1
|
Serebrennikova KV, Komova NS, Zherdev AV, Dzantiev BB. SERS Sensors with Bio-Derived Substrates Under the Way to Agricultural Monitoring of Pesticide Residues. BIOSENSORS 2024; 14:573. [PMID: 39727838 DOI: 10.3390/bios14120573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 11/22/2024] [Accepted: 11/25/2024] [Indexed: 12/28/2024]
Abstract
Uncontrolled use of pesticides in agriculture leads to negative consequences for the environment, as well as for human and animal health. Therefore, timely detection of pesticides will allow application of measures to eliminate the excess of maximum residue limits and reduce possible negative consequences in advance. Common methods of pesticide analysis suffer from high costs, and are time consuming, and labor intensive. Currently, more attention is being paid to the development of surface-enhanced Raman scattering (SERS) sensors as a non-destructive and highly sensitive tool for detecting various chemicals in agricultural applications. This review focuses on the current developments of biocompatible SERS substrates based on natural materials with unique micro/nanostructures, flexible SERS substrates based on biopolymers, as well as functionalized SERS substrates, which are close to the current needs and requirements of agricultural product quality control and environmental safety assessment. The impact of herbicides on the process of photosynthesis is considered and the prospects for the application of Raman spectroscopy and SERS for the detection of herbicides are discussed.
Collapse
Affiliation(s)
- Kseniya V Serebrennikova
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Prospect 33, 119071 Moscow, Russia
| | - Nadezhda S Komova
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Prospect 33, 119071 Moscow, Russia
| | - Anatoly V Zherdev
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Prospect 33, 119071 Moscow, Russia
| | - Boris B Dzantiev
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Prospect 33, 119071 Moscow, Russia
| |
Collapse
|
2
|
Tran HN, Nguyen NB, Ly NH, Joo SW, Vasseghian Y. Core-shell Au@ZIF-67-based pollutant monitoring of thiram and carbendazim pesticides. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 317:120775. [PMID: 36455771 DOI: 10.1016/j.envpol.2022.120775] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 11/18/2022] [Accepted: 11/26/2022] [Indexed: 06/17/2023]
Abstract
A sensitive and stable substrate plays a vital role in the Raman spectroscopic techniques as an analytical method for detecting pesticides effectively from the environment. Enhancing signals from nanoparticles are weak and inconsistent in repeatability since analytes tend to degrade quickly under laser exposure. Herein, a novel substrate of Au@ZIF-67 is prepared on octahedral AuNPs by trapping pesticide molecules with small three-dimensional volumes by the flexibility of ZIF-67 for rapid detection with high sensitivity and stability. The two types of thiram and carbendazim pesticides, which are environmental pollutants that affect biodiversity, were successfully absorbed in Au@ZIF-67 nanostructures by adsorption-desorption equilibrium for analytical purposes in Raman spectroscopy. Spectra calculations of the thiram and carbendazim molecules on 8 atoms of Au using DFT were compared with the experimental data. The SERS enhancement factors for thiram and carbendazim were estimated to be 1.91 × 108 and 3.12 × 108, respectively, with the LOD values of trace amounts of ∼10-10 mol L-1. The novel substrate of Au@ZIF-67 is a propitious platform for detecting thiram and carbendazim in trace amounts, providing a helpful strategy for detecting residues with high performance in the environment at the laboratory and practical scales.
Collapse
Affiliation(s)
- Huynh Nhu Tran
- Department of Chemistry, Soongsil University, Seoul, 06978, South Korea
| | | | - Nguyễn Hoàng Ly
- Department of Chemistry, Gachon University, Seongnam, 13120, South Korea
| | - Sang-Woo Joo
- Department of Chemistry, Soongsil University, Seoul, 06978, South Korea.
| | - Yasser Vasseghian
- Department of Chemistry, Soongsil University, Seoul, 06978, South Korea; School of Engineering, Lebanese American University, Byblos, Lebanon; University Centre for Research & Development, Department of Mechanical Engineering, Chandigarh University, Gharuan, Mohali, Punjab, 140413, India; Department of Sustainable Engineering, Saveetha School of Engineering, SIMATS, Chennai, 602105, India.
| |
Collapse
|
3
|
Bai H, Zhang R, Li C, Liang A. Nanogold sol plasmon discattering assay for trace carbendazim in tea coupled aptamer with Au 3+-glyoxal-carbon dot nanocatalytic reaction. Front Nutr 2023; 10:1122876. [PMID: 36950331 PMCID: PMC10025530 DOI: 10.3389/fnut.2023.1122876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 02/06/2023] [Indexed: 03/08/2023] Open
Abstract
Carbendazim (CBZ) is a broad-spectrum fungicide, which is toxic to mammals. Therefore, it is very necessary to establish a sensitive detection for food safety. An experiment found that CDFe exhibited excellent catalysis for the nano-indicator reaction of HAuCl4-glyoxal to produce gold nanoparticles (AuNPs) and that the generated AuNPs have a very strong surface-enhanced Raman scattering (SERS) effect at 1613 cm-1 in the presence of Victoria blue B molecular probes, and resonance Rayleigh scattering (RRS) signals at 370 nm. The aptamer (Apt) suppressed the catalysis of CDFe to cause the SERS and RRS signals decreasing. With the addition of CBZ, the specific Apt reaction occurred to restore the catalysis of CDFe, and resulting in a linear increase in the signals of RRS and SERS. As a result, this new nanocatalytic amplification indicator reaction was coupled with a specific Apt reaction of carbendazim (CBZ), to construct a new CDFe catalytic amplification-aptamer SERS/RRS discattering assay for ultratrace CBZ, which was used to analyze CBZ in tea samples with satisfactory results. In addition, this biosensoring platform can be also used to assay profenofos.
Collapse
Affiliation(s)
- Hongyan Bai
- School of Public Health, Guilin Medical University, Guilin, China
- Guangxi Key Laboratory of Environmental Pollution Control Theory, Guilin, China
| | - Ran Zhang
- School of Public Health, Guilin Medical University, Guilin, China
- Guangxi Key Laboratory of Environmental Pollution Control Theory, Guilin, China
| | - Chongning Li
- School of Public Health, Guilin Medical University, Guilin, China
- Guangxi Key Laboratory of Environmental Pollution Control Theory, Guilin, China
- *Correspondence: Chongning Li
| | - Aihui Liang
- Guangxi Key Laboratory of Environmental Pollution Control Theory, Guilin, China
- Aihui Liang
| |
Collapse
|
4
|
Anžlovar A, Žagar E. Cellulose Structures as a Support or Template for Inorganic Nanostructures and Their Assemblies. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:1837. [PMID: 35683693 PMCID: PMC9182054 DOI: 10.3390/nano12111837] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 05/24/2022] [Accepted: 05/25/2022] [Indexed: 11/17/2022]
Abstract
Cellulose is the most abundant natural polymer and deserves the special attention of the scientific community because it represents a sustainable source of carbon and plays an important role as a sustainable energent for replacing crude oil, coal, and natural gas in the future. Intense research and studies over the past few decades on cellulose structures have mainly focused on cellulose as a biomass for exploitation as an alternative energent or as a reinforcing material in polymer matrices. However, studies on cellulose structures have revealed more diverse potential applications by exploiting the functionalities of cellulose such as biomedical materials, biomimetic optical materials, bio-inspired mechanically adaptive materials, selective nanostructured membranes, and as a growth template for inorganic nanostructures. This article comprehensively reviews the potential of cellulose structures as a support, biotemplate, and growing vector in the formation of various complex hybrid hierarchical inorganic nanostructures with a wide scope of applications. We focus on the preparation of inorganic nanostructures by exploiting the unique properties and performances of cellulose structures. The advantages, physicochemical properties, and chemical modifications of the cellulose structures are comparatively discussed from the aspect of materials development and processing. Finally, the perspective and potential applications of cellulose-based bioinspired hierarchical functional nanomaterials in the future are outlined.
Collapse
Affiliation(s)
- Alojz Anžlovar
- National Institute of Chemistry, Hajdrihova 19, SI-1000 Ljubljana, Slovenia;
| | | |
Collapse
|
5
|
A Novel Cu2O/ZnO@PET Composite Membrane for the Photocatalytic Degradation of Carbendazim. NANOMATERIALS 2022; 12:nano12101724. [PMID: 35630948 PMCID: PMC9144458 DOI: 10.3390/nano12101724] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 05/14/2022] [Accepted: 05/16/2022] [Indexed: 02/01/2023]
Abstract
The extremely high levels of water pollution caused by various industrial activities represent one of the most important environmental problems. Efficient techniques and advanced materials have been extensively developed for the removal of highly toxic organic pollutants, including pesticides. This study investigated the photocatalytic degradation of the fungicide carbendazim (Czm) using composite track-etched membranes (TeMs) in an aqueous solution. Copper(I) oxide (Cu2O) and zinc oxide (ZnO) microtubes (MTs) were prepared using an electroless template deposition technique in porous poly(ethylene terephthalate) (PET) TeMs with nanochannels with a density of 4 × 107 pores/cm−2 and diameter of 385 ± 9 nm to yield Cu2O@PET and ZnO@PET composite membranes, respectively. A mixed Cu2O/ZnO@PET composite was prepared via a two-step deposition process, containing ZnO (87%) and CuZ (13%) as crystalline phases. The structure and composition of all composite membranes were elucidated using scanning electron microscopy (SEM), atomic force microscopy (AFM), energy-dispersive X-ray spectroscopy (EDS), X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD) techniques. Under UV–visible light irradiation, the Cu2O/ZnO@PET composite displayed enhanced photocatalytic activity, reaching 98% Czm degradation, higher than Cu2O@PET and ZnO@PET composites. The maximum Czm degradation efficiency from aqueous solution was obtained at an optimal pH of 6 and contact time of 140 min. The effects of various parameters such as temperature, catalyst dosage and sample exposure time on the photocatalytic degradation process were studied. The degradation reaction of Czm was found to follow the Langmuir–Hinshelwood mechanism and a pseudo-first order kinetic model. The degradation kinetics of Czm accelerated with increasing temperature, and the activation energy (Ea) levels were calculated as 11.9 kJ/mol, 14.22 kJ/mol and 15.82 kJ/mol for Cu2O/ZnO@PET, ZnO@PET and Cu2O@PET composite membranes, respectively. The reusability of the Cu2O/ZnO@PET catalyst was also investigated at different temperatures for 10 consecutive runs, without any activation or regeneration processes. The Cu2O/ZnO@PET composite exhibited degradation efficiency levels of over 50% at 14 °C and over 30% at 52 °C after 5 consecutive uses.
Collapse
|
6
|
Hassan MM, Xu Y, Zareef M, Li H, Rong Y, Chen Q. Recent advances of nanomaterial-based optical sensor for the detection of benzimidazole fungicides in food: a review. Crit Rev Food Sci Nutr 2021; 63:2851-2872. [PMID: 34565253 DOI: 10.1080/10408398.2021.1980765] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The abuse of pesticides in agricultural land during pre- and post-harvest causes an increase of residue in agricultural products and pollution in the environment, which ultimately affects human health. Hence, it is crucially important to develop an effective detection method to quantify the trace amount of residue in food and water. However, with the rapid development of nanotechnology and considering the exclusive properties of nanomaterials, optical, and their integrated system have gained exclusive interest for accurately sensing of pesticides in food and agricultural samples to ensure food safety thanks to their unique benefit of high sensitivity, low detection limit, good selectivity and so on and making them a trending hotspot. This review focuses on recent progress in the past five years on nanomaterial-based optical, such as colorimetric, fluorescence, surface-enhanced Raman scattering (SERS), and their integrated system for the monitoring of benzimidazole fungicide (including, carbendazim, thiabendazole, and thiophanate-methyl) residue in food and water samples. This review firstly provides a brief introduction to mentioned techniques, detection mechanism, applied nanomaterials, label-free detection, target-specific detection, etc. then their specific application. Finally, challenges and perspectives in the respective field are discussed.
Collapse
Affiliation(s)
- Md Mehedi Hassan
- College of Food and Biological Engineering, Jimei University, Xiamen PR China.,School of Food and Biological Engineering, Jiangsu University, Zhenjiang, PR China
| | - Yi Xu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, PR China
| | - Muhammad Zareef
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, PR China
| | - Huanhuan Li
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, PR China
| | - Yawen Rong
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, PR China
| | - Quansheng Chen
- College of Food and Biological Engineering, Jimei University, Xiamen PR China.,School of Food and Biological Engineering, Jiangsu University, Zhenjiang, PR China
| |
Collapse
|
7
|
Tian X, Zhai P, Guo J, Yu Q, Xu L, Yu X, Wang R, Kong X. Fabrication of plasmonic cotton gauze-Ag composite as versatile SERS substrate for detection of pesticides residue. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 257:119766. [PMID: 33872951 DOI: 10.1016/j.saa.2021.119766] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 03/24/2021] [Accepted: 03/28/2021] [Indexed: 06/12/2023]
Abstract
Plasmonic cotton gauze-Ag composite were fabricated through a simple, instant and cost-effective way, in which the Ag NPs were immobilized on the surface of cotton gauze through in-situ growth process. The in-situ growth of Ag NPs was started from electroless-immobilized Ag seeds on the surface of cotton fiber, which could form numerous hot spots for SERS compared with current method. The cotton gauze-Ag composite was employed as versatile substrate in surface-enhanced Raman scattering (SERS) spectroscopy. The plasmonic cotton gauze-Ag exhibited excellent uniformity, temporal stability and enhanced effect for SERS measurement. The detection limit of P-aminothiopheno (PATP) was 10-8 M. Furthermore, the plasmonic cotton gauze-Ag composite presented excellent flexibility and adsorption capability, which enable to adsorb and detect pesticide residue from irregular surface of cucumber directly by simple swabbing process, the detection limit could achieve 0.1 ppm. The cotton gauze-Ag composite also shown excellent selectivity is SERS sensing. The fabrication method could be simply extended to other cellulose compound, such as absorbent cotton, paper and even for natural fibers. This study proposed a new method for fabricating the cost-effective, eco-friendly and flexible SERS substrates.
Collapse
Affiliation(s)
- Xiaoran Tian
- School of Petrochemical Engineering, Liaoning Petrochemical University, Fushun, Liaoning 113001, PR China
| | - Peng Zhai
- School of Petrochemical Engineering, Liaoning Petrochemical University, Fushun, Liaoning 113001, PR China
| | - Jiaqi Guo
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources and Joint International Research Lab of Lignocellulosic Functional Materials, Nanjing Forestry University, Nanjing 210037, PR China
| | - Qian Yu
- School of Petrochemical Engineering, Liaoning Petrochemical University, Fushun, Liaoning 113001, PR China.
| | - Lingzi Xu
- School of Petrochemical Engineering, Liaoning Petrochemical University, Fushun, Liaoning 113001, PR China
| | - Xinghua Yu
- School of Petrochemical Engineering, Liaoning Petrochemical University, Fushun, Liaoning 113001, PR China
| | - Rui Wang
- School of Petrochemical Engineering, Liaoning Petrochemical University, Fushun, Liaoning 113001, PR China
| | - Xianming Kong
- School of Petrochemical Engineering, Liaoning Petrochemical University, Fushun, Liaoning 113001, PR China.
| |
Collapse
|
8
|
Fabrication and Application of SERS-Active Cellulose Fibers Regenerated from Waste Resource. Polymers (Basel) 2021; 13:polym13132142. [PMID: 34209824 PMCID: PMC8272151 DOI: 10.3390/polym13132142] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 06/27/2021] [Indexed: 12/30/2022] Open
Abstract
The flexible SERS substrate were prepared base on regenerated cellulose fibers, in which the Au nanoparticles were controllably assembled on fiber through electrostatic interaction. The cellulose fiber was regenerated from waste paper through the dry-jet wet spinning method, an eco-friendly and convenient approach by using ionic liquid. The Au NPs could be controllably distributed on the surface of fiber by adjusting the conditions during the process of assembling. Finite-difference time-domain theoretical simulations verified the intense local electromagnetic fields of plasmonic composites. The flexible SERS fibers show excellent SERS sensitivity and adsorption capability. A typical Raman probe molecule, 4-Mercaptobenzoicacid (4-MBA), was used to verify the SERS cellulose fibers, the sensitivity could achieve to 10−9 M. The flexible SERS fibers were successfully used for identifying dimetridazole (DMZ) from aqueous solution. Furthermore, the flexible SERS fibers were used for detecting DMZ from the surface of fish by simply swabbing process. It is clear that the fabricated plasmonic composite can be applied for the identifying toxins and chemicals.
Collapse
|
9
|
Multifunctional cellulose based substrates for SERS smart sensing: Principles, applications and emerging trends for food safety detection. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.02.005] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
10
|
Alle M, Park SC, Bandi R, Lee SH, Kim JC. Rapid in-situ growth of gold nanoparticles on cationic cellulose nanofibrils: Recyclable nanozyme for the colorimetric glucose detection. Carbohydr Polym 2021; 253:117239. [PMID: 33278995 DOI: 10.1016/j.carbpol.2020.117239] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 10/08/2020] [Accepted: 10/11/2020] [Indexed: 01/11/2023]
Abstract
Novel microwave-assisted green in-situ synthesis of positively charged gold nanoparticles (AuNPs) supported by cationic cellulose nanofibrils (C.CNF) within 30 s and devoid of additional reducing agent is reported. Peroxidase activity of these positive AuNPs was studied and that appeared to be superior over its negative charged counterpart. Further the AuNPs@C.CNF is casted into a film which makes it reusable. Using TMB substrate, simple and sensitive colorimetric detection methods for H2O2 and glucose were established. Under optimal conditions, the linear ranges were found to be 0.5-30 μM and 1-60 μM, and the detection limits were 0.30 and 0.67 μM for H2O2 and glucose, respectively. The film was potentially reused for the detection of glucose up to five cycles without a decrease in the activity. Further, this technique was employed to quantify glucose in human serum samples, and the obtained results were comparable with those of the standard GOD-POD method.
Collapse
Affiliation(s)
- Madhusudhan Alle
- Institute of Forest Science, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Soo Chan Park
- Department of Medical Biomaterials Engineering, College of Biomedical Science and Institute of Bioscience and Biotechnology, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Rajkumar Bandi
- Institute of Forest Science, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Seung-Hwan Lee
- Department of Forest Biomaterials Engineering, College of Forest and Environmental Sciences, Kangwon National University, Chuncheon, 24341, Republic of Korea.
| | - Jin-Chul Kim
- Department of Medical Biomaterials Engineering, College of Biomedical Science and Institute of Bioscience and Biotechnology, Kangwon National University, Chuncheon, 24341, Republic of Korea.
| |
Collapse
|
11
|
Carboxymethyl cellulose/cellulose nanocrystals immobilized silver nanoparticles as an effective coating to improve barrier and antibacterial properties of paper for food packaging applications. Carbohydr Polym 2020; 252:117156. [PMID: 33183607 DOI: 10.1016/j.carbpol.2020.117156] [Citation(s) in RCA: 137] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 09/17/2020] [Accepted: 09/24/2020] [Indexed: 12/20/2022]
Abstract
A new natural formulation composed of CMC and various contents of CNC immobilized AgNPs (CNC@AgNPs) was developed for paper coating. The mechanical strength, water vapor and air barrier properties, and antibacterial activities of CMC/CNC@AgNPs coated paper improved with the increasing content of CNC@AgNPs. CMC/CNC@AgNPs7 % coated paper exhibited 1.26 times increase in tensile strength, 45.4 % decrease in WVP, 93.3 % reduction in air permeability as well as the best antibacterial activities against E.coli and S.aureus compared with uncoated paper. Moreover, the cumulative release rate of AgNPs from coated paper significantly reduced due to the immobilization effect of CNC on AgNPs. Furthermore, CMC/CNC@AgNPs coated paper was used to package strawberries under ambient conditions. The results showed that coated paper could maintain better strawberries quality compared with unpackaged strawberries and extend the shelf-life of strawberries to 7 days. Therefore, the prepared CMC/CNC@AgNPs coated paper will have a great application prospect in the food packaging.
Collapse
|
12
|
Guo Y, Girmatsion M, Li HW, Xie Y, Yao W, Qian H, Abraha B, Mahmud A. Rapid and ultrasensitive detection of food contaminants using surface-enhanced Raman spectroscopy-based methods. Crit Rev Food Sci Nutr 2020; 61:3555-3568. [PMID: 32772549 DOI: 10.1080/10408398.2020.1803197] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
With the globalization of food and its complicated networking system, a wide range of food contaminants is introduced into the food system which may happen accidentally, intentionally, or naturally. This situation has made food safety a critical global concern nowadays and urged the need for effective technologies capable of dealing with the detection of food contaminants as efficiently as possible. Hence, Surface-enhanced Raman spectroscopy (SERS) has been taken as one of the primary choices for this case, due to its extremely high sensitivity, rapidity, and fingerprinting interpretation capabilities which account for its competency to detect a molecule up to a single level. Here in this paper, we present a comprehensive review of various SERS-based novel approaches applied for direct and indirect detection of single and multiple chemical and microbial contaminants in food, food products as well as water. The aim of this paper is to arouse the interest of researchers by addressing recent SERS-based, novel achievements and developments related to the investigation of hazardous chemical and microbial contaminants in edible foods and water. The target chemical and microbial contaminants are antibiotics, pesticides, food adulterants, Toxins, bacteria, and viruses. In this paper, different aspects of SERS-based reports have been addressed including synthesis and use of various forms of SERS nanostructures for the detection of a specific analyte, the coupling of SERS with other analytical tools such as chromatographic methods, combining analyte capture and recognition strategies such as molecularly imprinted polymers and aptasensor as well as using multivariate statistical analyses such as principal component analysis (PCA)to distinguish between results. In addition, we also report some strengths and limitations of SERS as well as future viewpoints concerning its application in food safety.
Collapse
Affiliation(s)
- Yahui Guo
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Mogos Girmatsion
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,Department of Marine Food and Biotechnology, Massawa College of Marine Science and Technolgy, Massawa, Eritrea
| | - Hung-Wing Li
- Department of Chemistry, Hong Kong Baptist University, Kowloon, Hong Kong
| | - Yunfei Xie
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Weirong Yao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
| | - He Qian
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Bereket Abraha
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,Department of Marine Food and Biotechnology, Massawa College of Marine Science and Technolgy, Massawa, Eritrea
| | - Abdu Mahmud
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,Department of Marine Food and Biotechnology, Massawa College of Marine Science and Technolgy, Massawa, Eritrea
| |
Collapse
|
13
|
Dai L, Wang Y, Zou X, Chen Z, Liu H, Ni Y. Ultrasensitive Physical, Bio, and Chemical Sensors Derived from 1-, 2-, and 3-D Nanocellulosic Materials. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e1906567. [PMID: 32049432 DOI: 10.1002/smll.201906567] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 01/11/2020] [Indexed: 05/23/2023]
Abstract
Sensors are of increasing interest since they can be applied to daily life in different areas from various industrial sectors. As a natural nanomaterial, nanocellulose plays a vital role in the development of novel sensors, particularly in the context of constructing multidimensional architectures. This review summarizes the utilization of nanocellulose including cellulose nanofibers, cellulose nanocrystals, and bacterial cellulose for sensor design, mainly focusing on the influence of nanocellulose on the sensing performance of these sensors. Special attention is paid to nanocellulose in different forms (1D, 2D, and 3D) to highlight the impact of nanocellulose constructed structures. The aim is to provide a critical review on the most recent progress (especially after 2017) related to nanocellulose-containing sensors, since there are significantly increasing research activities in this area. Moreover, the outlook for the development of nanocellulose-containing sensors is also provided at the end of this work.
Collapse
Affiliation(s)
- Lei Dai
- College of Bioresources Chemical and Materials Engineering, Shaanxi Provincial Key Laboratory of Papermaking Technology and Specialty Paper Development, Key Laboratory of Paper Based Functional Materials of China National Light Industry, National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi University of Science and Technology, Xi'an, 710021, China
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Yan Wang
- College of Bioresources Chemical and Materials Engineering, Shaanxi Provincial Key Laboratory of Papermaking Technology and Specialty Paper Development, Key Laboratory of Paper Based Functional Materials of China National Light Industry, National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi University of Science and Technology, Xi'an, 710021, China
| | - Xuejun Zou
- FPInnovations, 570 boul. St-Jean, Pointe-Claire, Quebec, H9R3J9, Canada
| | - Zhirong Chen
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Hong Liu
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, China
- Institute for Advanced Interdisciplinary Research, University of Jinan, Jinan, 250022, China
| | - Yonghao Ni
- Department of Chemical Engineering, University of New Brunswick, Fredericton, New Brunswick, E3B 5A3, Canada
| |
Collapse
|
14
|
Zhang Q, Zhang L, Wu W, Xiao H. Methods and applications of nanocellulose loaded with inorganic nanomaterials: A review. Carbohydr Polym 2019; 229:115454. [PMID: 31826470 DOI: 10.1016/j.carbpol.2019.115454] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 09/14/2019] [Accepted: 10/06/2019] [Indexed: 01/10/2023]
Abstract
Nanocellulose obtained from natural renewable resources has attracted enormous interests owing to its unique morphological characteristics, excellent mechanical strength, biocompatibility and biodegradability for a variety of applications in many fields. The template structure, high specific surface area, and active surface groups make it feasible to conduct surface modification and accommodate various nano-structured materials via physical or chemical deposition. The review presented herein focuses on the methodologies of loading different nano-structured materials on nanocellulose, including metals, nanocarbons, oxides, mineral salt, quantum dots and nonmetallic elements; and further describes the applications of nanocellulose composites in the fields of catalysis, optical electronic devices, biomedicine, sensors, composite reinforcement, photoswitching, flame retardancy, and oil/water separation.
Collapse
Affiliation(s)
- Qing Zhang
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab of Pulp & Paper Science & Technology, Nanjing Forestry University, Nanjing 210037, China
| | - Lei Zhang
- Key Laboratory for Organic Electronics and information, National Jiangsu Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, Nanjing 210023, China
| | - Weibing Wu
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab of Pulp & Paper Science & Technology, Nanjing Forestry University, Nanjing 210037, China; State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China.
| | - Huining Xiao
- Department of Chemical Engineering, University of New Brunswick, Fredericton, NB E3B 5A3, Canada
| |
Collapse
|