conversion efficiency of the laser were 21% and 25.5%, respectively. To the best of our knowledge, this is the first time that Ti2CTx was used in the passively Q-switched solid-state lasers. This work demonstrates that Ti2CTx can be a promising saturable absorber for solid-state laser pulse generation.
Collapse
|
29
|
Yaqub A, Shafiq Q, Khan AR, Husnain SM, Shahzad F. Recent advances in the adsorptive remediation of wastewater using two-dimensional transition metal carbides (MXenes): a review. NEW J CHEM 2021. [DOI: 10.1039/d1nj00772f] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
MXenes, since their discovery in 2011, have garnered significant research attention for a variety of applications due to their exciting physico-chemical properties.
Collapse
Affiliation(s)
- Azra Yaqub
- Chemistry Division
- Directorate of Science
- Pakistan Institute of Nuclear Science and Technology (PINSTECH)
- Islamabad
- Pakistan
| | - Qamar Shafiq
- National Center for Nanotechnology
- Department of Metallurgy and Materials Engineering
- Pakistan Institute of Engineering and Applied Sciences (PIEAS)
- Islamabad 45650
- Pakistan
| | - Abdul Rehman Khan
- Materials Division
- Directorate of Technology
- Pakistan Institute of Nuclear Science and Technology (PINSTECH)
- Islamabad
- Pakistan
| | - Syed M. Husnain
- Chemistry Division
- Directorate of Science
- Pakistan Institute of Nuclear Science and Technology (PINSTECH)
- Islamabad
- Pakistan
| | - Faisal Shahzad
- National Center for Nanotechnology
- Department of Metallurgy and Materials Engineering
- Pakistan Institute of Engineering and Applied Sciences (PIEAS)
- Islamabad 45650
- Pakistan
| |
Collapse
|
30
|
Qiu S, Yuan J, Zhou X, Li F, Wang Q, Qu Y, Yan B, Wu Q, Wang K, Sang X, Long K, Yu C. Hollow-Core Negative Curvature Fiber with High Birefringence for Low Refractive Index Sensing Based on Surface Plasmon Resonance Effect. SENSORS 2020; 20:s20226539. [PMID: 33207618 PMCID: PMC7697069 DOI: 10.3390/s20226539] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 11/12/2020] [Accepted: 11/13/2020] [Indexed: 11/16/2022]
Abstract
In this paper, a hollow-core negative curvature fiber (HC-NCF) with high birefringence is proposed for low refractive index (RI) sensing based on surface plasmon resonance effect. In the design, the cladding region of the HC-NCF is composed of only one ring of eight silica tubes, and two of them are selectively filled with the gold wires. The influences of the gold wires-filled HC-NCF structure parameters on the propagation characteristic are investigated by the finite element method. Moreover, the sensing performances in the low RI range of 1.20-1.34 are evaluated by the traditional confinement loss method and novel birefringence analysis method, respectively. The simulation results show that for the confinement loss method, the obtained maximum sensitivity, resolution, and figure of merit of the gold wires-filled HC-NCF-based sensor are -5700 nm/RIU, 2.63 × 10-5 RIU, and 317 RIU-1, respectively. For the birefringence analysis method, the obtained maximum sensitivity, resolution, and birefringence of the gold wires-filled HC-NCF-based sensor are -6100 nm/RIU, 2.56 × 10-5 RIU, and 1.72 × 10-3, respectively. It is believed that the proposed gold wires-filled HC-NCF-based low RI sensor has important applications in the fields of biochemistry and medicine.
Collapse
Affiliation(s)
- Shi Qiu
- State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing 100876, China; (S.Q.); (Q.W.); (Y.Q.); (B.Y.); (K.W.); (X.S.); (C.Y.)
| | - Jinhui Yuan
- State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing 100876, China; (S.Q.); (Q.W.); (Y.Q.); (B.Y.); (K.W.); (X.S.); (C.Y.)
- Research Center for Convergence Networks and Ubiquitous Services, University of Science & Technology Beijing, Beijing 100083, China; (X.Z.); (K.L.)
- Correspondence: (J.Y.); (Q.W.)
| | - Xian Zhou
- Research Center for Convergence Networks and Ubiquitous Services, University of Science & Technology Beijing, Beijing 100083, China; (X.Z.); (K.L.)
| | - Feng Li
- Photonics Research Centre, Department of Electronic and Information Engineering, The Hong Kong Polytechnic University, Hung Hom, Hong Kong;
| | - Qiwei Wang
- State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing 100876, China; (S.Q.); (Q.W.); (Y.Q.); (B.Y.); (K.W.); (X.S.); (C.Y.)
| | - Yuwei Qu
- State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing 100876, China; (S.Q.); (Q.W.); (Y.Q.); (B.Y.); (K.W.); (X.S.); (C.Y.)
| | - Binbin Yan
- State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing 100876, China; (S.Q.); (Q.W.); (Y.Q.); (B.Y.); (K.W.); (X.S.); (C.Y.)
| | - Qiang Wu
- Department of Physics and Electrical Engineering, Northumbria University, Newcastle upon Tyne NE1 8ST, UK
- Correspondence: (J.Y.); (Q.W.)
| | - Kuiru Wang
- State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing 100876, China; (S.Q.); (Q.W.); (Y.Q.); (B.Y.); (K.W.); (X.S.); (C.Y.)
| | - Xinzhu Sang
- State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing 100876, China; (S.Q.); (Q.W.); (Y.Q.); (B.Y.); (K.W.); (X.S.); (C.Y.)
| | - Keping Long
- Research Center for Convergence Networks and Ubiquitous Services, University of Science & Technology Beijing, Beijing 100083, China; (X.Z.); (K.L.)
| | - Chongxiu Yu
- State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing 100876, China; (S.Q.); (Q.W.); (Y.Q.); (B.Y.); (K.W.); (X.S.); (C.Y.)
| |
Collapse
|
31
|
Spector M, Ang AS, Minin OV, Minin IV, Karabchevsky A. Photonic hook formation in near-infrared with MXene Ti 3C 2 nanoparticles. NANOSCALE ADVANCES 2020; 2:5312-5318. [PMID: 36132028 PMCID: PMC9418953 DOI: 10.1039/d0na00485e] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 12/07/2020] [Accepted: 09/22/2020] [Indexed: 06/01/2023]
Abstract
MXenes, a recently developed class of 2D materials, have attracted considerable attention because of their graphene-like but highly tunable properties. It appears that the metallic properties of MXene titanium carbide are pronounced in near-infrared with well-defined localised surface plasmon resonance (LSPR). Here, we report on a curved photonic nanojet, known as the photonic hook, applied on a titanium carbide nanoparticle for the particle's optomechanical manipulation. We show that the optical forces generated and applied on titanium carbide nanoparticles of various shapes are based on the LSPR excitation in near-infrared. We compare the obtained results to traditional plasmonic gold nanoparticles which exhibit LSPR in visible. Considering the diversity of the MXene family, this study is a first step towards photonic devices that utilize optomechanical manipulation in near-infrared for biomedical research, optical trapping and others.
Collapse
Affiliation(s)
- Marat Spector
- School of Electrical and Computer Engineering, Ben-Gurion University of the Negev Beer-Sheva 8410501 Israel
| | - Angeleene S Ang
- School of Electrical and Computer Engineering, Ben-Gurion University of the Negev Beer-Sheva 8410501 Israel
| | - Oleg V Minin
- National Research Tomsk State University Tomsk 634050 Russia
| | - Igor V Minin
- National Research Tomsk State University Tomsk 634050 Russia
| | - Alina Karabchevsky
- School of Electrical and Computer Engineering, Ben-Gurion University of the Negev Beer-Sheva 8410501 Israel
| |
Collapse
|
32
|
Wu Q, Cao L, Ang YS, Ang LK. Superior and tunable gas sensing properties of Janus PtSSe monolayer. NANO EXPRESS 2020. [DOI: 10.1088/2632-959x/ab95e6] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Abstract
Inspired by superior gas sensing properties of PtSe2 monolayer and tunable gas sensing properties of Janus MoSSe monolayer, we study the gas sensing properties of the Janus PtSSe monolayer for CO, CO2, H2O, NH3, NO and NO2 gas molecules using first-principles density functional calculations. We calculate adsorption height and adsorption energies of the gas molecules to assess the adsorption strength of the gas molecules. Then the charge transfer from PtSSe to gas molecules is evaluated. We also investigate the effects of strain and external electric field on the gas sensing properties of Janus PtSSe monolayer. We finally reveal the origin of the superior gas sensing properties from projected density of states analysis. Our results suggest that the Janus PtSSe monolayer is a promising gas sensor with superior and tunable sensing properties.
Collapse
|
33
|
Hu Y, Tan C, Lin X, Lai Z, Zhang X, Lu Q, Feng N, Yang D, Weng L. Exonuclease III-Regulated Target Cyclic Amplification-Based Single Nucleotide Polymorphism Detection Using Ultrathin Ternary Chalcogenide Nanosheets. Front Chem 2020; 7:844. [PMID: 31921768 PMCID: PMC6913186 DOI: 10.3389/fchem.2019.00844] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 11/19/2019] [Indexed: 12/30/2022] Open
Abstract
Herein, we report that the ternary chalcogenide nanosheet exhibits different affinity toward oligonucleotides with different lengths and efficiently quenches the fluorescence of dye-labeled DNA probes. Based on these findings, as a proof-of-concept application, the ternary chalcogenide nanosheet is used as a target cyclic amplification biosensor, showing high specificity in discriminating single-base mismatch. This simple strategy is fast and sensitive for the single nucleotide polymorphism detection. Ultralow detection limit of unlabeled target (250 fM) and high discrimination ratio (5%) in the mixture of perfect match (mutant-type) and single-base mismatch (wild-type) target are achieved. This sensing method is extensively compatible for the single nucleotide polymorphism detection in clinical samples, making it a promising tool for the mutation-based clinical diagnostic and genomic research.
Collapse
Affiliation(s)
- Yanling Hu
- School of Electrical and Control Engineering, Nanjing Polytechnic Institute, Nanjing, China.,Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing, China
| | - Chaoliang Tan
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, Singapore
| | - Xin Lin
- School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Zhuangchai Lai
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, Singapore
| | - Xiao Zhang
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, Singapore
| | - Qipeng Lu
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, Singapore
| | - Ning Feng
- Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing, China
| | - Dongliang Yang
- Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing, China.,School of Physical and Mathematical Sciences, Nanjing Tech University (NanjingTech), Nanjing, China
| | - Lixing Weng
- Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing, China
| |
Collapse
|
34
|
Li W, Li Z, He J, Chu L. Design and Performance of a Composite Grating-Coupled Surface Plasmon Resonance Trace Liquid Concentration Sensor. SENSORS (BASEL, SWITZERLAND) 2019; 19:s19245502. [PMID: 31842509 PMCID: PMC6960833 DOI: 10.3390/s19245502] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Revised: 12/03/2019] [Accepted: 12/11/2019] [Indexed: 06/10/2023]
Abstract
In this paper, a grating-coupled surface plasmon resonance concentration sensor employing a gold and indium tin oxide (Au/ITO) nanoparticle composite instead of metal is proposed. The structure and material parameters of the sensor are discussed and analyzed. Taking the ethylene glycol concentration as an example, the influence of the nanocomposite on the wave vector matching, the influence of the refractive index of the medium to be tested and the influence of the concentration on the refractive index were analyzed in detail. The experimental results show that when the sensor is used for the measurement of ethylene glycol concentration, the correlation coefficient between the concentration and the refractive index is as high as 0.999995. The fitting curve and data correlation are good, and the sensitivity has a good linear relationship with the sensitivity. Therefore, the sensor structure proposed in this paper can be used to accurately measure the trace concentration of liquid, and its sensing mode has certain reference value for the measurement of general trace fluid concentration.
Collapse
Affiliation(s)
- Wenchao Li
- School of Control Engineering, Northeastern University at Qinhuangdao, Qinhuangdao 066004, China;
| | - Zhiquan Li
- Institute of Electrical Engineering, Yanshan University, Qinhuangdao 066004, China; (J.H.); (L.C.)
| | - Jiahuan He
- Institute of Electrical Engineering, Yanshan University, Qinhuangdao 066004, China; (J.H.); (L.C.)
| | - Liyang Chu
- Institute of Electrical Engineering, Yanshan University, Qinhuangdao 066004, China; (J.H.); (L.C.)
| |
Collapse
|
35
|
Fabrication and Characterization of a Metallic-Dielectric Nanorod Array by Nanosphere Lithography for Plasmonic Sensing Application. NANOMATERIALS 2019; 9:nano9121691. [PMID: 31779222 PMCID: PMC6956078 DOI: 10.3390/nano9121691] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 11/19/2019] [Accepted: 11/25/2019] [Indexed: 12/11/2022]
Abstract
In this paper, a periodic metallic–dielectric nanorod array which consists of Si nanorods coated with 30 nm Ag thin film set in a hexagonal configuration is fabricated and characterized. The fabrication procedure is performed by using nanosphere lithography with reactive ion etching, followed by Ag thin-film deposition. The mechanism of the surface and gap plasmon modes supported by the fabricated structure is numerically demonstrated by the three-dimensional finite element method. The measured and simulated absorptance spectra are observed to have a same trend and a qualitative fit. Our fabricated plasmonic sensor shows an average sensitivity of 340.0 nm/RIU when applied to a refractive index sensor ranging from 1.0 to 1.6. The proposed substrates provide a practical plasmonic nanorod-based sensing platform, and the fabrication methods used are technically effective and low-cost.
Collapse
|
36
|
Sensitivity Enhancement of Two-Dimensional Materials Based on Genetic Optimization in Surface Plasmon Resonance. SENSORS 2019; 19:s19051198. [PMID: 30857251 PMCID: PMC6427556 DOI: 10.3390/s19051198] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 02/27/2019] [Accepted: 03/05/2019] [Indexed: 11/17/2022]
Abstract
Sensitivity is an important performance index for evaluating surface plasmon resonance (SPR) biosensors. Sensitivity enhancement has always been a hot topic. It is found that the different refractive indices of samples require different combinations of prism and metal film for better sensitivity. Furthermore, the sensitivity can be enhanced by coating two-dimensional (2D) materials with appropriate layers on the metal film. At this time, it is necessary to choose the best film configuration to enhance sensitivity. With the emergence of more and more 2D materials, selecting the best configuration manually is becoming more complicated. Compared with the traditional manual method of selecting materials and layers, this paper proposes an optimization method based on a genetic algorithm to quickly and effectively find the optimal film configuration that enhances sensitivity. By using this method, not only can the optimal number of layers of 2D materials be determined quickly, but also the optimal configuration can be conveniently found when many materials are available. The maximum sensitivity can reach 400°/RIU after optimization. The method provided application value for the relevant researchers seeking to enhance sensitivity.
Collapse
|
37
|
Zhang Z, Si T, Liu J, Zhou G. In-Situ Grown Silver Nanoparticles on Nonwoven Fabrics Based on Mussel-Inspired Polydopamine for Highly Sensitive SERS Carbaryl Pesticides Detection. NANOMATERIALS (BASEL, SWITZERLAND) 2019; 9:E384. [PMID: 30845722 PMCID: PMC6473996 DOI: 10.3390/nano9030384] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Revised: 02/28/2019] [Accepted: 03/01/2019] [Indexed: 12/20/2022]
Abstract
The rapid sampling and efficient collection of target molecules from a real-world surface is fairly crucial for surface-enhanced Raman scattering (SERS) to detect trace pesticide residues in the environment and in agriculture fields. In this work, a versatile approach was exploited to fabricate a flexible SERS substrate for highly sensitive detection of carbaryl pesticides, using in-situ grown silver nanoparticles (AgNPs)on non-woven (NW) fabric surfaces based on mussel-inspired polydopamine (PDA) molecules. The obtained NW@PDA@AgNPs fabrics showed extremely sensitive and reproducible SERS signals toward crystal violet (CV) molecules, and the detection limit was as low as 1.0 × 10-12 M. More importantly, these NW@PDA@AgNPs fabrics could be directly utilized as flexible SERS substrates for the rapid extraction and detection of trace carbaryl pesticides from various fruit surfaces through a simple swabbing approach. It was identified that the detection limits of carbaryl residues from apple, orange, and banana surfaces were approximately decreased to 4.02 × 10-12, 6.04 × 10-12, and 5.03 × 10-12 g, respectively, demonstrating high sensitivity and superior reliability. These flexible substrates could not only drastically increase the collection efficiency from multifarious irregular-shaped matrices, but also greatly enhance analytical sensitivity and reliability for carbaryl pesticides. The fabricated flexible and multifunctional SERS substrates would have great potential to trace pesticide residue detection in the environment and bioscience fields.
Collapse
Affiliation(s)
- Zhiliang Zhang
- Key Laboratory of Fine Chemicals in Universities of Shandong, School of Chemistry and Pharmaceutical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China.
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China.
| | - Tiantian Si
- Key Laboratory of Fine Chemicals in Universities of Shandong, School of Chemistry and Pharmaceutical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China.
| | - Jun Liu
- School of Light Industry Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China.
| | - Guowei Zhou
- Key Laboratory of Fine Chemicals in Universities of Shandong, School of Chemistry and Pharmaceutical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China.
| |
Collapse
|