1
|
Manassila P, Sangsawad P, Boonanuntanasarn S, Kaewda J, Boonchuen P, Limkul S, Nakharuthai C. Effects of Low Molecular Weight Duck Blood Protein Hydrolysate as a Feed Additive on the Intestinal Microbiome, Antioxidant Activity, and Humoral Immune and Inflammatory Responses in Flowerhorn Fish. AQUACULTURE NUTRITION 2025; 2025:9970984. [PMID: 40276584 PMCID: PMC12021490 DOI: 10.1155/anu/9970984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 03/13/2025] [Indexed: 04/26/2025]
Abstract
Food-derived bioactive peptides could serve as feed ingredients and/or feed additives. We investigated the health-promoting properties of low molecular weight duck blood protein hydrolysate (DBPH), fractionated by ultrafiltration with a 10 kDa molecular weight cut-off membrane, in flowerhorn fish. The analysis of molecular weight distribution revealed that the most common sizes of DBPH fell within the range of 3-7 kDa (39.68%), followed by >7-10 kDa (20.69%), 1-3 kDa (23.03%), and <1 kDa (9.00%). After 1 month of the feeding trial, fish fed with diets supplemented with 2% DBPH exhibited the highest growth, antioxidant activity, and humoral immune response enhancement under normal conditions. In addition, microbiome analysis confirmed that 2% DBPH possesses antimicrobial activity, as evidenced by the significant decrease in operational taxonomic units (OTUs) and alpha diversity indexes, including Chao1 and Shannon. Compared to the control group, fish that were fed with diets supplemented with 2% DBPH exhibited a significantly higher abundance of the genera Cetobacterium and Romboutsia, which could serve as indicators of the overall health and well-being of the fish. After a Streptococcus agalactiae challenge, fish fed with diets supplemented with 2% DBPH exhibited an enhanced ability to modulate inflammatory genes, including interleukin (IL)-1β, IL-6, CC, and CXC chemokine as well as antioxidant gene expression (superoxide dismutase (SOD) and catalase (CAT)). Overall, dietary supplementation with 2% DBPH could improve the overall health of the flowerhorn fish by ameliorating humoral immune response, alleviating oxidative stress, and strengthening resistance against S. agalactiae.
Collapse
Affiliation(s)
- Pimpisut Manassila
- School of Animal Technology and Innovation, Institute of Agricultural Technology, Suranaree University of Technology, Muang, Nakhon Ratchasima, Thailand
| | - Papungkorn Sangsawad
- School of Animal Technology and Innovation, Institute of Agricultural Technology, Suranaree University of Technology, Muang, Nakhon Ratchasima, Thailand
| | - Surintorn Boonanuntanasarn
- School of Animal Technology and Innovation, Institute of Agricultural Technology, Suranaree University of Technology, Muang, Nakhon Ratchasima, Thailand
| | - Jirawadee Kaewda
- School of Animal Technology and Innovation, Institute of Agricultural Technology, Suranaree University of Technology, Muang, Nakhon Ratchasima, Thailand
| | - Pakpoom Boonchuen
- School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, Muang, Nakhon Ratchasima, Thailand
| | - Sirawich Limkul
- School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, Muang, Nakhon Ratchasima, Thailand
| | - Chatsirin Nakharuthai
- School of Animal Technology and Innovation, Institute of Agricultural Technology, Suranaree University of Technology, Muang, Nakhon Ratchasima, Thailand
| |
Collapse
|
2
|
Wei J, Tao G, Liu J, Framroze B, Sylvester KG. Protective effect of soluble protein hydrolysate against H 2O 2‑induced intestinal injury: An interventional study. Mol Med Rep 2025; 31:85. [PMID: 39886967 PMCID: PMC11811813 DOI: 10.3892/mmr.2025.13450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 12/09/2024] [Indexed: 02/01/2025] Open
Abstract
The present study aimed to investigate whether soluble protein hydrolysate (SPH) protects against intestinal oxidative stress injury. An in vitro lactate dehydrogenase assay was used to assess the cytotoxicity and protective effect of SPH. For in vivo assessment, friend virus B NIH Jackson mouse pups aged 21 days were administered with 5% w/v soluble protein hydrolysate (SPH) through drinking water for 14 days and then luminally injected with 0.3% or 0.6% H2O2. Thereafter, the fecal samples of mice were collected, and the mice were sacrificed. Intestinal epithelial injury was assessed, and the expressions of 84 oxidative stress‑related genes in intestinal tissues was determined. SPH prophylactically protected against H2O2‑induced oxidative stress injury in human intestinal epithelial cells. An animal model of oxidative stress‑induced intestinal injury was established using 0.3 and 0.6% H2O2. SPH treatment reduced oxidative stress (0.3% H2O2)‑induced gut injury in mice. As no accelerated body growth was observed in SPH‑treated mice, it was hypothesized that the underlying protective mechanism of SPH is not related to nutrient oversupply. Treatment with SPH upregulated five oxidative protective genes that were not consistent between the sexes. Some antioxidative genes, including ferritin heavy polypeptide‑1 (Fth1), heme oxygenase‑1 (Hmox1), NAD(P)H dehydrogenase quinone 1 (Nqo1) and superoxide dismutase 1 (Sod1), were commonly upregulated in both male and female mice. Overall, an antioxidative protective effect was observed following SPH treatment, which may be attributed to the upregulation of genes that protect against oxidative damage. The findings of the present study highlight the promising potential of SPH as a functional food for alleviating intestinal oxidative stress injury.
Collapse
Affiliation(s)
- Jingjing Wei
- Department of Surgery, Stanford University School of Medicine, Stanford, CA 94304, USA
- Department of Pediatrics, Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| | - Guozhong Tao
- Department of Surgery, Stanford University School of Medicine, Stanford, CA 94304, USA
| | - Junlin Liu
- Department of Surgery, Stanford University School of Medicine, Stanford, CA 94304, USA
- Department of General Surgery, The People's Hospital of Liuyang City, Liuyang, Hunan 410300, P.R. China
| | - Bomi Framroze
- Department of R&D, Hofseth BioCare ASA, Aalesund 6003, Norway
| | - Karl G. Sylvester
- Department of Surgery, Stanford University School of Medicine, Stanford, CA 94304, USA
| |
Collapse
|
3
|
Rueda J, Galdeano CM, Lobo MO, Sammán NC. Quinoa Protein Hydrolysate as Potential Immunomodulators: Effects on Cytokine Production and Macrophage Activation. PLANT FOODS FOR HUMAN NUTRITION (DORDRECHT, NETHERLANDS) 2025; 80:73. [PMID: 39985604 DOI: 10.1007/s11130-025-01324-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 02/11/2025] [Indexed: 02/24/2025]
Abstract
High-quality protein and bioactive compounds in quinoa (Chenopodium quinoa Willd) have spotlighted its potential as a functional food ingredient due to its antioxidant, anti-inflammatory, and immunomodulatory effects. This study investigates the immunomodulatory potential of quinoa protein concentrate (QPC), quinoa protein hydrolysate (QPH), and a quinoa peptide fraction (QPF < 3 kDa) for activating macrophages. QPH was prepared via alcalase hydrolysis of QPC, followed by ultrafiltration (QPF < 3 kDa). In vitro and ex vivo assays on mice peritoneal and spleen macrophages were conducted to evaluate the effect of QPC and QPH on cytotoxicity, cytokine profiles (Interleukin (IL)-6, IL-10, Tumour Necrosis Factor (TNF)-α, Interferon (IFN)-γ), and phagocytic activity of macrophages induced by QPC, QPH and QPF. Results indicated that QPC and QPH showed no cytotoxic effects at protein concentrations ≤ 1000 µg/mL. QPH at1000 µg/mL increased the production of IFN-γ and TNF-α, while increasing IL-10 release, suggesting a balanced immunostimulant response. Furthermore, QPF significantly enhanced phagocytic activity in spleen macrophages, emphasizing its role in systemic immune activation. These findings suggest quinoa-derived proteins and peptides hold promise as functional ingredients for immune health applications.
Collapse
Affiliation(s)
- Julio Rueda
- Centro Interdisciplinario de Investigaciones en Tecnología y Desarrollo social para el NOA (CIITED-CONCIET-UNJu), San Salvador de Jujuy, 4600, Argentina.
- Laboratorio de Inmunología, Centro de Referencia para Lactobacilos (CERELA- CONICET), San Miguel de Tucumán, 4000, Argentina.
| | - Carolina Maldonado Galdeano
- Laboratorio de Inmunología, Centro de Referencia para Lactobacilos (CERELA- CONICET), San Miguel de Tucumán, 4000, Argentina
| | - Manuel Oscar Lobo
- Centro Interdisciplinario de Investigaciones en Tecnología y Desarrollo social para el NOA (CIITED-CONCIET-UNJu), San Salvador de Jujuy, 4600, Argentina
| | - Norma Cristina Sammán
- Centro Interdisciplinario de Investigaciones en Tecnología y Desarrollo social para el NOA (CIITED-CONCIET-UNJu), San Salvador de Jujuy, 4600, Argentina
| |
Collapse
|
4
|
Guan MQ, Yu L, Gu H, Fu Q, Liu MM, Li K, Yang XR, Framroze B, Guo JH, Wei JJ, Li YL. Protein hydrolysate from Atlantic salmon (Salmo salar) improves aging-associated neuroinflammation and cognitive decline in rats by reshaping the gut microbiota and Th17/Treg balance. Int J Biol Macromol 2025; 306:141270. [PMID: 39984106 DOI: 10.1016/j.ijbiomac.2025.141270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 01/21/2025] [Accepted: 02/17/2025] [Indexed: 02/23/2025]
Abstract
As the global population ages, cognitive decline in older adults has gained significant attention in public health, underscoring the urgent need for effective intervention strategies. This study investigates the impact of salmon protein hydrolysate (SPH) on gut microbiota and cognitive decline in aged rats. Over 8 weeks, aged Sprague-Dawley rats were treated with SPH, resulting in significant enhancements in cognitive function as evidenced by operant-based attentional set-shifting and Morris water maze tasks. SPH modulated microglial activation in the hippocampus, reducing M1 polarization and promoting M2 polarization. RT-PCR analysis indicated a decrease in pro-inflammatory cytokines and an increase in anti-inflammatory cytokines, suggesting a reduction in neuroinflammation. Additionally, 16S rRNA gene sequencing revealed that SPH transformed gut microbiota, increasing Bacteroidetes and decreasing Proteobacteria. The bacterial genera Prevotella, Bacteroidetes and Ruminococcus showed notable increases. Furthermore, SPH intervention can also increase the concentrations of certain short-chain fatty acids (SCFAs) in aged rats. Additionally, SPH also restored the Th17/Treg balance and decreased peripheral inflammation. This study offers compelling evidence for SPH as a functional food that may mitigate cognitive decline due to aging.
Collapse
Affiliation(s)
- Mei-Qi Guan
- Department of Neurology, Research Center for Neurological Diseases, First Hospital of Shanxi Medical University, Taiyuan 030001, China; Department of Pediatrics, Shanxi Medical University, Taiyuan 030001, China
| | - Lian Yu
- Department of Neurology, Research Center for Neurological Diseases, First Hospital of Shanxi Medical University, Taiyuan 030001, China
| | - Hong Gu
- Department of Neurology, Research Center for Neurological Diseases, First Hospital of Shanxi Medical University, Taiyuan 030001, China
| | - Qiang Fu
- Department of Neurology, Research Center for Neurological Diseases, First Hospital of Shanxi Medical University, Taiyuan 030001, China
| | - Miao-Miao Liu
- Department of Neurology, Research Center for Neurological Diseases, First Hospital of Shanxi Medical University, Taiyuan 030001, China
| | - Ke Li
- Department of Neurology, Research Center for Neurological Diseases, First Hospital of Shanxi Medical University, Taiyuan 030001, China
| | - Xiao-Rong Yang
- Department of Physiology, Shanxi Medical University, Taiyuan 030001, China
| | - Bomi Framroze
- R&D Department, Hofseth Biocare ASA, Aalesund, Norway
| | - Jun-Hong Guo
- Department of Neurology, Research Center for Neurological Diseases, First Hospital of Shanxi Medical University, Taiyuan 030001, China
| | - Jing-Jing Wei
- Department of Pediatrics, Shanxi Medical University, Taiyuan 030001, China.
| | - Yan-Li Li
- Department of Neurology, Research Center for Neurological Diseases, First Hospital of Shanxi Medical University, Taiyuan 030001, China.
| |
Collapse
|
5
|
Li S, An M, Zhao Y, Zhao W, Li P, Du B. Immunomodulatory peptides from sturgeon cartilage: Isolation, identification, molecular docking and effects on RAW264.7 cells. Food Chem X 2024; 24:101863. [PMID: 39431208 PMCID: PMC11488438 DOI: 10.1016/j.fochx.2024.101863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/25/2024] [Accepted: 09/26/2024] [Indexed: 10/22/2024] Open
Abstract
Sturgeons (Acipenseridae), ancient fish known for their caviar, produce underutilized by-products like protein-rich cartilage, which is a source of high-quality bioactive peptides. This study investigates immunomodulatory peptides from sturgeon cartilage hydrolysates mechanisms. The study found that sturgeon cartilage hydrolysate F2-7 and its key peptides(DHVPLPLP and HVPLPLP)significantly promoted RAW267.4 cell proliferation, NO release, and phagocytosis (P < 0.001).Additionally, western blotting confirmed that F2-7 enhances immune response by increasing the expression of P-IKKα/β, IΚΚ, p65, and P-p65 proteins in the NF-κB signalling pathway (P < 0.01). Molecular docking further demonstrated that DHVPLPLP and HVPLPLP bind to NF-κB pathway proteins via hydrogen bonding, with low estimated binding energies (-2.75 and -1.64; -6.04 and -4.75 kcal/mol), thus establishing their role as key immune peptides in F2-7. Therefore, DHVPLPLP and HVPLPLP have the potential to be developed as dietary supplements for immune enhancement. Their ability to enhance immune function provides a theoretical basis for novel immune supplements.
Collapse
Affiliation(s)
- Shuchan Li
- College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Miaoqing An
- College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Yuxuan Zhao
- College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Wenjun Zhao
- College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Pan Li
- College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Bing Du
- College of Food Science, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
6
|
Wenck C, Meier N, Heinrich E, Grützner V, Wiekhorst F, Bleul R. Design and characterisation of casein coated and drug loaded magnetic nanoparticles for theranostic applications. RSC Adv 2024; 14:26388-26399. [PMID: 39165790 PMCID: PMC11334153 DOI: 10.1039/d4ra02626h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 08/12/2024] [Indexed: 08/22/2024] Open
Abstract
Theranostic systems enable early cancer diagnostic and treatment. In this work, we prepared Na-caseinate coated magnetic nanoparticles (MNP) to assess their capability as a theranostic system. This system enables monitoring by magnetic particle imaging (MPI), drug delivery and magnetic hyperthermia. MNP were synthesized in a continuous flow, coated with Na-caseinate and enzymatically crosslinked with transglutaminase to increase their colloidal stability and enable drug loading. They were investigated concerning their magnetic behaviour by DC magnetization measurements (DCM), magnetic particle spectroscopy (MPS) and AC-magnetometry to evaluate their suitability for MPI and hyperthermia. Further, their stability in different salt solutions as well as their encapsulation efficiency with a hydrophobic model drug (nile red), cell viability and uptake were investigated. Our results show that the Na-caseinate coating of MNP marginally effects the magnetic behaviour of the MNP with a consistent magnetization saturation M S of 109(5) A m2 per kg(Fe) for uncoated and casein coated MNP and with a decrease of <15% of A 3*, but only a slight decrease of 2% of A 5/A 3 for Na-caseinate coated MNP. Furthermore, the Na-caseinate coating of MNP increased their salt stability, under unchanged magnetic behaviour. Drug loading (up to ∼75%) and release kinetics such as the delivery into cutaneous squamous cell carcinoma cells (SCL-1) was shown. Our results demonstrate that casein coated MNP are highly promising candidates for theranostic applications in drug delivery, magnetic hyperthermia and magnetic particle imaging.
Collapse
Affiliation(s)
- Christina Wenck
- Fraunhofer Institute for Microengineering and Microsystems IMM Carl-Zeiss-Str. 18-20 55129 Mainz Germany
| | - Nils Meier
- Fraunhofer Institute for Microengineering and Microsystems IMM Carl-Zeiss-Str. 18-20 55129 Mainz Germany
| | - Eilien Heinrich
- Fraunhofer Institute for Microengineering and Microsystems IMM Carl-Zeiss-Str. 18-20 55129 Mainz Germany
| | - Verena Grützner
- Fraunhofer Institute for Microengineering and Microsystems IMM Carl-Zeiss-Str. 18-20 55129 Mainz Germany
| | - Frank Wiekhorst
- Metrology for Magnetic Nanoparticles, Physikalisch-Technische Bundesanstalt Abbestr. 2-12 10587 Berlin Germany
| | - Regina Bleul
- Fraunhofer Institute for Microengineering and Microsystems IMM Carl-Zeiss-Str. 18-20 55129 Mainz Germany
| |
Collapse
|
7
|
Morena F, Cencini C, Calzoni E, Martino S, Emiliani C. A Novel Workflow for In Silico Prediction of Bioactive Peptides: An Exploration of Solanum lycopersicum By-Products. Biomolecules 2024; 14:930. [PMID: 39199318 PMCID: PMC11352670 DOI: 10.3390/biom14080930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 07/18/2024] [Accepted: 07/29/2024] [Indexed: 09/01/2024] Open
Abstract
Resource-intensive processes currently hamper the discovery of bioactive peptides (BAPs) from food by-products. To streamline this process, in silico approaches present a promising alternative. This study presents a novel computational workflow to predict peptide release, bioactivity, and bioavailability, significantly accelerating BAP discovery. The computational flowchart has been designed to identify and optimize critical enzymes involved in protein hydrolysis but also incorporates multi-enzyme screening. This feature is crucial for identifying the most effective enzyme combinations that yield the highest abundance of BAPs across different bioactive classes (anticancer, antidiabetic, antihypertensive, anti-inflammatory, and antimicrobial). Our process can be modulated to extract diverse BAP types efficiently from the same source. Here, we show the potentiality of our method for the identification of diverse types of BAPs from by-products generated from Solanum lycopersicum, the widely cultivated tomato plant, whose industrial processing generates a huge amount of waste, especially tomato peel. In particular, we optimized tomato by-products for bioactive peptide production by selecting cultivars like Line27859 and integrating large-scale gene expression. By integrating these advanced methods, we can maximize the value of by-products, contributing to a more circular and eco-friendly production process while advancing the development of valuable bioactive compounds.
Collapse
Affiliation(s)
- Francesco Morena
- Section of Biochemistry and Molecular Biology, Department of Chemistry, Biology and Biotechnology, University of Perugia, Via del Giochetto, 06123 Perugia, Italy; (C.C.); (E.C.); (S.M.)
| | - Chiara Cencini
- Section of Biochemistry and Molecular Biology, Department of Chemistry, Biology and Biotechnology, University of Perugia, Via del Giochetto, 06123 Perugia, Italy; (C.C.); (E.C.); (S.M.)
| | - Eleonora Calzoni
- Section of Biochemistry and Molecular Biology, Department of Chemistry, Biology and Biotechnology, University of Perugia, Via del Giochetto, 06123 Perugia, Italy; (C.C.); (E.C.); (S.M.)
| | - Sabata Martino
- Section of Biochemistry and Molecular Biology, Department of Chemistry, Biology and Biotechnology, University of Perugia, Via del Giochetto, 06123 Perugia, Italy; (C.C.); (E.C.); (S.M.)
- Centro di Eccellenza su Materiali Innovativi Nanostrutturati (CEMIN), University of Perugia, Via del Giochetto, 06123 Perugia, Italy
| | - Carla Emiliani
- Section of Biochemistry and Molecular Biology, Department of Chemistry, Biology and Biotechnology, University of Perugia, Via del Giochetto, 06123 Perugia, Italy; (C.C.); (E.C.); (S.M.)
- Centro di Eccellenza su Materiali Innovativi Nanostrutturati (CEMIN), University of Perugia, Via del Giochetto, 06123 Perugia, Italy
| |
Collapse
|
8
|
Tran HTQ, Ho TH, Nan FH, Liu CH, Hu YF, Chong CM, de Cruz CR, Karim M, Liu TJ, Kuo IP, Lee PT. Assessment of fish protein hydrolysate as a substitute for fish meal in white shrimp diets: Impact on growth, immune response, and resistance against Vibrio parahaemolyticus infection. FISH & SHELLFISH IMMUNOLOGY 2024; 150:109597. [PMID: 38697373 DOI: 10.1016/j.fsi.2024.109597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 04/27/2024] [Accepted: 04/30/2024] [Indexed: 05/05/2024]
Abstract
This study investigated the effects of fish protein hydrolysate derived from barramundi on growth performance, muscle composition, immune response, disease resistance, histology and gene expression in white shrimp (Penaeus vannamei). In vitro studies demonstrated FPH enhanced mRNA expressions of key immune-related genes and stimulated reactive oxygen species (ROS) production and phagocytic activity in shrimp hemocytes. To evaluate the effects of substituting fish meal with FPH in vivo, four isoproteic (43 %), isolipidic (6 %), and isoenergetic diets (489 kcal/100 g) were formulated with fish meal substitution levels of 0 % (control), 30 % (FPH30), 65 % (FPH65), and 100 % (FPH100). After 8-week feeding, the growth performance of FPH65 and FPH100 were significantly lower than that of control and FPH30 (p < 0.05). Similarly, the midgut histological examination revealed the wall thickness and villi height of FPH100 were significantly lower than those of control (p < 0.05). The shrimps were received the challenge of AHPND + Vibrio parahaemolyticus at week 4 and 8. All FPH-fed groups significantly enhanced resistance against Vibrio parahaemolyticus at week 4 (p < 0.05). However, this protective effect diminished after long-period feeding. No significant difference of survival rate was observed among all groups at week 8 (p > 0.05). The expressions of immune-related genes were analyzed at week 4 before and after challenge. In control group, V. parahaemolyticus significantly elevated SOD in hepatopancreas and Muc 19, trypsin, Midline-fas, and GPx in foregut (p < 0.05). Moreover, hepatopancreatic SOD of FPH65 and FPH100 were significantly higher than that of control before challenge (p < 0.05). Immune parameters were measured at week 8. Compared with control, the phagocytic index of FPH 30 was significantly higher (p < 0.05). However, dietary FPH did not alter ROS production, phenoloxidase activity, phagocytic rate, and total hemocyte count (p > 0.05). These findings suggest that FPH30 holds promise as a feed without adverse impacts on growth performance while enhancing the immunological response of white shrimp.
Collapse
Affiliation(s)
| | - Thi Hang Ho
- Department of Aquaculture, National Taiwan Ocean University, Keelung City, Taiwan
| | - Fan-Hua Nan
- Department of Aquaculture, National Taiwan Ocean University, Keelung City, Taiwan
| | - Chun-Hung Liu
- Department of Aquaculture, National Pingtung University of Science and Technology, Pingtung, Taiwan
| | - Yeh-Fang Hu
- Department of Aquaculture, National Taiwan Ocean University, Keelung City, Taiwan
| | - Chou Min Chong
- International Institute of Aquaculture and Aquatic Sciences (I-AQUAS), Universiti Putra Malaysia, Port Dickson, Negeri Sembilan, Malaysia
| | - Clement R de Cruz
- International Institute of Aquaculture and Aquatic Sciences (I-AQUAS), Universiti Putra Malaysia, Port Dickson, Negeri Sembilan, Malaysia
| | - Murni Karim
- International Institute of Aquaculture and Aquatic Sciences (I-AQUAS), Universiti Putra Malaysia, Port Dickson, Negeri Sembilan, Malaysia
| | - Ting-Jui Liu
- Department of Aquaculture, National Taiwan Ocean University, Keelung City, Taiwan
| | - I-Pei Kuo
- Department of Aquaculture, National Taiwan Ocean University, Keelung City, Taiwan; Freshwater Aquaculture Research Center Chupei Station, Fisheries Research Institute, Ministry of Agriculture, Hsinchu, Taiwan.
| | - Po-Tsang Lee
- Department of Aquaculture, National Taiwan Ocean University, Keelung City, Taiwan.
| |
Collapse
|
9
|
Jung M, Lee Y, Han SO, Hyeon JE. Advancements in Sustainable Plant-Based Alternatives: Exploring Proteins, Fats, and Manufacturing Challenges in Alternative Meat Production. J Microbiol Biotechnol 2024; 34:994-1002. [PMID: 38379287 PMCID: PMC11180908 DOI: 10.4014/jmb.2312.12049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 01/20/2024] [Accepted: 01/31/2024] [Indexed: 02/22/2024]
Abstract
The rise in plant-based food consumption is propelled by concerns for sustainability, personal beliefs, and a focus on healthy dietary habits. This trend, particularly in alternative meat, has attracted attention from specialized brands and eco-friendly food companies, leading to increased interest in plant-based alternatives. The dominant plant-based proteins, derived mainly from legumes, include soy protein isolates, which significantly impact sensory factors. In the realm of plant-based fats, substitutes are categorized into fat substitutes based on fats and fat mimetics based on proteins and carbohydrates. The production of these fats, utilizing gums, emulsions, gels, and additives, explores characteristics influencing the appearance, texture, flavor, and storage stability of final plant-based products. Analysis of plant-based proteins and fats in hamburger patties provides insights into manufacturing methods and raw materials used by leading alternative meat companies. However, challenges persist, such as replicating meat's marbling characteristic and addressing safety considerations in terms of potential allergy induction and nutritional supplementation. To enhance functionality and develop customized plant-based foods, it is essential to explore optimal combinations of various raw materials and develop new plant-based proteins and fat separation.
Collapse
Affiliation(s)
- Minju Jung
- Department of Food Science and Biotechnology, College of Knowledge-Based Services Engineering, Sungshin Women's University, Seoul 01133, Republic of Korea
| | - YouKyeong Lee
- Department of Next Generation Applied Sciences, Graduate School, Sungshin Women's University, Seoul 01133, Republic of Korea
| | - Sung Ok Han
- Department of Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Jeong Eun Hyeon
- Department of Food Science and Biotechnology, College of Knowledge-Based Services Engineering, Sungshin Women's University, Seoul 01133, Republic of Korea
- Department of Next Generation Applied Sciences, Graduate School, Sungshin Women's University, Seoul 01133, Republic of Korea
| |
Collapse
|
10
|
Mostashari P, Mousavi Khaneghah A. Sesame Seeds: A Nutrient-Rich Superfood. Foods 2024; 13:1153. [PMID: 38672826 PMCID: PMC11049391 DOI: 10.3390/foods13081153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 03/23/2024] [Accepted: 04/08/2024] [Indexed: 04/28/2024] Open
Abstract
Sesame seeds (Sesamum indicum L.) have been cultivated for thousands of years and have long been celebrated for their culinary versatility. Beyond their delightful nutty flavor and crunchy texture, sesame seeds have also gained recognition for their remarkable health benefits. This article provides an in-depth exploration of the numerous ways in which sesame seeds contribute to overall well-being. Sesame seeds are a powerhouse of phytochemicals, including lignans derivatives, tocopherol isomers, phytosterols, and phytates, which have been associated with various health benefits, including the preservation of cardiovascular health and the prevention of cancer, neurodegenerative disorders, and brain dysfunction. These compounds have also been substantiated for their efficacy in cholesterol management. Their potential as a natural source of beneficial plant compounds is presented in detail. The article further explores the positive impact of sesame seeds on reducing the risk of chronic diseases thanks to their rich polyunsaturated fatty acids content. Nevertheless, it is crucial to remember the significance of maintaining a well-rounded diet to achieve the proper balance of n-3 and n-6 polyunsaturated fatty acids, a balance lacking in sesame seed oil. The significance of bioactive polypeptides derived from sesame seeds is also discussed, shedding light on their applications as nutritional supplements, nutraceuticals, and functional ingredients. Recognizing the pivotal role of processing methods on sesame seeds, this review discusses how these methods can influence bioactive compounds. While roasting the seeds enhances the antioxidant properties of the oil extract, certain processing techniques may reduce phenolic compounds.
Collapse
Affiliation(s)
- Parisa Mostashari
- Department of Food Science and Technology, Faculty of Nutrition Sciences and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran 1981619573, Iran;
- Department of Food Science and Technology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran 1941933111, Iran
| | - Amin Mousavi Khaneghah
- Faculty of Biotechnologies (BioTech), ITMO University, 9 Lomonosova Street, Saint Petersburg 191002, Russia
| |
Collapse
|
11
|
Szerszunowicz I, Kozicki S. Plant-Derived Proteins and Peptides as Potential Immunomodulators. Molecules 2023; 29:209. [PMID: 38202792 PMCID: PMC10780438 DOI: 10.3390/molecules29010209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 12/26/2023] [Accepted: 12/27/2023] [Indexed: 01/12/2024] Open
Abstract
The immune response of humans may be modulated by certain biopeptides. The present study aimed to determine the immunomodulatory potential of plant-derived food proteins and hydrolysates obtained from these proteins via monocatalytic in silico hydrolysis (using ficin, stem bromelainm or pepsin (pH > 2)). The scope of this study included determinations of the profiles of select bioactivities of proteins before and after hydrolysis and computations of the frequency of occurrence of selected bioactive fragments in proteins (parameter A), frequency/relative frequency of the release of biopeptides (parameters AE, W) and the theoretical degree of hydrolysis (DHt), by means of the resources and programs available in the BIOPEP-UWM database. The immunomodulating (ImmD)/immunostimulating (ImmS) peptides deposited in the database were characterized as well (ProtParam tool). Among the analyzed proteins of cereals and legumes, the best precursors of ImmD immunopeptides (YG, YGG, GLF, TPRK) turned out to be rice and garden pea proteins, whereas the best precursors of ImmS peptides appeared to be buckwheat (GVM, GFL, EAE) and broad bean (LLY, EAE) proteins. The highest number of YG sequences was released by stem bromelain upon the simulated hydrolysis of rice proteins (AE = 0.0010-0.0820, W = 0.1994-1.0000, DHt = 45-82%). However, antibacterial peptides (IAK) were released by ficin only from rice, oat, and garden pea proteins (DHt = 41-46%). Biopeptides (YG, IAK) identified in protein hydrolysates are potential immunomodulators, nutraceuticals, and components of functional food that may modulate the activity of the human immune system. Stem bromelain and ficin are also active components that are primed to release peptide immunomodulators from plant-derived food proteins.
Collapse
Affiliation(s)
- Iwona Szerszunowicz
- Department of Food Biochemistry, University of Warmia and Mazury in Olsztyn, Plac Cieszyński 1, 10-726 Olsztyn-Kortowo, Poland
| | | |
Collapse
|
12
|
Middelkoop A, Segarra S, Molist F. Porcine digestible peptides as alternative protein source in weaner diets: effects on performance and systemic cytokine profile in pigs followed from weaning to slaughter. Animal 2023; 17:100998. [PMID: 37897869 DOI: 10.1016/j.animal.2023.100998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 09/12/2023] [Accepted: 09/14/2023] [Indexed: 10/30/2023] Open
Abstract
Porcine digestible peptides (PDP) are high-quality hydrolysed proteins obtained from porcine intestinal mucosa as a by-product of the heparin manufacturing process. PDP contain bioactive peptides and are used as alternative protein sources in several animal species, including pigs. We aimed to explore the (carry-over) effects of feeding PDP to weaned piglets on performance and systemic cytokine levels of pigs followed until slaughter. A total of 192 piglets were allocated to one of two dietary treatments: control (CON) or PDP weaner diets. PDP was included at 5.0% until day 13 post-weaning at the expense of skimmed milk powder and partial replacement of soybean meal, and at 2.5% between days 13 and 34 post-weaning at the expense of soy protein concentrate. Grower-finishers were fed commercial diets according to a 3-phase feeding scheme until slaughter, when carcass traits were determined. Six pigs were housed per weaner pen and eight per grower-finisher pen with 16 and 10 pens per treatment, respectively. Pigs were weighed at the start and at the end of each phase, and feed intake was recorded. Faecal consistency was recorded twice a week in the weaner facility. Ten pigs per treatment were sampled for blood at days 13, 34 and 69 post-weaning. We found that PDP-fed piglets had a higher feed intake in the first two weeks post-weaning compared to CON-fed piglets (+32 g/pig per day; P = 0.02). Moreover, piglets in the PDP group showed improved feed conversion between days 13 and 34 versus the CON group (1.36 vs 1.43; P = 0.03). Piglets that were fed with PDP in the weaner diets tended to grow faster in the grower-finisher period (+32 g/pig per day; P = 0.07), tended to reach slaughter age earlier (129.9 vs 131.5 days; P = 0.07) and had a lower dressing percentage at slaughter (76.3 vs 76.7%, P = 0.045) than piglets previously fed with CON. Additionally, PDP-fed piglets showed higher serum levels of pro-inflammatory cytokines interleukin (IL)-12 (P = 0.02), tumour necrosis factor-alpha (P = 0.02), interferon-gamma (P = 0.03) and IL-8 (at day 34 post-weaning, P = 0.06) as well as anti-inflammatory cytokines transforming growth factor-beta (P = 0.02), IL-4 (P = 0.04) and IL-10 (at day 34 post-weaning, P = 0.02). No significant differences among dietary treatments were observed regarding faecal consistency of weaned piglets and carcass weight, lean meat percentage, muscle depth, and back fat thickness at slaughter. We conclude that feeding PDP, as an alternative to conventional milk and soy protein sources, showed positive effects on pig performance, not only during the provisioning period but also thereafter into the grower-finisher phase.
Collapse
Affiliation(s)
- A Middelkoop
- R&D, Schothorst Feed Research B.V, PO Box 533, 8200 AM Lelystad, The Netherlands.
| | - S Segarra
- R&D Animal Health, Bioiberica S.A.U, 08950 Esplugues de Llobregat, Spain
| | - F Molist
- R&D, Schothorst Feed Research B.V, PO Box 533, 8200 AM Lelystad, The Netherlands
| |
Collapse
|
13
|
Abdel Rahman AN, Amer SA, Behairy A, Younis EM, Abdelwarith AA, Osman A, Moustafa AA, Davies SJ, Ibrahim RE. Using Azadirachta indica protein hydrolysate as a plant protein in Nile tilapia (Oreochromis niloticus) diet: Effects on the growth, economic efficiency, antioxidant-immune response and resistance to Streptococcus agalactiae. J Anim Physiol Anim Nutr (Berl) 2023; 107:1502-1516. [PMID: 37431590 DOI: 10.1111/jpn.13857] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 06/26/2023] [Accepted: 06/28/2023] [Indexed: 07/12/2023]
Abstract
A feeding trial for 90 days was conducted on Nile tilapia (Oreochromis niloticus) (average weight: 25.50 ± 0.05 g) to evaluate the effect of dietary inclusion of Azadirachta indica seed protein hydrolysate (AIPH). The evaluation included the impact on the growth metrics, economic efficiency, antioxidant potential, hemato-biochemical indices, immune response, and histological architectures. A total of 250 fish were randomly distributed in five treatments (n = 50) and received diets included with five levels of AIPH (%): 0 (control diet, AIPH0), 2 (AIPH2), 4 (AIPH4), 6 (AIPH6) or 8 (AIPH8), where AIPH partially replace fish meal by 0, 8.7%, 17.4%, 26.1%, and 34.8%, respectively. After the feeding trial, a pathogenic bacterium (Streptococcus agalactiae, 1.5 × 108 CFU/mL) was intraperitoneally injected into the fish and the survival rate was recorded. The results elucidated that AIPH-included diets significantly (p < 0.05) enhanced the growth indices (final body weight, total feed intake, total body weight gain, and specific growth rate) and intestinal morpho-metrics (villous width, length, muscular coat thickness, and goblet cells count) in comparison to the control diet, with the AIPH8 diet recording the highest values. Dietary AIPH inclusion significantly improved (p < 0.05) the economic efficacy indicated by reduced feed cost/kg gain and increased performance index. The fish fed on the AIPH diets had noticeably significantly higher (p < 0.05) protein profile variables (total proteins and globulin) and antioxidant capabilities (superoxide dismutase and total antioxidant capacity) than the AIPH0 group. The dietary inclusion of AIPH significantly (p < 0.05) boosted the haematological parameters (haemoglobin, packed cell volume %, and counts of red blood cells and white blood cells) and immune indices (serum bactericidal activity %, antiprotease activity, and immunoglobulin M level) in a concentration-dependent manner. The blood glucose and malondialdehyde levels were significantly (p < 0.05) lowered by dietary AIPH (2%-8%). The albumin level and hepatorenal functioning parameters (aspartate aminotransferase, alanine aminotransferase, and creatinine) were not significantly (p > 0.05) altered by AIPH diets. Additionally, AIPH diets did not adversely alter the histology of the hepatic, renal or splenic tissues with moderately activated melano-macrophage centres. The mortality rate among S. agalactiae-infected fish declined as dietary AIPH levels rose, where the highest survival rate (86.67%) was found in the AIPH8 group (p < 0.05). Based on the broken line regression model, our study suggests using dietary AIPH at the optimal level of 6%. Overall, dietary AIPH inclusion enhanced the growth rate, economic efficiency, health status, and resistance of Nile tilapia to the S. agalactiae challenge. These beneficial impacts can help the aquaculture sector to be more sustainable.
Collapse
Affiliation(s)
- Afaf N Abdel Rahman
- Department of Aquatic Animal Medicine, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Sharkia, Egypt
| | - Shimaa A Amer
- Department of Nutrition and Clinical Nutrition, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Sharkia, Egypt
| | - Amany Behairy
- Department of Physiology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Sharkia, Egypt
| | - Elsayed M Younis
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | | | - Ali Osman
- Biochemistry Department, Faculty of Agriculture, Zagazig University, Zagazig, Sharkia, Egypt
| | - Amr A Moustafa
- Department of Biochemistry, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Simon J Davies
- Aquaculture Nutrition Research Unit ANRU, Carna Research Station, Ryan Institute, College of Science and Engineering, University of Galway, Galway, Ireland
| | - Rowida E Ibrahim
- Department of Aquatic Animal Medicine, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Sharkia, Egypt
| |
Collapse
|
14
|
Halavach TM, Kurchenko VP, Tarun EI, Dudchik NV, Yatskou MM, Lodygin AD, Alieva LR, Evdokimov IA, Ulrih NP. Influence of Complexation with β- and γ-Cyclodextrin on Bioactivity of Whey and Colostrum Peptides. Int J Mol Sci 2023; 24:13987. [PMID: 37762289 PMCID: PMC10530839 DOI: 10.3390/ijms241813987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 09/08/2023] [Accepted: 09/10/2023] [Indexed: 09/29/2023] Open
Abstract
Dairy protein hydrolysates possess a broad spectrum of bioactivity and hypoallergenic properties, as well as pronounced bitter taste. The bitterness is reduced by complexing the proteolysis products with cyclodextrins (CDs), and it is also important to study the bioactivity of the peptides in inclusion complexes. Hydrolysates of whey and colostrum proteins with extensive hydrolysis degree and their complexes with β/γ-CD were obtained in the present study, and comprehensive comparative analysis of the experimental samples was performed. The interaction of CD with peptides was confirmed via different methods. Bioactivity of the initial hydrolysates and their complexes were evaluated. Antioxidant activity (AOA) was determined by fluorescence reduction of fluorescein in the Fenton system. Antigenic properties were studied by competitive enzyme immunoassay. Antimutagenic effect was estimated in the Ames test. According to the experimental data, a 2.17/2.78-fold and 1.45/2.14-fold increase in the AOA was found in the β/γ-CD interaction with whey and colostrum hydrolysates, respectively. A 5.6/5.3-fold decrease in the antigenicity of whey peptides in complex with β/γ-CD was detected, while the antimutagenic effect in the host-guest systems was comparable to the initial hydrolysates. Thus, bioactive CD complexes with dairy peptides were obtained. Complexes are applicable as a component of specialized foods (sports, diet).
Collapse
Affiliation(s)
| | | | - Ekaterina I. Tarun
- Faculty of Environmental Medicine, International Sakharov Environmental Institute of Belarusian State University, 220070 Minsk, Belarus;
| | | | - Mikalai M. Yatskou
- Faculty of Radiophysics and Computer Technologies, Belarusian State University, 220030 Minsk, Belarus;
| | - Aleksey D. Lodygin
- Faculty of Food Engineering and Biotechnologies, North Caucasus Federal University, Stavropol 355017, Russia; (A.D.L.); (L.R.A.); (I.A.E.)
| | - Ludmila R. Alieva
- Faculty of Food Engineering and Biotechnologies, North Caucasus Federal University, Stavropol 355017, Russia; (A.D.L.); (L.R.A.); (I.A.E.)
| | - Ivan A. Evdokimov
- Faculty of Food Engineering and Biotechnologies, North Caucasus Federal University, Stavropol 355017, Russia; (A.D.L.); (L.R.A.); (I.A.E.)
| | | |
Collapse
|
15
|
Yi S, Liu X, Huo Y, Li X, Tang Y, Li J. Unrinsed Nemipterus virgatus surimi provides more nutrients than rinsed surimi and helps recover immunosuppressed mice treated with cyclophosphamide. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:4458-4469. [PMID: 36823492 DOI: 10.1002/jsfa.12520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 02/20/2023] [Accepted: 02/23/2023] [Indexed: 06/06/2023]
Abstract
BACKGROUND The rinsing process in the production of surimi can cause the loss of some important nutrients. To investigate the differences in nutritional properties between rinsed surimi (RS) and unrinsed surimi (US), this study compared the elemental composition, amino acid composition, fatty acid composition, proteomics, and an immunosuppression mouse model of surimi before and after rinsing, and analyzed the nutritional and immunological properties of RS and US. RESULTS The results showed that the protein, fat, and ash contents of RS were decreased compared with those of US; specifically, the contents of essential amino acids, semi-essential amino acids, non-essential amino acids, saturated fatty acids, monounsaturated fatty acids, and polyunsaturated fatty acids were decreased. In the non-labeled quantitative proteomics analysis, three high-abundance quantifiable protein contents and 68 low-abundance quantifiable protein contents were found in RS (P-values < 0.05, ratio > 2). Immune function experiments in mice revealed that both RS and US contributed to the recovery of immunity in immunocompromised mice. The effect of US was better than that of RS. CONCLUSION The rinsing process in surimi processing leads to the loss of nutrients in surimi. US promotes the recovery of immunity in immunocompromised mice more effectively than RS. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Shumin Yi
- National and Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, College of Food Science and Engineering, Bohai University, Jinzhou, China
| | - Xiang Liu
- National and Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, College of Food Science and Engineering, Bohai University, Jinzhou, China
| | - Yan Huo
- National and Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, College of Food Science and Engineering, Bohai University, Jinzhou, China
| | - Xuepeng Li
- National and Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, College of Food Science and Engineering, Bohai University, Jinzhou, China
| | - Yunping Tang
- Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan, China
| | - Jianrong Li
- National and Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, College of Food Science and Engineering, Bohai University, Jinzhou, China
| |
Collapse
|
16
|
Hou CY, Hazeena SH, Hsieh SL, Ciou JY, Hsieh CW, Shih MK, Chen MH, Tu CW, Huang PH. Investigation of the optimal production conditions for egg white hydrolysates and physicochemical characteristics. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2023; 60:1600-1611. [PMID: 37033311 PMCID: PMC10076473 DOI: 10.1007/s13197-023-05708-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 02/13/2023] [Accepted: 02/21/2023] [Indexed: 03/06/2023]
Abstract
This study aimed to investigate the potential of egg white protein hydrolysate (EWH) as a functional food by identifying the optimum production conditions for EWH with response surface methodology (the results of the sensory evaluation were considered as an essential quality indicator). At the same time, its physicochemical and biological activity was also evaluated. The optimal economic production conditions were selected: substrate concentration of 12.5%, enzyme content of 7.5%, and hydrolysis time at 100 min. The degree of hydrolysis (DH %) was 13.51%. In addition, to the better acceptance of the evaluation, it also helps to reduce the production cost of the protein hydrolysate, which is beneficial to future processing and applications. The antioxidant capacity experiments showed that EWH has good antioxidant activity, which presents a dose-dependent relationship. Hence, this study provides a theoretical basis for future research and application of EWH for processing applications, including dietary supplementation. Supplementary Information The online version contains supplementary material available at 10.1007/s13197-023-05708-0.
Collapse
Affiliation(s)
- Chih-Yao Hou
- Department of Seafood Science, College of Hydrosphere, National Kaohsiung, University of Science and Technology, Kaohsiung, 81157 Taiwan, ROC
| | - Sulfath Hakkim Hazeena
- Department of Seafood Science, College of Hydrosphere, National Kaohsiung, University of Science and Technology, Kaohsiung, 81157 Taiwan, ROC
| | - Shu-Ling Hsieh
- Department of Seafood Science, College of Hydrosphere, National Kaohsiung, University of Science and Technology, Kaohsiung, 81157 Taiwan, ROC
| | - Jhih-Ying Ciou
- Department of Food Science, Tunghai University, Taichung City, 407 Taiwan
| | - Chang-Wei Hsieh
- Department of Food Science and Biotechnology, National Chung Hsing University, 145 Xingda Rd., South Dist., Taichung City, 402 Taiwan, ROC
- Department of Medical Research, China Medical University Hospital, Taichung City, 404 Taiwan, ROC
| | - Ming-Kuei Shih
- Graduate Institute of Food Culture and Innovation, National Kaohsiung University of Hospitality and Tourism, Kaohsiung, Taiwan, ROC
| | - Min-Hung Chen
- Agriculture & Food Agency Council of Agriculture Executive, Yuan Marketing & Processing Division, No. 8 Kuang-Hua Rd., Chung-Hsing New Village, Nantou City, 54044 Taiwan
| | - Chao-Wen Tu
- Department of Seafood Science, College of Hydrosphere, National Kaohsiung, University of Science and Technology, Kaohsiung, 81157 Taiwan, ROC
| | - Ping-Hsiu Huang
- School of Food, Jiangsu Food and Pharmaceutical Science College, No. 4, Meicheng Road, Higher Education Park, Huai’an City, 223003 Jiangsu Province China
| |
Collapse
|
17
|
Ermis E, Tekiner IH, Lee CC, Ucak S, Yetim H. An overview of protein powders and their use in food formulations. J FOOD PROCESS ENG 2023. [DOI: 10.1111/jfpe.14326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
Affiliation(s)
- Ertan Ermis
- Department of Food Engineering Istanbul Sabahattin Zaim University Istanbul Turkey
| | - Ismail Hakki Tekiner
- Department of Nutrition and Dietetics Istanbul Sabahattin Zaim University Istanbul Turkey
- Department of Industrial Biotechnology Ansbach University of Applied Sciences Ansbach Germany
| | - Chi Ching Lee
- Department of Food Engineering Istanbul Sabahattin Zaim University Istanbul Turkey
| | - Sumeyye Ucak
- Department of Nutrition and Dietetics Istanbul Sabahattin Zaim University Istanbul Turkey
| | - Hasan Yetim
- Department of Food Engineering Istanbul Sabahattin Zaim University Istanbul Turkey
- Halal Food R&D Center of Excellence Istanbul Sabahattin Zaim University Istanbul Turkey
| |
Collapse
|
18
|
Ashaolu TJ, Zarei M, Agrawal H, Kharazmi MS, Jafari SM. A critical review on immunomodulatory peptides from plant sources; action mechanisms and recent advances. Crit Rev Food Sci Nutr 2023; 64:7220-7236. [PMID: 36855310 DOI: 10.1080/10408398.2023.2183380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
Abstract
Plant protein components contribute positively to human well-being as they modulate the immune status of a consumer, especially when the enzymatic method is employed in order to release their bioactive peptides. These peptides are derived from plant-based foods such as soy, wheat, barley, rye, oats, rice, corn, sorghum, and millet, the famous staple foods around the world. Since these peptides are crucial to functional food among other key industries, the present study endeavored to scout for relevant information within the past three decades, using the Web of Science, Scopus, and Google search engines. In this review, first, the core of immunomodulation and types of immunomodulatory agents will be discussed, followed by the production of plant-based immunomodulatory peptides and their immunomodulatory mechanisms in cells, animals, and humans are also studied. Finally, applications and challenges associated with plant-based immunomodulatory peptides are put forward.
Collapse
Affiliation(s)
| | - Mohammad Zarei
- Virginia Agricultural Research and Extension Center, Virginia Polytechnic Institute and State University, Hampton, VA, USA
| | - Himani Agrawal
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznań, Poland
| | | | - Seid Mahdi Jafari
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
- Faculty of Science, Department of Analytical Chemistry and Food Science, Universidade de Vigo, Nutrition and Bromatology Group, Ourense, Spain
- College of Food Science and Technology, Hebei Agricultural University, Baoding, China
| |
Collapse
|
19
|
Release of Bioactive Peptides from Erythrina edulis ( Chachafruto) Proteins under Simulated Gastrointestinal Digestion. Nutrients 2022; 14:nu14245256. [PMID: 36558415 PMCID: PMC9788341 DOI: 10.3390/nu14245256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 11/25/2022] [Accepted: 12/06/2022] [Indexed: 12/14/2022] Open
Abstract
The estimated and concerning rise in world population over the next few years and the consequent increase in food demand will lead to a deterioration in global food security. To avoid or reduce this world crisis, informed and empowered consumers are turning to sustainable and nutrient-rich foods that substitute animal products, also reducing their associated environmental impact. Moreover, due to the demonstrated influence of diet on the risk of high incidence and mortality of noncommunicable diseases, the current established food pattern is focused on the consumption of foods that have functionality for health. Among these new foods, traditional and underutilized plants are gaining interest as alternative protein sources providing nutritional and biological properties. In this work, the potential of Erythrina edulis (chachafruto) proteins as a source of multifunctional peptides after transit through the gastrointestinal tract has been demonstrated, with antioxidant and immunostimulating effects in both biochemical assays and cell culture. While low molecular weight peptides released during the digestive process were found to be responsible for protection against oxidative stress mediated by their radical scavenging activity, high molecular weight peptides exerted immunostimulating effects by upregulation of immunoresponse-associated biomarkers. The findings of this study support the promising role of chachafruto proteins as a new antioxidant and immunostimulatory ingredient for functional foods and nutraceuticals.
Collapse
|
20
|
Lee JE, Lee JH, Min B, Kim KT, Ahn DU, Paik HD. Immunostimulatory effect of egg yolk phosvitin phosphopeptides produced by high-temperature and mild-pressure pretreatment and enzyme combinations in RAW 264.7 cells via TLR2/MAPK signaling pathway. J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.105264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
|
21
|
Tedeschi T, Prandi B, Lolli V, Gasparini A, Leni G, Loffi C, Nocetti M, Pizzamiglio V, Caligiani A. A novel approach based on enzymatic hydrolysis for the valorisation of edible Parmigiano Reggiano cheese rinds. Int Dairy J 2022. [DOI: 10.1016/j.idairyj.2022.105454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
22
|
Prakash PK, Lakshmi A J. Effect of milk protein hydrolysate supplementation on protein energy malnutrition-induced gut dysbiosis. Food Funct 2022; 13:10305-10319. [PMID: 36125286 DOI: 10.1039/d2fo00714b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Dairy proteins in the diet are beneficial for the growth of probiotics; however, what is unknown is the gut-mediated immune responses under protein energy malnutrition (PEM) and if dairy protein hydrolysates can be effective as dietary interventions. This study compares the composition of the gut microbiota of rats with moderate protein deficiency (M.PEM) and severe protein deficiency (S.PEM) induced by feeding 5% and 1% hypoprotein diets, followed by replenishment with buffalo and whey protein hydrolysates. Fecal samples were collected, and the composition of the gut bacteria was analyzed by whole genome sequencing using long-read sequencing. Gene expression studies of the immunomodulatory cytokines involved and quantification of sIgA were carried out. IL-6 and IFN-γ were downregulated by about 0.17 ± 0.06 and 0.12 ± 0.10 fold when supplemented with whey protein hydrolysate in SP-RWC rats and by about 0.02 ± 0.06 and 0.35 ± 0.12 fold when using buffalo milk hydrolysate. The percentage of Firmicutes decreased in M.PEM and S.PEM rats (33.57%, 28.83 versus 47.73% of control at 3 weeks) but increased upon protein replenishment for all three protein sources at the end of nine weeks. The percentage of Bacteroidetes increased to 31.03% in S.PEM-induced rats as against 28.17% in control rats. The relative abundance of Lactobacillus sp. decreased in M.PEM and S.PEM rats while it showed the opposite effect upon protein replenishment. Gut microbiota modulated the pathogenesis of PEM differentially based on protein intervention along with a significant increase in the relative abundance of the keystone Lactobacillus genus.
Collapse
Affiliation(s)
- Pavan Kumar Prakash
- Protein Chemistry and Technology Department, CSIR-Central Food Technological Research Institute, Mysore-570020, India. .,Department of Bioscience, Mangalore University, Mangalagangotri, Mangaluru, India
| | - Jyothi Lakshmi A
- Protein Chemistry and Technology Department, CSIR-Central Food Technological Research Institute, Mysore-570020, India.
| |
Collapse
|
23
|
Nazeam JA, Singab ANB. Immunostimulant plant proteins: Potential candidates as vaccine adjuvants. Phytother Res 2022; 36:4345-4360. [PMID: 36128599 PMCID: PMC9538006 DOI: 10.1002/ptr.7624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 08/20/2022] [Accepted: 09/03/2022] [Indexed: 12/13/2022]
Abstract
The COVID-19 pandemic is shaking up global scientific structures toward addressing antibiotic resistance threats and indicates an urgent need to develop more cost-effective vaccines. Vaccine adjuvants play a crucial role in boosting immunogenicity and improving vaccine efficacy. The toxicity and adversity of most adjuvant formulations are the major human immunization problems, especially in routine pediatric and immunocompromised patients. The present review focused on preclinical studies of immunoadjuvant plant proteins in use with antiparasitic, antifungal, and antiviral vaccines. Moreover, this report outlines the current perspective of immunostimulant plant protein candidates that can be used by researchers in developing new generations of vaccine-adjuvants. Future clinical studies are required to substantiate the plant proteins' safety and applicability as a vaccine adjuvant in pharmaceutical manufacturing.
Collapse
Affiliation(s)
- Jilan A. Nazeam
- Pharmacognosy Department, Faculty of PharmacyOctober 6 UniversityGizaEgypt
| | | |
Collapse
|
24
|
Soluble Protein Hydrolysate Ameliorates Gastrointestinal Inflammation and Injury in 2,4,6-Trinitrobenzene Sulfonic Acid-Induced Colitis in Mice. Biomolecules 2022; 12:biom12091287. [PMID: 36139127 PMCID: PMC9496120 DOI: 10.3390/biom12091287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 09/05/2022] [Accepted: 09/06/2022] [Indexed: 11/21/2022] Open
Abstract
Inflammatory bowel diseases (IBD) are chronic, recurring gastrointestinal diseases that severely impair health and quality of life. Although therapeutic options have significantly expanded in recent years, there is no effective therapy for a complete and permanent cure for IBD. Well tolerated dietary interventions to improve gastrointestinal health in IBD would be a welcome advance especially with anticipated favorable tolerability and affordability. Soluble protein hydrolysate (SPH) is produced by the enzymatic hydrolysis of commercial food industry salmon offcuts (consisting of the head, backbone and skin) and contains a multitude of bioactive peptides including those with anti-oxidant properties. This study aimed to investigate whether SPH ameliorates gastrointestinal injury in 2,4,6-trinitrobenzene sulfonic acid (TNBS)-induced mouse colitis model. Mice were randomly assigned to four groups: Control (no colitis), Colitis, Colitis/CP (with control peptide treatment), and Colitis/SPH (with SPH treatment). Colitis was induced by cutaneous sensitization with 1% TNBS on day −8 followed by 2.5% TNBS enema challenge on day 0. Control peptides and SPH were provided to the mice in the Colitis/CP or Colitis/SPH group respectively by drinking water at the final concentration of 2% w/v daily from day −10 to day 4. Then, the colon was harvested on day 4 and examined macro- and microscopically. Relevant measures included disease activity index (DAI), colon histology injury, immune cells infiltration, pro- and anti-inflammatory cytokines and anti-oxidative gene expression. It was found that SPH treatment decreased the DAI score and colon tissue injury when compared to the colitis-only and CP groups. The protective mechanisms of SPH were associated with reduced infiltration of CD4+ T, CD8+ T and B220+ B lymphocytes but not macrophages, downregulated pro-inflammatory cytokines (tumor necrosis factor-α and interleukin-6), and upregulated anti-inflammatory cytokines (transforming growth factor-β1 and interleukin-10) in the colon tissue. Moreover, the upregulation of anti-oxidative genes, including ferritin heavy chain 1, heme oxygenase 1, NAD(P)H quinone oxidoreductase 1, and superoxide dismutase 1, in the colons of colitis/SPH group was observed compared with the control peptide treatment group. In conclusion, the protective mechanism of SPH is associated with anti-inflammatory and anti-oxidative effects as demonstrated herein in an established mice model of colitis. Clinical studies with SPH as a potential functional food for the prevention or as an adjuvant therapy in IBD may add an effective and targeted diet-based approach to IBD management in the future.
Collapse
|
25
|
Goh A, Muhardi L, Ali A, Liew WK, Estrada-Reyes E, Zepeda-Ortega B, Kudla U, van Neerven RJJ, Ulfman LH, Lambers TT, Warner JO. Differences between peptide profiles of extensive hydrolysates and their influence on functionality for the management of cow's milk allergy: A short review. FRONTIERS IN ALLERGY 2022; 3:950609. [PMID: 36660742 PMCID: PMC9843608 DOI: 10.3389/falgy.2022.950609] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 08/05/2022] [Indexed: 01/13/2023] Open
Abstract
Extensively hydrolyzed formulas (eHFs) are recommended for the dietary management of cow's milk protein allergy (CMPA) in non-exclusively breastfed infants. Studies show that peptide profiles differ between eHFs. This short review aims to highlight the variability in peptides and their ability to influence allergenicity and possibly the induction of tolerance by different eHFs. The differences between eHFs are determined by the source of the protein fraction (casein or whey), peptide size-distribution profile and residual β-lactoglobulin which is the most immunogenic and allergenic protein in bovine milk for human infants as it is not present in human breastmilk. These differences occur from the hydrolyzation process which result in variable IgE reactivity against cow's milk allergen epitopes by subjects with CMPA and differences in the Th1, Th2 and pro-inflammatory cytokine responses elicited. They also have different effects on gut barrier integrity. Results suggest that one particular eHF-casein had the least allergenic potential due to its low residual allergenic epitope content and demonstrated the greatest effect on restoring gut barrier integrity by its effects on mucin 5AC, occludin and Zona Occludens-1 in human enterocytes. It also increased the production of the tolerogenic cytokines Il-10 and IFN-γ. In addition, recent studies documented promising effects of optional functional ingredients such as pre-, pro- and synbiotics on the management of cow's milk allergy and induction of tolerance, in part via the induction of the production of short chain fatty acids. This review highlights differences in the residual allergenicity, peptide size distribution, presence of optional functional ingredients and overall functionality of several well-characterized eHFs which can impact the management of CMPA and the ability to induce immune tolerance to cow's milk protein.
Collapse
Affiliation(s)
- Anne Goh
- Department of Paediatrics, KK Women’s and Children’s Hospital, Singapore, Singapore,Correspondence: Anne Goh
| | - Leilani Muhardi
- Medical Affairs, Friesland Campina AMEA, Singapore, Singapore
| | - Adli Ali
- Department of Paediatrics, Universiti Kebangsaan Malaysia Medical Center, Bangi, Malaysia
| | - Woei Kang Liew
- Paediatric Allergy Immunology Rheumatology Centre, Mount Elizabeth Novena Specialist Centre, Singapore, Singapore
| | | | - Benjamin Zepeda-Ortega
- Department of Pediatrics, Angeles Lomas Hospital Huixquilucan Mexican State, Mexico, Mexico
| | | | - R. J. Joost van Neerven
- R&D, FrieslandCampina, Amersfoort, the Netherlands,Cell Biology and Immunology, Wageningen University, Wageningen, the Netherlands
| | | | | | - John O. Warner
- National Heart and Lung Institute, Imperial College, London, United Kingdom,Departement Pediatrics and Child Health, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
26
|
Brunelli L, De Vitis V, Ferrari R, Minuzzo M, Fiore W, Jäger R, Taverniti V, Guglielmetti S. In vitro assessment of the probiotic properties of an industrial preparation containing Lacticaseibacillus paracasei in the context of athlete health. Front Pharmacol 2022; 13:857987. [PMID: 36016576 PMCID: PMC9397523 DOI: 10.3389/fphar.2022.857987] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 07/01/2022] [Indexed: 11/13/2022] Open
Abstract
Intense physical activity is often associated with undesirable physiological changes, including increased inflammation, transient immunodepression, increased susceptibility to infections, altered intestinal barrier integrity, and increased oxidative stress. Several trials suggested that probiotics supplementation may have beneficial effects on sport-associated gastro-intestinal and immune disorders. Recently, in a placebo-controlled human trial, the AminoAlta™ probiotic formulation (AApf) was demonstrated to increase the absorption of amino acids from pea protein, suggesting that the administration of AApf could overcome the compositional limitations of plant proteins. In this study, human cell line models were used to assess in vitro the potential capacity of AApf to protect from the physiological damages that an intense physical activity may cause. The obtained results revealed that the bacteria in the AApf have the ability to adhere to differentiated Caco-2 epithelial cell layer. In addition, the AApf was shown to reduce the activation of NF-κB in Caco-2 cells under inflammatory stimulation. Notably, this anti-inflammatory activity was enhanced in the presence of partially hydrolyzed plant proteins. The AApf also triggered the expression of cytokines by the THP-1 macrophage model in a dose-dependent manner. In particular, the expression of cytokines IL-1β, IL-6, and TNF-α was higher than that of the regulatory cytokine IL-10, resembling a cytokine profile characteristic of M1 phenotype, which typically intervene in counteracting bacterial and viral infections. Finally, AApf was shown to reduce transepithelial permeability and increase superoxide dismutase activity in the Caco-2 cell model. In conclusion, this study suggests that the AApf may potentially provide a spectrum of benefits useful to dampen the gastro-intestinal and immune detrimental consequences of an intense physical activity.
Collapse
Affiliation(s)
| | | | | | | | | | - Ralf Jäger
- Increnovo LLC, Whitefish Bay, WI, United States
| | - Valentina Taverniti
- Division of Food Microbiology and Bioprocesses, Department of Food, Environmental and Nutritional Sciences, University of Milan, Milan, Italy
| | - Simone Guglielmetti
- Division of Food Microbiology and Bioprocesses, Department of Food, Environmental and Nutritional Sciences, University of Milan, Milan, Italy
- *Correspondence: Simone Guglielmetti,
| |
Collapse
|
27
|
Li J, Yang L, Li G, Liu S, Cao W, Lin H, Chen Z, Qin X, Huang J, Zheng H. Low-molecular-weight oyster peptides ameliorate cyclophosphamide-chemotherapy side-effects in Lewis lung cancer mice by mitigating gut microbiota dysbiosis and immunosuppression. J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.105196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
28
|
Cai B, Chen H, Wan P, Luo L, Ye Z, Huang J, Chen D, Pan J. Isolation and identification of immunomodulatory peptides from the protein hydrolysate of tuna trimmings (Thunnas albacares). Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113614] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
29
|
Brahmi F, Vejux A, Ghzaiel I, Ksila M, Zarrouk A, Ghrairi T, Essadek S, Mandard S, Leoni V, Poli G, Vervandier-Fasseur D, Kharoubi O, El Midaoui A, Atanasov AG, Meziane S, Latruffe N, Nasser B, Bouhaouala-Zahar B, Masmoudi-Kouki O, Madani K, Boulekbache-Makhlouf L, Lizard G. Role of Diet and Nutrients in SARS-CoV-2 Infection: Incidence on Oxidative Stress, Inflammatory Status and Viral Production. Nutrients 2022; 14:2194. [PMID: 35683996 PMCID: PMC9182601 DOI: 10.3390/nu14112194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 05/10/2022] [Accepted: 05/17/2022] [Indexed: 11/17/2022] Open
Abstract
Coronavirus illness (COVID-19) is an infectious pathology generated by intense severe respiratory syndrome coronavirus 2 (SARS-CoV-2). This infectious disease has emerged in 2019. The COVID-19-associated pandemic has considerably affected the way of life and the economy in the world. It is consequently crucial to find solutions allowing remedying or alleviating the effects of this infectious disease. Natural products have been in perpetual application from immemorial time given that they are attested to be efficient towards several illnesses without major side effects. Various studies have shown that plant extracts or purified molecules have a promising inhibiting impact towards coronavirus. In addition, it is substantial to understand the characteristics, susceptibility and impact of diet on patients infected with COVID-19. In this review, we recapitulate the influence of extracts or pure molecules from medicinal plants on COVID-19. We approach the possibilities of plant treatment/co-treatment and feeding applied to COVID-19. We also show coronavirus susceptibility and complications associated with nutrient deficiencies and then discuss the major food groups efficient on COVID-19 pathogenesis. Then, we covered emerging technologies using plant-based SARS-CoV-2 vaccine. We conclude by giving nutrient and plants curative therapy recommendations which are of potential interest in the COVID-19 infection and could pave the way for pharmacological treatments or co-treatments of COVID-19.
Collapse
Affiliation(s)
- Fatiha Brahmi
- Laboratory Biomathématique, Biochimie, Biophysique et Scientométrie, Faculté des Sciences de la Nature et de la Vie, Université de Bejaia, Bejaia 06000, Algeria; (K.M.); (L.B.-M.)
| | - Anne Vejux
- Department of Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism, University of Bourgogne Franche-Comte, 21000 Dijon, France; (A.V.); (I.G.); (M.K.); (S.E.); (N.L.)
| | - Imen Ghzaiel
- Department of Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism, University of Bourgogne Franche-Comte, 21000 Dijon, France; (A.V.); (I.G.); (M.K.); (S.E.); (N.L.)
- Lab-NAFS ‘Nutrition-Functional Food & Vascular Health’, Faculty of Medicine, LR12ES05, University Monastir, Monastir 5000, Tunisia;
| | - Mohamed Ksila
- Department of Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism, University of Bourgogne Franche-Comte, 21000 Dijon, France; (A.V.); (I.G.); (M.K.); (S.E.); (N.L.)
- Laboratory of Neurophysiology, Cellular Physiopathology and Valorisation of Biomolecules, (LR18ES03), Department of Biology, Faculty of Sciences, University Tunis El Manar, Tunis 2092, Tunisia; (T.G.); (O.M.-K.)
| | - Amira Zarrouk
- Lab-NAFS ‘Nutrition-Functional Food & Vascular Health’, Faculty of Medicine, LR12ES05, University Monastir, Monastir 5000, Tunisia;
- Laboratory of Biochemistry, Faculty of Medicine, University of Sousse, Sousse 4000, Tunisia
| | - Taoufik Ghrairi
- Laboratory of Neurophysiology, Cellular Physiopathology and Valorisation of Biomolecules, (LR18ES03), Department of Biology, Faculty of Sciences, University Tunis El Manar, Tunis 2092, Tunisia; (T.G.); (O.M.-K.)
| | - Soukena Essadek
- Department of Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism, University of Bourgogne Franche-Comte, 21000 Dijon, France; (A.V.); (I.G.); (M.K.); (S.E.); (N.L.)
- Laboratory Neuroscience and Biochemistry, University of Hassan 1st, Settat 26000, Morocco;
| | - Stéphane Mandard
- Lipness Team and LipSTIC LabEx, UFR Sciences de Santé, INSERM/University of Bourgogne Franche-Comté LNC UMR1231, 21000 Dijon, France;
| | - Valerio Leoni
- Department of Laboratory Medicine, University of Milano-Bicocca, Azienda Socio Sanitaria Territoriale Brianza ASST-Brianza, Desio Hospital, Via Mazzini 1, 20833 Desio, Italy;
| | - Giuseppe Poli
- Department of Clinical and Biological Sciences, San Luigi Hospital, University of Turin, 10043 Orbassano (Turin), Italy;
| | - Dominique Vervandier-Fasseur
- Team OCS, Institute of Molecular Chemistry of University of Burgundy (ICMUB UMR CNRS 6302), University of Bourgogne Franche-Comté, 21000 Dijon, France;
| | - Omar Kharoubi
- Laboratory of Experimental Biotoxicology, Biodepollution and Phytoremediation, Faculty of Life and Natural Sciences, University Oran 1 ABB, Oran 31000, Algeria;
| | - Adil El Midaoui
- Department of Pharmacology and Physiology, Faculty of Medicine, University of Montreal, Montreal, QC H3C 3J7, Canada;
- Faculty of Sciences and Techniques, Moulay Ismail University of Meknes, Errachidia 52000, Morocco
| | - Atanas G. Atanasov
- Institute of Genetics and Animal Breeding of the Polish Academy of Sciences, Jastrzebiec, 05-552 Magdalenka, Poland;
| | - Smail Meziane
- Institut Européen des Antioxydants, 1b Rue Victor de Lespinats, 54230 Neuves-Maison, France;
| | - Norbert Latruffe
- Department of Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism, University of Bourgogne Franche-Comte, 21000 Dijon, France; (A.V.); (I.G.); (M.K.); (S.E.); (N.L.)
| | - Boubker Nasser
- Laboratory Neuroscience and Biochemistry, University of Hassan 1st, Settat 26000, Morocco;
| | - Balkiss Bouhaouala-Zahar
- Laboratory of Biomolecules, Venoms and Theranostic Applications, Pasteur Institute of Tunis, University of Tunis El Manar, Tunis 1002, Tunisia;
| | - Olfa Masmoudi-Kouki
- Laboratory of Neurophysiology, Cellular Physiopathology and Valorisation of Biomolecules, (LR18ES03), Department of Biology, Faculty of Sciences, University Tunis El Manar, Tunis 2092, Tunisia; (T.G.); (O.M.-K.)
| | - Khodir Madani
- Laboratory Biomathématique, Biochimie, Biophysique et Scientométrie, Faculté des Sciences de la Nature et de la Vie, Université de Bejaia, Bejaia 06000, Algeria; (K.M.); (L.B.-M.)
- Centre de Recherche en Technologie des Industries Agroalimentaires, Route de Targua Ouzemour, Bejaia 06000, Algeria
| | - Lila Boulekbache-Makhlouf
- Laboratory Biomathématique, Biochimie, Biophysique et Scientométrie, Faculté des Sciences de la Nature et de la Vie, Université de Bejaia, Bejaia 06000, Algeria; (K.M.); (L.B.-M.)
| | - Gérard Lizard
- Department of Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism, University of Bourgogne Franche-Comte, 21000 Dijon, France; (A.V.); (I.G.); (M.K.); (S.E.); (N.L.)
| |
Collapse
|
30
|
A Double-Blind, Randomized Intervention Study on the Effect of a Whey Protein Concentrate on E. coli-Induced Diarrhea in a Human Infection Model. Nutrients 2022; 14:nu14061204. [PMID: 35334862 PMCID: PMC8948686 DOI: 10.3390/nu14061204] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 02/23/2022] [Accepted: 03/07/2022] [Indexed: 11/17/2022] Open
Abstract
Infectious diseases are a major cause of morbidity and mortality worldwide. Nutritional interventions may enhance resistance to infectious diseases or help to reduce clinical symptoms. Here, we investigated whether a whey protein concentrate (WPC) could decrease diarrheagenic Escherichia coli-induced changes in reported stool frequency and gastrointestinal complaints in a double-blind, parallel 4-week intervention study. Subjects were randomly assigned to a whey hydrolysate placebo group, a low-dose WPC group or a high-dose WPC group. After 2 weeks of consumption, subjects (n = 121) were orally infected with a high dose of live but attenuated diarrheagenic E. coli (strain E1392/75-2A; 1E10 colony-forming units). Subjects recorded information on stool consistency and the frequency and severity of symptoms in an online diary. The primary outcome parameters were a change in stool frequency (stools per day) and a change in Gastrointestinal Symptom Rating Scale (GSRS) diarrhea score between the first and second days after infection. Neither dose of the whey protein concentrate in the dietary treatment affected the E. coli-induced increase in stool frequency or GSRS diarrhea score compared to placebo treatment. The composition of the microbiota shifted between the start of the study and after two weeks of consumption of the products, but no differences between the intervention groups were observed, possibly due to dietary guidelines that subjects had to adhere to during the study. In conclusion, consumption of the whey protein concentrate by healthy adults did not reduce diarrhea scores in an E. coli infection model compared to a whey hydrolysate placebo control.
Collapse
|
31
|
Khan AI, Rehman AU, Farooqui NA, Siddiqui NZ, Ayub Q, Ramzan MN, Wang L, Xin Y. Effects of Shrimp Peptide Hydrolysate on Intestinal Microbiota Restoration and Immune Modulation in Cyclophosphamide-Treated Mice. Molecules 2022; 27:molecules27051720. [PMID: 35268821 PMCID: PMC8911659 DOI: 10.3390/molecules27051720] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 02/26/2022] [Accepted: 03/03/2022] [Indexed: 02/06/2023] Open
Abstract
The gut microbiota is important in regulating host metabolism, maintaining physiology, and protecting immune homeostasis. Gut microbiota dysbiosis affects the development of the gut microenvironment, as well as the onset of various external systemic diseases and metabolic syndromes. Cyclophosphamide (CTX) is a commonly used chemotherapeutic drug that suppresses the host immune system, intestinal mucosa inflammation, and dysbiosis of the intestinal flora. Immunomodulators are necessary to enhance the immune system and prevent homeostasis disbalance and cytotoxicity caused by CTX. In this study, shrimp peptide hydrolysate (SPH) was evaluated for immunomodulation, intestinal integration, and microbiota in CTX-induced immunosuppressed mice. It was observed that SPH would significantly restore goblet cells and intestinal mucosa integrity, modulate the immune system, and increase relative expression of mRNA and tight-junction associated proteins (Occludin, Zo-1, Claudin-1, and Mucin-2). It also improved gut flora and restored the intestinal microbiota ecological balance by removing harmful microbes of various taxonomic groups. This would also increase the immune organs index, serum levels of cytokines (IFN-ϒ, IL1β, TNF-α, IL-6), and immunoglobin levels (IgA, IgM). The Firmicutes/Bacteroidetes proportion was decreased in CTX-induced mice. Finally, SPH would be recommended as a functional food source with a modulatory effect not only on intestinal microbiota, but also as a potential health-promoting immune function regulator.
Collapse
Affiliation(s)
- Asif Iqbal Khan
- Department of Biotechnology, College of Basic Medical Science, Dalian Medical University, Dalian 116044, China; (A.I.K.); (A.U.R.); (N.A.F.); (N.Z.S.)
| | - Ata Ur Rehman
- Department of Biotechnology, College of Basic Medical Science, Dalian Medical University, Dalian 116044, China; (A.I.K.); (A.U.R.); (N.A.F.); (N.Z.S.)
| | - Nabeel Ahmed Farooqui
- Department of Biotechnology, College of Basic Medical Science, Dalian Medical University, Dalian 116044, China; (A.I.K.); (A.U.R.); (N.A.F.); (N.Z.S.)
| | - Nimra Zafar Siddiqui
- Department of Biotechnology, College of Basic Medical Science, Dalian Medical University, Dalian 116044, China; (A.I.K.); (A.U.R.); (N.A.F.); (N.Z.S.)
| | - Qamar Ayub
- College of Clinical Laboratory Sciences, Dalian Medical University, Dalian 116044, China;
| | - Muhammad Noman Ramzan
- Department of Biochemistry and Molecular Biology, College of Basic Medical Science, Dalian Medical University, Dalian 116044, China;
| | - Liang Wang
- Stem Cell Clinical Research Center, National Joint Engineering Laboratory, Regenerative Medicine Center, The First Affiliated Hospital of Dalian Medical University, No. 193, Lianhe Road, Shahekou District, Dalian 116011, China
- Correspondence: (L.W.); (Y.X.); Tel.: +86-411-83635963-2169 (L.W.); +86-411-86110295 (Y.X.)
| | - Yi Xin
- Department of Biotechnology, College of Basic Medical Science, Dalian Medical University, Dalian 116044, China; (A.I.K.); (A.U.R.); (N.A.F.); (N.Z.S.)
- Correspondence: (L.W.); (Y.X.); Tel.: +86-411-83635963-2169 (L.W.); +86-411-86110295 (Y.X.)
| |
Collapse
|
32
|
Huang Y, Sridhar K, Tsai P. Enzymatically hydrolysed asparagus (
Asparagus officinalis
L.) hard‐stem exhibits the ability to inhibit angiotensin‐converting enzyme (ACE). Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yu‐Chun Huang
- Department of Food Science National Pingtung University of Science and Technology Neipu Pingtung Taiwan
| | - Kandi Sridhar
- UMR1253 Science et Technologie du Lait et de l’œuf INRAE, L'Institut Agro Rennes‐Angers Rennes France
| | - Pi‐Jen Tsai
- Department of Food Science National Pingtung University of Science and Technology Neipu Pingtung Taiwan
| |
Collapse
|
33
|
Iraninasab S, Sharifian S, Homaei A, Homaee MB, Sharma T, Nadda AK, Kennedy JF, Bilal M, Iqbal HMN. Emerging trends in environmental and industrial applications of marine carbonic anhydrase: a review. Bioprocess Biosyst Eng 2022; 45:431-451. [PMID: 34821989 DOI: 10.1007/s00449-021-02667-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 11/10/2021] [Indexed: 02/08/2023]
Abstract
Biocatalytic conversion of greenhouse gases such as carbon dioxide into commercial products is one of the promising key approaches to solve the problem of climate change. Microbial enzymes, including carbonic anhydrase, NAD-dependent formate dehydrogenase, ribulose bisphosphate carboxylase, and methane monooxygenase, have been exploited to convert atmospheric gases into industrial products. Carbonic anhydrases are Zn2+-dependent metalloenzymes that catalyze the reversible conversion of CO2 into bicarbonate. They are widespread in bacteria, algae, plants, and higher organisms. In higher organisms, they regulate the physiological pH and contribute to CO2 transport in the blood. In plants, algae, and photosynthetic bacteria carbonic anhydrases are involved in photosynthesis. Converting CO2 into bicarbonate by carbonic anhydrases can solidify gaseous CO2, thereby reducing global warming due to the burning of fossil fuels. This review discusses the three-dimensional structures of carbonic anhydrases, their physiological role in marine life, their catalytic mechanism, the types of inhibitors, and their medicine and industry applications.
Collapse
Affiliation(s)
- Sudabeh Iraninasab
- Department of Marine Biology, Faculty of Marine Science and Technology, University of Hormozgan, P.O. Box 3995, Bandar Abbas, Iran
| | - Sana Sharifian
- Department of Marine Biology, Faculty of Marine Science and Technology, University of Hormozgan, P.O. Box 3995, Bandar Abbas, Iran
| | - Ahmad Homaei
- Department of Marine Biology, Faculty of Marine Science and Technology, University of Hormozgan, P.O. Box 3995, Bandar Abbas, Iran.
| | | | - Tanvi Sharma
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Waknaghat, Solan, 173 234, India
| | - Ashok Kumar Nadda
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Waknaghat, Solan, 173 234, India
| | - John F Kennedy
- Chembiotech Laboratories, Advanced Science and Technology Institute, The Kyrewood Centre, Tenbury Wells, Worcs, WR15 8FF, UK
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, 223003, China
| | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, 64849, Monterrey, Mexico
| |
Collapse
|
34
|
Pavlicevic M, Marmiroli N, Maestri E. Immunomodulatory peptides-A promising source for novel functional food production and drug discovery. Peptides 2022; 148:170696. [PMID: 34856531 DOI: 10.1016/j.peptides.2021.170696] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 11/03/2021] [Accepted: 11/14/2021] [Indexed: 12/12/2022]
Abstract
Immunomodulatory peptides are a complex class of bioactive peptides that encompasses substances with different mechanisms of action. Immunomodulatory peptides could also be used in vaccines as adjuvants which would be extremely desirable, especially in response to pandemics. Thus, immunomodulatory peptides in food of plant origin could be regarded both as valuable suplements of novel functional food preparation and/or as precursors or possible active ingredients for drugs design for treatment variety of conditions arising from impaired function of immune system. Given variety of mechanisms, different tests are required to assess effects of immunomodulatory peptides. Some of those effects show good correlation with in vivo results but others, less so. Certain plant peptides, such as defensins, show both immunomodulatory and antimicrobial effect, which makes them interesting candidates for preparation of functional food and feed, as well as templates for design of synthetic peptides.
Collapse
Affiliation(s)
- Milica Pavlicevic
- Institute for Food Technology and Biochemistry, Faculty of Agriculture, University of Belgrade, Serbia
| | - Nelson Marmiroli
- University of Parma, Department of Chemistry, Life Sciences and Environmental Sustainability, and Interdepartmental Center SITEIA.PARMA, Parco Area delle Scienze 11/A, 43124 Parma, Italy
| | - Elena Maestri
- University of Parma, Department of Chemistry, Life Sciences and Environmental Sustainability, and Interdepartmental Center SITEIA.PARMA, Parco Area delle Scienze 11/A, 43124 Parma, Italy.
| |
Collapse
|
35
|
Aslanova M, Semenova A, Derevitskaya O. Formulating a functional drink with antiosteoporosis effects. FOODS AND RAW MATERIALS 2021. [DOI: 10.21603/2308-4057-2021-2-354-363] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Introduction. Osteoporosis is one of the most common diseases of the musculoskeletal system in modern clinical practice. Its prevention and treatment requires a diet with a sufficient intake of calcium, vitamins, and connective tissue proteins that regenerate cartilage and bone tissue. We aimed to formulate a functional product based on collagen fermentolysate to prevent osteoporosis and prove its effects in experiments on laboratory rats.
Study objects and methods. Our study objects were collagen fermentolysate obtained from pork ears and legs (1:1) and the functional product based on it. The biological experiment was carried out on Wistar female rats exposed to osteoporosis through complete ovariectomy. Their femurs were analyzed for the contents of phosphorus, magnesium, and calcium, as well as cytometric and biochemical blood parameters.
Results and discussion. The formulated functional product based on collagen fermentolysate contained 41% of the most easily assimilable peptide fractions with a low molecular weight of 10 to 20 kDa. Other components included pumpkin powder, dietary fiber, calcium, chondroprotectors, and vitamins E, C, and D3. Compared to the control, the experimental rats that received the functional product had increased contents of calcium and magnesium in the bone tissue (by 25.0 and 3.0%, respectively), a decreased content of phosphorus (by 7.0%), a calcium-to-phosphorus ratio restored to 2.4:1.0, and a higher concentration of osteocalcin in the blood serum (by 15%).
Conclusion. The developed functional product based on collagen fermentolysate can be used as an additional source of connective tissue protein, calcium, vitamins C, E, and D3, dietary fiber, and chondroprotectors to prevent osteoporosis.
Collapse
|
36
|
Xiang XW, Zheng HZ, Wang R, Chen H, Xiao JX, Zheng B, Liu SL, Ding YT. Ameliorative Effects of Peptides Derived from Oyster ( Crassostrea gigas) on Immunomodulatory Function and Gut Microbiota Structure in Cyclophosphamide-Treated Mice. Mar Drugs 2021; 19:md19080456. [PMID: 34436295 PMCID: PMC8401037 DOI: 10.3390/md19080456] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 07/30/2021] [Accepted: 08/03/2021] [Indexed: 12/22/2022] Open
Abstract
The intestinal flora is recognized as a significant contributor to the immune system. In this research, the protective effects of oyster peptides on immune regulation and intestinal microbiota were investigated in mice treated with cyclophosphamide. The results showed that oyster peptides restored the indexes of thymus, spleen and liver, stimulated cytokines secretion and promoted the relative mRNA levels of Th1/Th2 cytokines (IL-2, IFN-γ, IL-4 and IL-10). The mRNA levels of Occludin, Claudin-1, ZO-1, and Mucin-2 were up-regulated, and the NF-κB signaling pathway was also activated after oyster peptides administration. Furthermore, oyster peptides treatment reduced the proportion of Firmicutes/Bacteroidetes, increased the relative abundance of Alistipes, Lactobacillus, Rikenell and the content of short-chain fatty acids, and reversed the composition of intestinal microflora similar to that of normal mice. In conclusion, oyster peptides effectively ameliorated cyclophosphamide-induced intestinal damage and modified gut microbiota structure in mice, and might be utilized as a beneficial ingredient in functional foods for immune regulation.
Collapse
Affiliation(s)
- Xing-Wei Xiang
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China; (X.-W.X.); (H.-Z.Z.); (R.W.); (H.C.); (S.-L.L.)
- Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Hangzhou 310014, China
| | - Hui-Zhen Zheng
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China; (X.-W.X.); (H.-Z.Z.); (R.W.); (H.C.); (S.-L.L.)
- Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Hangzhou 310014, China
| | - Rui Wang
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China; (X.-W.X.); (H.-Z.Z.); (R.W.); (H.C.); (S.-L.L.)
- Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Hangzhou 310014, China
| | - Hui Chen
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China; (X.-W.X.); (H.-Z.Z.); (R.W.); (H.C.); (S.-L.L.)
- Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Hangzhou 310014, China
| | - Jin-Xing Xiao
- Ocean Research Center of Zhoushan, Zhejiang University, Zhoushan 316000, China
- Correspondence: (J.-X.X.); (Y.-T.D.); Tel.: +86-159-0680-1306 (J.-X.X.); +86-139-0650-1671 (Y.-T.D.)
| | - Bin Zheng
- Food and Pharmacy College, Zhejiang Ocean University, Zhoushan 316000, China;
| | - Shu-Lai Liu
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China; (X.-W.X.); (H.-Z.Z.); (R.W.); (H.C.); (S.-L.L.)
- Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Hangzhou 310014, China
| | - Yu-Ting Ding
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China; (X.-W.X.); (H.-Z.Z.); (R.W.); (H.C.); (S.-L.L.)
- Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Hangzhou 310014, China
- Correspondence: (J.-X.X.); (Y.-T.D.); Tel.: +86-159-0680-1306 (J.-X.X.); +86-139-0650-1671 (Y.-T.D.)
| |
Collapse
|
37
|
Perpetuo L, Klein J, Ferreira R, Guedes S, Amado F, Leite-Moreira A, Silva AMS, Thongboonkerd V, Vitorino R. How can artificial intelligence be used for peptidomics? Expert Rev Proteomics 2021; 18:527-556. [PMID: 34343059 DOI: 10.1080/14789450.2021.1962303] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
INTRODUCTION Peptidomics is an emerging field of omics sciences using advanced isolation, analysis, and computational techniques that enable qualitative and quantitative analyses of various peptides in biological samples. Peptides can act as useful biomarkers and as therapeutic molecules for diseases. AREAS COVERED The use of therapeutic peptides can be predicted quickly and efficiently using data-driven computational methods, particularly artificial intelligence (AI) approach. Various AI approaches are useful for peptide-based drug discovery, such as support vector machine, random forest, extremely randomized trees, and other more recently developed deep learning methods. AI methods are relatively new to the development of peptide-based therapies, but these techniques already become essential tools in protein science by dissecting novel therapeutic peptides and their functions (Figure 1).[Figure: see text]. EXPERT OPINION Researchers have shown that AI models can facilitate the development of peptidomics and selective peptide therapies in the field of peptide science. Biopeptide prediction is important for the discovery and development of successful peptide-based drugs. Due to their ability to predict therapeutic roles based on sequence details, many AI-dependent prediction tools have been developed (Figure 1).
Collapse
Affiliation(s)
- Luís Perpetuo
- iBiMED, Department of Medical Sciences, University of Aveiro, Aveiro
| | - Julie Klein
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1297, Institute of Cardiovascular and Metabolic Disease, Université Toulouse III, Toulouse, France
| | - Rita Ferreira
- LAQV/REQUIMTE, Department of Chemistry, University of Aveiro, Aveiro
| | - Sofia Guedes
- LAQV/REQUIMTE, Department of Chemistry, University of Aveiro, Aveiro
| | - Francisco Amado
- LAQV/REQUIMTE, Department of Chemistry, University of Aveiro, Aveiro
| | - Adelino Leite-Moreira
- UnIC, Departamento de Cirurgia e Fisiologia, Faculdade de Medicina da Universidade do Porto, Porto
| | - Artur M S Silva
- LAQV/REQUIMTE, Department of Chemistry, University of Aveiro, Aveiro
| | - Visith Thongboonkerd
- Medical Proteomics Unit, Office for Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Rui Vitorino
- iBiMED, Department of Medical Sciences, University of Aveiro, Aveiro.,LAQV/REQUIMTE, Department of Chemistry, University of Aveiro, Aveiro.,UnIC, Departamento de Cirurgia e Fisiologia, Faculdade de Medicina da Universidade do Porto, Porto
| |
Collapse
|
38
|
Ganesan K, Quiles JL, Daglia M, Xiao J, Xu B. Dietary phytochemicals modulate intestinal epithelial barrier dysfunction and autoimmune diseases. FOOD FRONTIERS 2021. [DOI: 10.1002/fft2.102] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Affiliation(s)
- Kumar Ganesan
- Food Science and Technology Program BNU–HKBU United International College Zhuhai China
- The School of Chinese Medicine The University of Hong Kong Hong Kong China
| | - José L. Quiles
- Institute of Nutrition and Food Technology “José Mataix Verdú,” Department of Physiology Biomedical Research Center University of Granada Granada Spain
| | - Maria Daglia
- Department of Pharmacy University of Naples Federico II Naples Italy
- International Research Center for Food Nutrition and Safety Jiangsu University Zhenjiang China
| | - Jianbo Xiao
- Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology University of Vigo Vigo Pontevedra E‐36310 Spain
| | - Baojun Xu
- Food Science and Technology Program BNU–HKBU United International College Zhuhai China
| |
Collapse
|
39
|
Composites Based on Hydroxyapatite and Whey Protein Isolate for Applications in Bone Regeneration. MATERIALS 2021; 14:ma14092317. [PMID: 33947013 PMCID: PMC8125377 DOI: 10.3390/ma14092317] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 04/23/2021] [Accepted: 04/28/2021] [Indexed: 12/26/2022]
Abstract
Hydroxyapatite (HAp) is a bioactive ceramic with great potential for the regeneration of the skeletal system. However, its mechanical properties, especially its brittleness, limit its application. Therefore, in order to increase its ability to transmit stresses, it can be combined with a polymer phase, which increases its strength without eliminating the important aspect of bioactivity. The presented work focuses on obtaining organic-inorganic hydrogel materials based on whey protein isolate (WPI) reinforced with nano-HAp powder. The proportion of the ceramic phase was in the range of 0-15%. Firstly, a physicochemical analysis of the materials was performed using XRD, FT-IR and SEM. The hydrogel composites were subjected to swelling capacity measurements, potentiometric and conductivity analysis, and in vitro tests in four liquids: distilled water, Ringer's fluid, artificial saliva, and simulated body fluid (SBF). The incubation results demonstrated the successful formation of new layers of apatite as a result of the interaction with the fluids. Additionally, the influence of the materials on the metabolic activity according to ISO 10993-5:2009 was evaluated by identifying direct contact cytotoxicity towards L-929 mouse fibroblasts, which served as a reference. Moreover, the stimulation of monocytes by hydrogels via the induction of nuclear factor (NF)-κB was investigated. The WPI/HAp composite hydrogels presented in this study therefore show great potential for use as novel bone substitutes.
Collapse
|
40
|
Padhi S, Sanjukta S, Chourasia R, Labala RK, Singh SP, Rai AK. A Multifunctional Peptide From Bacillus Fermented Soybean for Effective Inhibition of SARS-CoV-2 S1 Receptor Binding Domain and Modulation of Toll Like Receptor 4: A Molecular Docking Study. Front Mol Biosci 2021; 8:636647. [PMID: 33869283 PMCID: PMC8044374 DOI: 10.3389/fmolb.2021.636647] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 03/05/2021] [Indexed: 12/25/2022] Open
Abstract
Fermented soybean products are traditionally consumed and popular in many Asian countries and the northeastern part of India. To search for potential agents for the interruption of the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) Spike glycoprotein 1 (S1) and human angiotensin-converting enzyme 2 (ACE2) receptor interactions, the in silico antiviral prospective of peptides identified from the proteome of kinema was investigated. Soybean was fermented using Bacillus licheniformis KN1G, Bacillus amyloliquefaciens KN2G and two different strains of Bacillus subtilis (KN2B and KN2M). The peptides were screened in silico for possible antiviral activity using two different web servers (AVPpred and meta-iAVP), and binding interactions of selected 44 peptides were further explored against the receptor-binding domain (RBD) of the S1 protein (PDB ID: 6M0J) by molecular docking using ZDOCK. The results showed that a peptide ALPEEVIQHTFNLKSQ (P13) belonging to B. licheniformis KN1G fermented kinema was able to make contacts with the binding motif of RBD by blocking specific residues designated as critical (GLN493, ASN501) in the binding of human angiotensin-converting enzyme 2 (ACE2) cell receptor. The selected peptide was also observed to have a significant affinity towards human toll like receptor 4 (TLR4)/Myeloid Differentiation factor 2 (MD2) (PDB ID: 3FXI) complex known for its essential role in cytokine storm. The energy properties of the docked complexes were analyzed through the Generalized Born model and Solvent Accessibility method (MM/GBSA) using HawkDock server. The results showed peptidyl amino acids GLU5, GLN8, PHE11, and LEU13 contributed most to P13-RBD binding. Similarly, ARG90, PHE121, LEU61, PHE126, and ILE94 were appeared to be significant in P13-TLR4/MD2 complex. The findings of the study suggest that the peptides from fermented soy prepared using B. licheniformis KN1G have better potential to be used as antiviral agents. The specific peptide ALPEEVIQHTFNLKSQ could be synthesized and used in combination with experimental studies to validate its effect on SARS-CoV-2-hACE2 interaction and modulation of TLR4 activity. Subsequently, the protein hydrolysate comprising these peptides could be used as prophylaxis against viral diseases, including COVID-19.
Collapse
Affiliation(s)
- Srichandan Padhi
- Institute of Bioresources and Sustainable Development, Regional Centre, Gangtok, India
| | | | - Rounak Chourasia
- Institute of Bioresources and Sustainable Development, Regional Centre, Gangtok, India
| | | | - Sudhir P. Singh
- Centre of Innovative and Applied Bioprocessing, Mohali, India
| | - Amit K. Rai
- Institute of Bioresources and Sustainable Development, Regional Centre, Gangtok, India
| |
Collapse
|
41
|
Ho YY, Lu HK, Lim ZFS, Lim HW, Ho YS, Ng SK. Applications and analysis of hydrolysates in animal cell culture. BIORESOUR BIOPROCESS 2021; 8:93. [PMID: 34603939 PMCID: PMC8476327 DOI: 10.1186/s40643-021-00443-w] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 09/07/2021] [Indexed: 12/19/2022] Open
Abstract
Animal cells are used in the manufacturing of complex biotherapeutic products since the 1980s. From its initial uses in biological research to its current importance in the biopharmaceutical industry, many types of culture media were developed: from serum-based media to serum-free to protein-free chemically defined media. The cultivation of animal cells economically has become the ultimate goal in the field of biomanufacturing. Serum serves as a source of amino acids, lipids, proteins and most importantly growth factors and hormones, which are essential for many cell types. However, the use of serum is unfavorable due to its high price tag, increased lot-to-lot variations and potential risk of microbial contamination. Efforts are progressively being made to replace serum with recombinant proteins such as growth factors, cytokines and hormones, as well as supplementation with lipids, vitamins, trace elements and hydrolysates. While hydrolysates are more complex, they provide a diverse source of nutrients to animal cells, with potential beneficial effects beyond the nutritional value. In this review, we discuss the use of hydrolysates in animal cell culture and briefly cover the composition of hydrolysates, mode of action and potential contaminants with some perspectives on its potential role in animal cell culture media formulations in the future.
Collapse
Affiliation(s)
- Yin Ying Ho
- grid.185448.40000 0004 0637 0221Bioprocessing Technology Institute, Agency for Science, Technology, and Research (A*STAR), 20 Biopolis Way, #06-01 Centros, Singapore, 138668 Singapore
| | - Hao Kim Lu
- grid.185448.40000 0004 0637 0221Bioprocessing Technology Institute, Agency for Science, Technology, and Research (A*STAR), 20 Biopolis Way, #06-01 Centros, Singapore, 138668 Singapore
| | - Zhi Feng Sherman Lim
- grid.185448.40000 0004 0637 0221Bioprocessing Technology Institute, Agency for Science, Technology, and Research (A*STAR), 20 Biopolis Way, #06-01 Centros, Singapore, 138668 Singapore
| | - Hao Wei Lim
- grid.185448.40000 0004 0637 0221Bioprocessing Technology Institute, Agency for Science, Technology, and Research (A*STAR), 20 Biopolis Way, #06-01 Centros, Singapore, 138668 Singapore
| | - Ying Swan Ho
- grid.185448.40000 0004 0637 0221Bioprocessing Technology Institute, Agency for Science, Technology, and Research (A*STAR), 20 Biopolis Way, #06-01 Centros, Singapore, 138668 Singapore
| | - Say Kong Ng
- grid.185448.40000 0004 0637 0221Bioprocessing Technology Institute, Agency for Science, Technology, and Research (A*STAR), 20 Biopolis Way, #06-01 Centros, Singapore, 138668 Singapore
| |
Collapse
|
42
|
Toy JYH, Lu Y, Huang D, Matsumura K, Liu SQ. Enzymatic treatment, unfermented and fermented fruit-based products: current state of knowledge. Crit Rev Food Sci Nutr 2020; 62:1890-1911. [PMID: 33249876 DOI: 10.1080/10408398.2020.1848788] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
In recent years, food manufacturers are increasingly utilizing enzymes in the production of fruit-based (unfermented and fermented) products to increase yield and maximize product quality in a cost-effective manner. Depending on the fruits and desired product characteristics, different enzymes (e.g. pectinase, cellulase, hemicellulase, amylase, and protease) are used alone or in combinations to achieve optimized processing conditions and improve nutritional and sensorial quality. In this review, the mechanisms of action and sources of different enzymes, as well as their effects on the physicochemical, nutritional, and organoleptic properties of unfermented and fermented fruit-based products are summarized and discussed, respectively. In general, the application of enzymatic hydrolysis treatment (EHT) in unfermented fruit-based product helps to achieve four main purposes: (i) viscosity reduction (easy to filter), (ii) clarification (improved appearance/clarity), (iii) better nutritional quality (increase in polyphenolics) and (iv) enhanced organoleptic characteristic (brighter color and complex aroma profile). In addition, EHT provides numerous other advantages to fermented fruit-based products such as better fermentation efficiency and enrichment in aroma. To meet the demand for new market trends, researchers and manufacturers are increasingly employing non-Saccharomyces yeast (with enzymatic activities) alone or in tandem with Saccharomyces cerevisiae to produce complex flavor profile in fermented fruit-based products. Therefore, this review also evaluates the potential of some non-Saccharomyces yeasts with enzymatic activities and how their utilization helps to tailor wines with unique aroma profile. Lastly, in view of an increase in lactose-intolerant individuals, the potential of fermented probiotic fruit juice as an alternative to dairy-based probiotic products is discussed.
Collapse
Affiliation(s)
- Joanne Yi Hui Toy
- Department of Food Science and Technology, National University of Singapore, Singapore, Singapore
| | - Yuyun Lu
- Department of Food Science and Technology, National University of Singapore, Singapore, Singapore
| | - Dejian Huang
- Department of Food Science and Technology, National University of Singapore, Singapore, Singapore.,National University of Singapore (Suzhou) Research Institute, Jiangsu, China
| | - Keisuke Matsumura
- Product and Technology Development Department, Nippon Del Monte Corporation, Numata, Gunma, Japan.,Kikkoman Singapore R&D Laboratory Pte Ltd, Singapore, Singapore
| | - Shao-Quan Liu
- Department of Food Science and Technology, National University of Singapore, Singapore, Singapore.,National University of Singapore (Suzhou) Research Institute, Jiangsu, China
| |
Collapse
|
43
|
Sahin E, Orhan C, Uckun FM, Sahin K. Clinical Impact Potential of Supplemental Nutrients as Adjuncts of Therapy in High-Risk COVID-19 for Obese Patients. Front Nutr 2020; 7:580504. [PMID: 33195370 PMCID: PMC7642511 DOI: 10.3389/fnut.2020.580504] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 09/10/2020] [Indexed: 01/08/2023] Open
Abstract
The emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) disease (COVID-19) in China at the end of 2019 caused a major global pandemic and continues to be an unresolved global health crisis. The supportive care interventions for reducing the severity of symptoms along with participation in clinical trials of investigational treatments are the mainstay of COVID-19 management because there is no effective standard therapy for COVID-19. The comorbidity of COVID-19 rises in obese patients. Micronutrients may boost the host immunity against viral infections, including COVID-19. In this review, we discuss the clinical impact potential of supplemental nutrients as adjuncts of therapy in high-risk COVID-19 for obese patients.
Collapse
Affiliation(s)
- Emre Sahin
- Department of Nutrition, School of Veterinary Medicine, Firat University, Elazig, Turkey
| | - Cemal Orhan
- Department of Nutrition, School of Veterinary Medicine, Firat University, Elazig, Turkey
| | - Fatih M. Uckun
- COVID-19 Task Force, Reven Pharmaceuticals, Golden, CO, United States
- Department of Developmental Therapeutics, Immunology and Integrative Medicine, Ares Pharmaceuticals, St. Paul, MN, United States
| | - Kazim Sahin
- Department of Nutrition, School of Veterinary Medicine, Firat University, Elazig, Turkey
| |
Collapse
|
44
|
Twice daily oral administration of Palmaria palmata protein hydrolysate reduces food intake in streptozotocin induced diabetic mice, improving glycaemic control and lipid profiles. J Funct Foods 2020. [DOI: 10.1016/j.jff.2020.104101] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
|
45
|
Mao R, Wu L, Zhu N, Liu X, Hao Y, Liu R, Du Q, Li Y. Immunomodulatory effects of walnut (Juglans regia L.) oligopeptides on innate and adaptive immune responses in mice. J Funct Foods 2020. [DOI: 10.1016/j.jff.2020.104068] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
|
46
|
Kennedy K, Keogh B, Lopez C, Adelfio A, Molloy B, Kerr A, Wall AM, Jalowicki G, Holton TA, Khaldi N. An Artificial Intelligence Characterised Functional Ingredient, Derived from Rice, Inhibits TNF-α and Significantly Improves Physical Strength in an Inflammaging Population. Foods 2020; 9:foods9091147. [PMID: 32825524 PMCID: PMC7555431 DOI: 10.3390/foods9091147] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 08/17/2020] [Accepted: 08/19/2020] [Indexed: 12/18/2022] Open
Abstract
Food-derived bioactive peptides offer great potential for the treatment and maintenance of various health conditions, including chronic inflammation. Using in vitro testing in human macrophages, a rice derived functional ingredient natural peptide network (NPN) significantly reduced Tumour Necrosis Factor (TNF)-α secretion in response to lipopolysaccharides (LPS). Using artificial intelligence (AI) to characterize rice NPNs lead to the identification of seven potentially active peptides, the presence of which was confirmed by liquid chromatography tandem mass spectrometry (LC-MS/MS). Characterization of this network revealed the constituent peptides displayed anti-inflammatory properties as predicted in vitro. The rice NPN was then tested in an elderly "inflammaging" population with a view to subjectively assess symptoms of digestive discomfort through a questionnaire. While the primary subjective endpoint was not achieved, analysis of objectively measured physiological and physical secondary readouts showed clear significant benefits on the ability to carry out physical challenges such as a chair stand test that correlated with a decrease in blood circulating TNF-α. Importantly, the changes observed were without additional exercise or specific dietary alterations. Further health benefits were reported such as significant improvement in glucose control, a decrease in serum LDL concentration, and an increase in HDL concentration; however, this was compliance dependent. Here we provide in vitro and human efficacy data for a safe immunomodulatory functional ingredient characterized by AI.
Collapse
|
47
|
Immunomodulatory activity of low molecular-weight peptides from Nibea japonica skin in cyclophosphamide-induced immunosuppressed mice. J Funct Foods 2020. [DOI: 10.1016/j.jff.2020.103888] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|
48
|
|
49
|
A biotechnological approach for the production of branched chain amino acid containing bioactive peptides to improve human health: A review. Food Res Int 2020; 131:109002. [PMID: 32247480 DOI: 10.1016/j.foodres.2020.109002] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 12/21/2019] [Accepted: 01/12/2020] [Indexed: 12/20/2022]
Abstract
Improper nutrition provokes many types of chronic diseases and health problems, which consequently are associated with particularly high costs of treatments. Nowadays, consumer's interest in healthy eating is shifting towards specific foods or food ingredients. As a consequence, bioactive peptides as a promising source of health promoting food additives are currently an intensely debated topic in research. Process design is still on its early stages and is significantly influenced by important preliminary decisions. Thus, parameters like peptide bioactivity within the product, selection of the protein source, enzyme selection for hydrolysis, peptide enrichment method, as well as stability of the peptides within the food matrix and bioavailability are sensitive decision points, which have to be purposefully coordinated, as they are directly linked to amino acid content and structure properties of the peptides. Branched chain amino acids (BCAA) are essential components for humans, possessing various important physiologic functions within the body. Incorporated within peptide sequences, they may induce dual functions, when used as nutraceuticals in functional food, thus preserving the foodstuff and prevent several widespread diseases. Furthermore, there is evidence that consuming this peptide-class can be a nutritional support for elderly people or improve human health to prevent diseases caused by incorrect nutrition. Based on the knowledge about the role of BCAA within various peptide functions, discussed in the review, special attention is given to different approaches for systematic selection of the protein source and enzymes used in hydrolysis, as well as suitable peptide enrichment methods, thereby showing current trends in research.
Collapse
|
50
|
Mattei G, Cacopardo L, Ahluwalia A. Engineering Gels with Time-Evolving Viscoelasticity. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E438. [PMID: 31963333 PMCID: PMC7014018 DOI: 10.3390/ma13020438] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 01/13/2020] [Accepted: 01/14/2020] [Indexed: 02/01/2023]
Abstract
From a mechanical point of view, a native extracellular matrix (ECM) is viscoelastic. It also possesses time-evolving or dynamic behaviour, since pathophysiological processes such as ageing alter their mechanical properties over time. On the other hand, biomaterial research on mechanobiology has focused mainly on the development of substrates with varying stiffness, with a few recent contributions on time- or space-dependent substrate mechanics. This work reports on a new method for engineering dynamic viscoelastic substrates, i.e., substrates in which viscoelastic parameters can change or evolve with time, providing a tool for investigating cell response to the mechanical microenvironment. In particular, a two-step (chemical and enzymatic) crosslinking strategy was implemented to modulate the viscoelastic properties of gelatin hydrogels. First, gels with different glutaraldehyde concentrations were developed to mimic a wide range of soft tissue viscoelastic behaviours. Then their mechanical behaviour was modulated over time using microbial transglutaminase. Typically, enzymatically induced mechanical alterations occurred within the first 24 h of reaction and then the characteristic time constant decreased although the elastic properties were maintained almost constant for up to seven days. Preliminary cell culture tests showed that cells adhered to the gels, and their viability was similar to that of controls. Thus, the strategy proposed in this work is suitable for studying cell response and adaptation to temporal variations of substrate mechanics during culture.
Collapse
Affiliation(s)
- Giorgio Mattei
- Department of Information Engineering, University of Pisa, Via Girolamo Caruso 16, 56122 Pisa, Italy;
| | - Ludovica Cacopardo
- Research Centre “E. Piaggio”, University of Pisa, Largo Lucio Lazzarino 1, 56122 Pisa, Italy;
| | - Arti Ahluwalia
- Department of Information Engineering, University of Pisa, Via Girolamo Caruso 16, 56122 Pisa, Italy;
- Research Centre “E. Piaggio”, University of Pisa, Largo Lucio Lazzarino 1, 56122 Pisa, Italy;
| |
Collapse
|