1
|
Castañé H, Jiménez-Franco A, Hernández-Aguilera A, Martínez-Navidad C, Cambra-Cortés V, Onoiu AI, Jiménez-Aguilar JM, París M, Hernández M, Parada D, Guilarte C, Zorzano A, Hernández-Alvarez MI, Camps J, Joven J. Multi-omics profiling reveals altered mitochondrial metabolism in adipose tissue from patients with metabolic dysfunction-associated steatohepatitis. EBioMedicine 2025; 111:105532. [PMID: 39731853 PMCID: PMC11743550 DOI: 10.1016/j.ebiom.2024.105532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 12/13/2024] [Accepted: 12/15/2024] [Indexed: 12/30/2024] Open
Abstract
BACKGROUND Metabolic dysfunction-associated steatotic liver disease (MASLD) and its more severe form steatohepatitis (MASH) contribute to rising morbidity and mortality rates. The storage of fat in humans is closely associated with these diseases' progression. Thus, adipose tissue metabolic homeostasis could be key in both the onset and progression of MASH. METHODS We conducted a case-control observational research using a systems biology-based approach to analyse liver, abdominal subcutaneous adipose tissue (SAT), omental visceral adipose tissue (VAT), and blood of n = 100 patients undergoing bariatric surgery (NCT05554224). MASH was diagnosed through histologic assessment. Whole-slide image analysis, lipidomics, proteomics, and transcriptomics were performed on tissue samples. Lipidomics and proteomics profiles were determined on plasma samples. FINDINGS Liver transcriptomics, proteomics, and lipidomics revealed interconnected pathways associated with inflammation, mitochondrial dysfunction, and lipotoxicity in MASH. Paired adipose tissue biopsies had larger adipocyte areas in both fat depots in MASH. Enrichment analyses of proteomics and lipidomics data confirmed the association of liver lesions with mitochondrial dysfunction in VAT. Plasma lipidomics identified candidates with high diagnostic accuracy (AUC = 0.919, 95% CI 0.840-0.979) for screening MASH. INTERPRETATION Mitochondrial dysfunction is also present in VAT in patients with obesity-associated MASH. This may cause a disruption in the metabolic equilibrium of lipid processing and storage, which impacts the liver and accelerates detrimental adaptative responses. FUNDING The project leading to these results has received funding from 'la Caixa' Foundation (HR21-00430), and from the Instituto de Salud Carlos III (ISCIII) (PI21/00510) and co-funded by the European Union.
Collapse
Affiliation(s)
- Helena Castañé
- Unitat de Recerca Biomèdica, Hospital Universitari de Sant Joan, Universitat Rovira i Virgili, Institut d'Investigació Sanitària Pere Virgili, Reus, Spain; Department of Medicine and Surgery, Faculty of Medicine, Universitat Rovira i Virgili, Reus, Spain.
| | - Andrea Jiménez-Franco
- Unitat de Recerca Biomèdica, Hospital Universitari de Sant Joan, Universitat Rovira i Virgili, Institut d'Investigació Sanitària Pere Virgili, Reus, Spain; Department of Medicine and Surgery, Faculty of Medicine, Universitat Rovira i Virgili, Reus, Spain
| | | | - Cristian Martínez-Navidad
- Unitat de Recerca Biomèdica, Hospital Universitari de Sant Joan, Universitat Rovira i Virgili, Institut d'Investigació Sanitària Pere Virgili, Reus, Spain
| | - Vicente Cambra-Cortés
- Unitat de Recerca Biomèdica, Hospital Universitari de Sant Joan, Universitat Rovira i Virgili, Institut d'Investigació Sanitària Pere Virgili, Reus, Spain
| | - Alina-Iuliana Onoiu
- Unitat de Recerca Biomèdica, Hospital Universitari de Sant Joan, Universitat Rovira i Virgili, Institut d'Investigació Sanitària Pere Virgili, Reus, Spain
| | - Juan Manuel Jiménez-Aguilar
- Unitat de Recerca Biomèdica, Hospital Universitari de Sant Joan, Universitat Rovira i Virgili, Institut d'Investigació Sanitària Pere Virgili, Reus, Spain
| | - Marta París
- Unitat de Recerca Biomèdica, Hospital Universitari de Sant Joan, Universitat Rovira i Virgili, Institut d'Investigació Sanitària Pere Virgili, Reus, Spain; Department of Surgery, Hospital Universitari de Sant Joan, Reus, Spain
| | - Mercè Hernández
- Unitat de Recerca Biomèdica, Hospital Universitari de Sant Joan, Universitat Rovira i Virgili, Institut d'Investigació Sanitària Pere Virgili, Reus, Spain; Department of Surgery, Hospital Universitari de Sant Joan, Reus, Spain
| | - David Parada
- Department of Pathology, Hospital Universitari de Sant Joan, Reus, Spain
| | - Carmen Guilarte
- Department of Pathology, Hospital Universitari de Sant Joan, Reus, Spain
| | - Antonio Zorzano
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, Universitat de Barcelona, Barcelona, Spain; Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain; Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain
| | - María Isabel Hernández-Alvarez
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, Universitat de Barcelona, Barcelona, Spain; Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain; Institut de Biomedicina de la Universitat de Barcelona IBUB, Barcelona, Spain
| | - Jordi Camps
- Unitat de Recerca Biomèdica, Hospital Universitari de Sant Joan, Universitat Rovira i Virgili, Institut d'Investigació Sanitària Pere Virgili, Reus, Spain; Department of Medicine and Surgery, Faculty of Medicine, Universitat Rovira i Virgili, Reus, Spain.
| | - Jorge Joven
- Unitat de Recerca Biomèdica, Hospital Universitari de Sant Joan, Universitat Rovira i Virgili, Institut d'Investigació Sanitària Pere Virgili, Reus, Spain; Department of Medicine and Surgery, Faculty of Medicine, Universitat Rovira i Virgili, Reus, Spain; The Campus of International Excellence Southern Catalonia, Tarragona, Spain.
| |
Collapse
|
2
|
Jiménez-Franco A, Castañé H, Martínez-Navidad C, Placed-Gallego C, Hernández-Aguilera A, Fernández-Arroyo S, Samarra I, Canela-Capdevila M, Arenas M, Zorzano A, Hernández-Alvarez MI, Castillo DD, Paris M, Menendez JA, Camps J, Joven J. Metabolic adaptations in severe obesity: Insights from circulating oxylipins before and after weight loss. Clin Nutr 2024; 43:246-258. [PMID: 38101315 DOI: 10.1016/j.clnu.2023.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 11/29/2023] [Accepted: 12/04/2023] [Indexed: 12/17/2023]
Abstract
BACKGROUND The relationship between lipid mediators and severe obesity remains unclear. Our study investigates the impact of severe obesity on plasma concentrations of oxylipins and fatty acids and explores the consequences of weight loss. METHODS In the clinical trial identifier NCT05554224 study, 116 patients with severe obesity and 63 overweight/obese healthy controls matched for age and sex (≈2:1) provided plasma. To assess the effect of surgically induced weight loss, we requested paired plasma samples from 44 patients undergoing laparoscopic sleeve gastrectomy one year after the procedure. Oxylipins were measured using ultra-high-pressure liquid chromatography coupled to a triple quadrupole mass spectrometer via semi-targeted lipidomics. Cytokines and markers of interorgan crosstalk were measured using enzyme-linked immunosorbent assays. RESULTS We observed significantly elevated levels of circulating fatty acids and oxylipins in patients with severe obesity compared to their metabolically healthier overweight/obese counterparts. Our findings indicated that sex and liver disease were not confounding factors, but we observed weak correlations in plasma with circulating adipokines, suggesting the influence of adipose tissue. Importantly, while weight loss restored the balance in circulating fatty acids, it did not fully normalize the oxylipin profile. Before surgery, oxylipins derived from lipoxygenase activity, such as 12-HETE, 11-HDoHE, 14-HDoHE, and 12-HEPE, were predominant. However, one year following laparoscopic sleeve gastrectomy, we observed a complex shift in the oxylipin profile, favoring species from the cyclooxygenase pathway, particularly proinflammatory prostanoids like TXB2, PGE2, PGD2, and 12-HHTrE. This transformation appears to be linked to a reduction in adiposity, underscoring the role of lipid turnover in the development of metabolic disorders associated with severe obesity. CONCLUSIONS Despite the reduction in fatty acid levels associated with weight loss, the oxylipin profile shifts towards a predominance of more proinflammatory species. These observations underscore the significance of seeking mechanistic approaches to address severe obesity and emphasize the importance of closely monitoring the metabolic adaptations after weight loss.
Collapse
Affiliation(s)
- Andrea Jiménez-Franco
- Unitat de Recerca Biomèdica, Hospital Universitari Sant Joan, Institut d'Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, Reus, Spain
| | - Helena Castañé
- Unitat de Recerca Biomèdica, Hospital Universitari Sant Joan, Institut d'Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, Reus, Spain
| | - Cristian Martínez-Navidad
- Unitat de Recerca Biomèdica, Hospital Universitari Sant Joan, Institut d'Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, Reus, Spain
| | - Cristina Placed-Gallego
- Unitat de Recerca Biomèdica, Hospital Universitari Sant Joan, Institut d'Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, Reus, Spain
| | - Anna Hernández-Aguilera
- Department of Pathology, Hospital Universitari Sant Joan, Institut d'Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, Reus, Spain
| | | | - Iris Samarra
- Center for Omics Sciences, EURECAT-Technology Center of Catalonia, Reus, Spain
| | - Marta Canela-Capdevila
- Unitat de Recerca Biomèdica, Hospital Universitari Sant Joan, Institut d'Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, Reus, Spain; Department of Radiation Oncology, Institut d'Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, Reus, Spain
| | - Meritxell Arenas
- Department of Radiation Oncology, Institut d'Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, Reus, Spain
| | - Antonio Zorzano
- Department de Bioquímica i Biomedicina Molecular, Facultat de Biología, Barcelona, Spain; Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain; CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Spain
| | - María Isabel Hernández-Alvarez
- Department de Bioquímica i Biomedicina Molecular, Facultat de Biología, Barcelona, Spain; Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain; CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Spain
| | - Daniel Del Castillo
- Servei de Cirurgia, Hospital Sant Joan de Reus, Institut d'Investigació Sanitària Pere Virgili. Avinguda, Departament de Medicina i Cirurgia, Universitat Rovira i Virgili, Reus, Spain
| | - Marta Paris
- Servei de Cirurgia, Hospital Sant Joan de Reus, Institut d'Investigació Sanitària Pere Virgili. Avinguda, Departament de Medicina i Cirurgia, Universitat Rovira i Virgili, Reus, Spain
| | - Javier A Menendez
- Metabolism and Cancer Group, Program Against Cancer Therapeutic Resistance (ProCURE), Catalan Institute of Oncology, Girona, Spain; Girona Biomedical Research Institute, Girona, Spain
| | - Jordi Camps
- Unitat de Recerca Biomèdica, Hospital Universitari Sant Joan, Institut d'Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, Reus, Spain.
| | - Jorge Joven
- Unitat de Recerca Biomèdica, Hospital Universitari Sant Joan, Institut d'Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, Reus, Spain.
| |
Collapse
|
3
|
Ku CW, Lee AJW, Oh B, Lim CHF, Chang TY, Yap F, Chan JKY, Loy SL. The Effect of Vitamin D Supplementation in Pregnant Women with Overweight and Obesity: A Randomised Controlled Trial. Nutrients 2023; 16:146. [PMID: 38201976 PMCID: PMC10780523 DOI: 10.3390/nu16010146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 12/27/2023] [Accepted: 12/29/2023] [Indexed: 01/12/2024] Open
Abstract
The impact of vitamin D supplementation on 25-hydroxyvitamin D (25OHD) levels, metabolic status, and pregnancy outcomes in pregnant women with overweight and obesity (OW/OB) is uncertain. This study aimed to examine whether administrating 800 IU of vitamin D3 orally would improve maternal serum 25OHD levels, lipid profile, and pregnancy outcomes compared to 400 IU. This was a two-arm, parallel, non-blinded randomised controlled trial involving 274 pregnant women recruited from KK Women's and Children's Hospital, with a body mass index of ≥25 kg/m2 within 16 weeks gestation. The participants were randomly assigned to receive 800 IU/day (intervention group) or 400 IU/day (control group) of oral vitamin D3 supplements. The primary outcomes were maternal serum 25OHD and lipid levels at 24-28 weeks gestation. The secondary outcomes included maternal and birth outcomes. Compared with controls (n = 119), the intervention group (n = 112) exhibited higher 25OHD levels at 24-28 weeks gestation (adjusted mean difference 6.52 nmol/L; 95% confidence interval 2.74, 10.31). More women in the intervention group achieved sufficient 25OHD levels (77.7% vs. 55.5%; p < 0.001). No differences were observed in lipid profiles or maternal or birth outcomes between the groups. An additional 400 IU of oral vitamin D3 supplementation increased serum 25OHD levels but did not impact lipid profiles or pregnancy outcomes.
Collapse
Affiliation(s)
- Chee Wai Ku
- Department of Reproductive Medicine, KK Women’s and Children’s Hospital, 100 Bukit Timah Road, Singapore 229899, Singapore; (C.W.K.); (B.O.); (J.K.Y.C.)
- Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore;
| | - Angeline Jia Wen Lee
- Lee Kong Chian School of Medicine, Nanyang Technological University, 59 Nanyang Drive, Experimental Medicine Building, Singapore 636921, Singapore;
| | - Benjarat Oh
- Department of Reproductive Medicine, KK Women’s and Children’s Hospital, 100 Bukit Timah Road, Singapore 229899, Singapore; (C.W.K.); (B.O.); (J.K.Y.C.)
| | - Celeste Hong Fei Lim
- Yong Loo Lin School of Medicine, National University of Singapore, 10 Medical Drive, Singapore 117597, Singapore; (C.H.F.L.); (T.Y.C.)
| | - Ting Yu Chang
- Yong Loo Lin School of Medicine, National University of Singapore, 10 Medical Drive, Singapore 117597, Singapore; (C.H.F.L.); (T.Y.C.)
| | - Fabian Yap
- Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore;
- Lee Kong Chian School of Medicine, Nanyang Technological University, 59 Nanyang Drive, Experimental Medicine Building, Singapore 636921, Singapore;
- Endocrinology Service, Department of Paediatrics, KK Women’s and Children’s Hospital, 100 Bukit Timah Road, Singapore 229899, Singapore
| | - Jerry Kok Yen Chan
- Department of Reproductive Medicine, KK Women’s and Children’s Hospital, 100 Bukit Timah Road, Singapore 229899, Singapore; (C.W.K.); (B.O.); (J.K.Y.C.)
- Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore;
| | - See Ling Loy
- Department of Reproductive Medicine, KK Women’s and Children’s Hospital, 100 Bukit Timah Road, Singapore 229899, Singapore; (C.W.K.); (B.O.); (J.K.Y.C.)
- Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore;
| |
Collapse
|
4
|
Yao D, Ranadheera CS, Shen C, Wei W, Cheong LZ. Milk fat globule membrane: composition, production and its potential as encapsulant for bioactives and probiotics. Crit Rev Food Sci Nutr 2023; 64:12336-12351. [PMID: 37632418 DOI: 10.1080/10408398.2023.2249992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/28/2023]
Abstract
Milk fat globule membrane (MFGM) is a complex trilayer structure present in mammalian milk and is mainly composed of phospholipids and proteins (>90%). Many studies revealed MFGM has positive effects on the immune system, brain development, and cognitive function of infants. Probiotics are live microorganisms that have been found to improve mental health and insulin sensitivity, regulate immunity, and prevent allergies. Probiotics are unstable and prone to degradation by environmental, processing, and storage conditions. In this review, the processes used for encapsulation of probiotics particularly the potential of MFGM and its constituents as encapsulating materials for probiotics are described. This study analyzes the importance of MFGM in encapsulating bioactive substances and emphasizes the interaction with probiotics and the gut as well as its resistance to adverse environmental factors in the digestive system when used as a probiotic embedding material. MFGM can enhance the gastric acid resistance and bile resistance of probiotics, mainly manifested in the survival rate of probiotics. Due to the role of digestion, MFGM-coated probiotics can be released in the intestine, and due to the biocompatibility of the membrane, it can promote the binding of probiotics to intestinal epithelial cells, and promote the colonization of some probiotics in the intestine.
Collapse
Affiliation(s)
- Dan Yao
- Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food and Pharmaceutical Science, Ningbo University, Ningbo, China
| | - Chaminda Senaka Ranadheera
- School of Agriculture, Food and Ecosystem Sciences, Faculty of Science, University of Melbourne, Melbourne, Victoria, Australia
| | - Cai Shen
- School of Agriculture, Food and Ecosystem Sciences, Faculty of Science, University of Melbourne, Melbourne, Victoria, Australia
- China Beacons Institute, University of Nottingham Ningbo China, Ningbo, China
| | - Wei Wei
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Ling-Zhi Cheong
- School of Agriculture, Food and Ecosystem Sciences, Faculty of Science, University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
5
|
Yang Y, Yan S, Yao N, Guo Y, Wang H, Sun M, Hu W, Li X, Wang L, Li B. Effects of vitamin D supplementation on the regulation of blood lipid levels in prediabetic subjects: A meta-analysis. Front Nutr 2023; 10:983515. [PMID: 36969817 PMCID: PMC10033891 DOI: 10.3389/fnut.2023.983515] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 02/06/2023] [Indexed: 03/11/2023] Open
Abstract
This meta-analysis aimed to systematically investigate whether vitamin D supplementation reduces blood lipid—total cholesterol (TC), LDL cholesterol (LDL-C), HDL cholesterol (HDL-C), and triglyceride (TG)—levels in prediabetic individuals. Pubmed, Web of Science, Cochrane Library, Embase, CNKI, and WANFANG databases were searched for studies published before 13 February 2022 (including 13 February 2022). Five articles were included. The results showed that vitamin D intervention led to a significant reduction in TG compared with control or placebo treatment (−0.42 [−0.59, −0.25], P < 0.001). Subgroup analyses showed that this effect was particularly significant among the studies that included obese subjects (−0.46 [−0.65, −0.28], P < 0.001), the studies that also included men (not only women) (−0.56 [−0.78, −0.34], P < 0.001), and the studies with intervention durations longer than 1 year (−0.46 [−0.65, −0.28], P < 0.001). Both relatively low doses of 2,857 IU/day (−0.65 [−0.92, −0.38], P < 0.001) and relatively high doses of 8,571 IU/day (−0.28 [−0.54, −0.02] P = 0.04) of vitamin D supplementation reduced TG levels, and the effect was observed both in Northern Europe (−0.65 [−0.92, −0.38], P < 0.001) and Asian (−0.25 [−0.48, −0.03], P = 0.03) country subgroups. No significant effects on TC, HDL-C, and LDL-C were shown. In conclusion, vitamin D supplementation might beneficially affect TG levels in individuals with prediabetes. Particularly longer durations of treatment, more than 1 year, with doses that correct vitamin deficiency/insufficiency, can have a beneficial effect. This meta-analysis was registered at www.crd.york.ac.uk/prospero (CRD42020160780).
Collapse
Affiliation(s)
- Yixue Yang
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun, China
| | - Shoumeng Yan
- School of Nursing, Jilin University, Changchun, Jilin, China
| | - Nan Yao
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun, China
| | - Yinpei Guo
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun, China
| | - Han Wang
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun, China
| | - Mengzi Sun
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun, China
| | - Wenyu Hu
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun, China
| | - Xiaotong Li
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun, China
| | - Ling Wang
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun, China
| | - Bo Li
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun, China
- *Correspondence: Bo Li
| |
Collapse
|
6
|
Baiges-Gaya G, Rodríguez-Tomàs E, Castañé H, Jiménez-Franco A, Amigó N, Camps J, Joven J. Combining Dietary Intervention with Metformin Treatment Enhances Non-Alcoholic Steatohepatitis Remission in Mice Fed a High-Fat High-Sucrose Diet. Biomolecules 2022; 12:biom12121787. [PMID: 36551216 PMCID: PMC9775246 DOI: 10.3390/biom12121787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 11/23/2022] [Accepted: 11/25/2022] [Indexed: 12/05/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) and non-alcoholic steatohepatitis (NASH) are serious health concerns for which lifestyle interventions are the only effective first-line treatment. Dietary interventions are effective in body weight reduction, but not in improving insulin sensitivity and hepatic lipid mobilization. Conversely, metformin increases insulin sensitivity and promotes the inhibition of de novo hepatic lipogenesis. In this study, we evaluated the metformin effectiveness in NASH prevention and treatment, when combined with dietary intervention in male mice fed a high-fat high-sucrose diet (HFHSD). Eighty 5-week-old C57BL/6J male mice were fed a chow or HFHSD diet and sacrificed at 20 or 40 weeks. The HFHSD-fed mice developed NASH after 20 weeks. Lipoprotein and lipidomic analyses showed that the changes associated with diet were not prevented by metformin administration. HFHSD-fed mice subject to dietary intervention combined with metformin showed a 19.6% body weight reduction compared to 9.8% in those mice subjected to dietary intervention alone. Lower hepatic steatosis scores were induced. We conclude that metformin should not be considered a preventive option for NAFLD, but it is effective in the treatment of this disorder when combined with dietary intervention.
Collapse
Affiliation(s)
- Gerard Baiges-Gaya
- Department of Medicine and Surgery, Rovira i Virgili University (URV), 43201 Reus, Spain
- Unitat de Recerca Biomèdica (URB-CRB), Hospital Universitari de Sant Joan, Institut d’Investigació Santiària Pere i Virgili (IISPV), 43201 Reus, Spain
| | - Elisabet Rodríguez-Tomàs
- Department of Medicine and Surgery, Rovira i Virgili University (URV), 43201 Reus, Spain
- Unitat de Recerca Biomèdica (URB-CRB), Hospital Universitari de Sant Joan, Institut d’Investigació Santiària Pere i Virgili (IISPV), 43201 Reus, Spain
| | - Helena Castañé
- Department of Medicine and Surgery, Rovira i Virgili University (URV), 43201 Reus, Spain
- Unitat de Recerca Biomèdica (URB-CRB), Hospital Universitari de Sant Joan, Institut d’Investigació Santiària Pere i Virgili (IISPV), 43201 Reus, Spain
| | - Andrea Jiménez-Franco
- Department of Medicine and Surgery, Rovira i Virgili University (URV), 43201 Reus, Spain
| | - Núria Amigó
- Department of Medicine and Surgery, Rovira i Virgili University (URV), 43201 Reus, Spain
- CIBER of Diabetes and Associated Metabolic Disease (CIBERDEM), ISCIII, 28029 Madrid, Spain
- Biosfer Teslab, 43201 Reus, Spain
| | - Jordi Camps
- Department of Medicine and Surgery, Rovira i Virgili University (URV), 43201 Reus, Spain
- Unitat de Recerca Biomèdica (URB-CRB), Hospital Universitari de Sant Joan, Institut d’Investigació Santiària Pere i Virgili (IISPV), 43201 Reus, Spain
- Correspondence: (J.C.); (J.J.)
| | - Jorge Joven
- Department of Medicine and Surgery, Rovira i Virgili University (URV), 43201 Reus, Spain
- Unitat de Recerca Biomèdica (URB-CRB), Hospital Universitari de Sant Joan, Institut d’Investigació Santiària Pere i Virgili (IISPV), 43201 Reus, Spain
- Campus of International Excellence Southern Catalonia, 43003 Tarragona, Spain
- Correspondence: (J.C.); (J.J.)
| |
Collapse
|
7
|
Zhao Y, Qin R. Vitamin D3 affects browning of white adipocytes by regulating autophagy via PI3K/Akt/mTOR/p53 signaling in vitro and in vivo. Apoptosis 2022; 27:992-1003. [DOI: 10.1007/s10495-022-01765-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/12/2022] [Indexed: 11/30/2022]
|
8
|
Verdura S, Encinar JA, Fernández-Arroyo S, Joven J, Cuyàs E, Bosch-Barrera J, Menendez JA. Silibinin Suppresses the Hyperlipidemic Effects of the ALK-Tyrosine Kinase Inhibitor Lorlatinib in Hepatic Cells. Int J Mol Sci 2022; 23:9986. [PMID: 36077379 PMCID: PMC9456400 DOI: 10.3390/ijms23179986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 08/27/2022] [Accepted: 08/30/2022] [Indexed: 11/25/2022] Open
Abstract
The third-generation anaplastic lymphoma tyrosine kinase inhibitor (ALK-TKI) lorlatinib has a unique side effect profile that includes hypercholesteremia and hypertriglyceridemia in >80% of lung cancer patients. Here, we tested the hypothesis that lorlatinib might directly promote the accumulation of cholesterol and/or triglycerides in human hepatic cells. We investigated the capacity of the hepatoprotectant silibinin to modify the lipid-modifying activity of lorlatinib. To predict clinically relevant drug−drug interactions if silibinin were used to clinically manage lorlatinib-induced hyperlipidemic effects in hepatic cells, we also explored the capacity of silibinin to interact with and block CYP3A4 activity using in silico computational descriptions and in vitro biochemical assays. A semi-targeted ultrahigh pressure liquid chromatography accurate mass quadrupole time-of-flight mass spectrometry with electrospray ionization (UHPLC-ESI-QTOF-MS/MS)-based lipidomic approach revealed that short-term treatment of hepatic cells with lorlatinib promotes the accumulation of numerous molecular species of cholesteryl esters and triglycerides. Silibinin treatment significantly protected the steady-state lipidome of hepatocytes against the hyperlipidemic actions of lorlatinib. Lipid staining confirmed the ability of lorlatinib to promote neutral lipid overload in hepatocytes upon long-term exposure, which was prevented by co-treatment with silibinin. Computational analyses and cell-free biochemical assays predicted a weak to moderate inhibitory activity of clinically relevant concentrations of silibinin against CYP3A4 when compared with recommended (rosuvastatin) and non-recommended (simvastatin) statins for lorlatinib-associated dyslipidemia. The elevated plasma cholesterol and triglyceride levels in lorlatinib-treated lung cancer patients might involve primary alterations in the hepatic accumulation of lipid intermediates. Silibinin could be clinically explored to reduce the undesirable hyperlipidemic activity of lorlatinib in lung cancer patients.
Collapse
Affiliation(s)
- Sara Verdura
- Metabolism and Cancer Group, Program Against Cancer Therapeutic Resistance (ProCURE), Catalan Institute of Oncology, 17007 Girona, Spain
- Girona Biomedical Research Institute (IDIBGI), Salt, 17190 Girona, Spain
| | - José Antonio Encinar
- Institute of Research, Development and Innovation in Biotechnology of Elche (IDiBE) and Molecular and Cell Biology Institute (IBMC), Miguel Hernández University (UMH), 03207 Elche, Spain
| | - Salvador Fernández-Arroyo
- Department of Medicine and Surgery, Universitat Rovira i Virgili, 43204 Reus, Spain
- Unitat de Recerca Biomèdica (URB-CRB), Hospital Universitari de Sant Joan, Institut d’Investigació Sanitaria Pere Virgili, Universitat Rovira i Virgili, 43204 Reus, Spain
| | - Jorge Joven
- Department of Medicine and Surgery, Universitat Rovira i Virgili, 43204 Reus, Spain
- Unitat de Recerca Biomèdica (URB-CRB), Hospital Universitari de Sant Joan, Institut d’Investigació Sanitaria Pere Virgili, Universitat Rovira i Virgili, 43204 Reus, Spain
| | - Elisabet Cuyàs
- Metabolism and Cancer Group, Program Against Cancer Therapeutic Resistance (ProCURE), Catalan Institute of Oncology, 17007 Girona, Spain
- Girona Biomedical Research Institute (IDIBGI), Salt, 17190 Girona, Spain
| | - Joaquim Bosch-Barrera
- Girona Biomedical Research Institute (IDIBGI), Salt, 17190 Girona, Spain
- Medical Oncology, Catalan Institute of Oncology, 17007 Girona, Spain
- Department of Medical Sciences, Medical School, University of Girona, 17071 Girona, Spain
| | - Javier A. Menendez
- Metabolism and Cancer Group, Program Against Cancer Therapeutic Resistance (ProCURE), Catalan Institute of Oncology, 17007 Girona, Spain
- Girona Biomedical Research Institute (IDIBGI), Salt, 17190 Girona, Spain
| |
Collapse
|
9
|
Harahap IA, Landrier JF, Suliburska J. Interrelationship between Vitamin D and Calcium in Obesity and Its Comorbid Conditions. Nutrients 2022; 14:3187. [PMID: 35956362 PMCID: PMC9370653 DOI: 10.3390/nu14153187] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 07/24/2022] [Accepted: 07/31/2022] [Indexed: 02/01/2023] Open
Abstract
Obesity has been linked to vitamin D (VD) deficiency and low calcium (CAL) status. In the last decade, dietary supplementation of vitamin D and calcium (VD-CAL) have been extensively studied in animal experiments and human studies. However, the physiological mechanisms remain unknown as to whether the VD-CAL axis improves homeostasis and reduces biomarkers in regulating obesity and other metabolic diseases directly or indirectly. This review sought to investigate their connections. This topic was examined in scientific databases such as Web of Science, Scopus, and PubMed from 2011 to 2021, and 87 articles were generated for interpretation. Mechanistically, VD-CAL regulates from the organs to the blood, influencing insulin, lipids, hormone, cell, and inflammatory functions in obesity and its comorbidities, such as non-alcoholic fatty liver disease, cardiovascular disease, and type-2 diabetes mellitus. Nevertheless, previous research has not consistently shown that simultaneous VD-CAL supplementation affects weight loss or reduces fat content. This discrepancy may be influenced by population age and diversity, ethnicity, and geographical location, and also by degree of obesity and applied doses. Therefore, a larger prospective cohort and randomised trials are needed to determine the exact role of VD-CAL and their interrelationship.
Collapse
Affiliation(s)
- Iskandar Azmy Harahap
- Department of Human Nutrition and Dietetics, Poznan University of Life Sciences, Wojska Polskiego St. 31, 60-624 Poznan, Poland;
| | | | - Joanna Suliburska
- Department of Human Nutrition and Dietetics, Poznan University of Life Sciences, Wojska Polskiego St. 31, 60-624 Poznan, Poland;
| |
Collapse
|
10
|
Castañé H, Iftimie S, Baiges-Gaya G, Rodríguez-Tomàs E, Jiménez-Franco A, López-Azcona AF, Garrido P, Castro A, Camps J, Joven J. Machine learning and semi-targeted lipidomics identify distinct serum lipid signatures in hospitalized COVID-19-positive and COVID-19-negative patients. Metabolism 2022; 131:155197. [PMID: 35381232 PMCID: PMC8976580 DOI: 10.1016/j.metabol.2022.155197] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 02/11/2022] [Accepted: 03/28/2022] [Indexed: 12/16/2022]
Abstract
BACKGROUND Lipids are involved in the interaction between viral infection and the host metabolic and immunological responses. Several studies comparing the lipidome of COVID-19-positive hospitalized patients vs. healthy subjects have already been reported. It is largely unknown, however, whether these differences are specific to this disease. The present study compared the lipidomic signature of hospitalized COVID-19-positive patients with that of healthy subjects, as well as with COVID-19-negative patients hospitalized for other infectious/inflammatory diseases. METHODS We analyzed the lipidomic signature of 126 COVID-19-positive patients, 45 COVID-19-negative patients hospitalized with other infectious/inflammatory diseases and 50 healthy volunteers. A semi-targeted lipidomics analysis was performed using liquid chromatography coupled to mass spectrometry. Two-hundred and eighty-three lipid species were identified and quantified. Results were interpreted by machine learning tools. RESULTS We identified acylcarnitines, lysophosphatidylethanolamines, arachidonic acid and oxylipins as the most altered species in COVID-19-positive patients compared to healthy volunteers. However, we found similar alterations in COVID-19-negative patients who had other causes of inflammation. Conversely, lysophosphatidylcholine 22:6-sn2, phosphatidylcholine 36:1 and secondary bile acids were the parameters that had the greatest capacity to discriminate between COVID-19-positive and COVID-19-negative patients. CONCLUSION This study shows that COVID-19 infection shares many lipid alterations with other infectious/inflammatory diseases, and which differentiate them from the healthy population. The most notable alterations were observed in oxylipins, while alterations in bile acids and glycerophospholipis best distinguished between COVID-19-positive and COVID-19-negative patients. Our results highlight the value of integrating lipidomics with machine learning algorithms to explore the pathophysiology of COVID-19 and, consequently, improve clinical decision making.
Collapse
Affiliation(s)
- Helena Castañé
- Unitat de Recerca Biomèdica, Hospital Universitari de Sant Joan, Institut d'Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, Reus, Spain
| | - Simona Iftimie
- Department of Internal Medicine, Hospital Universitari de Sant Joan, Institut d'Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, Reus, Spain
| | - Gerard Baiges-Gaya
- Unitat de Recerca Biomèdica, Hospital Universitari de Sant Joan, Institut d'Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, Reus, Spain
| | - Elisabet Rodríguez-Tomàs
- Unitat de Recerca Biomèdica, Hospital Universitari de Sant Joan, Institut d'Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, Reus, Spain
| | - Andrea Jiménez-Franco
- Unitat de Recerca Biomèdica, Hospital Universitari de Sant Joan, Institut d'Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, Reus, Spain
| | - Ana Felisa López-Azcona
- Department of Internal Medicine, Hospital Universitari de Sant Joan, Institut d'Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, Reus, Spain
| | - Pedro Garrido
- Intensive Care Unit, Hospital Universitari de Sant Joan, Institut d'Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, Reus, Spain
| | - Antoni Castro
- Department of Internal Medicine, Hospital Universitari de Sant Joan, Institut d'Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, Reus, Spain
| | - Jordi Camps
- Unitat de Recerca Biomèdica, Hospital Universitari de Sant Joan, Institut d'Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, Reus, Spain.
| | - Jorge Joven
- Unitat de Recerca Biomèdica, Hospital Universitari de Sant Joan, Institut d'Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, Reus, Spain
| |
Collapse
|
11
|
Jiang C, Cheong LZ, Zhang X, Ali AH, Jin Q, Wei W, Wang X. Dietary Sphingomyelin Metabolism and Roles in Gut Health and Cognitive Development. Adv Nutr 2021; 13:S2161-8313(22)00073-4. [PMID: 34549256 PMCID: PMC8970835 DOI: 10.1093/advances/nmab117] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Sphingomyelin (SM) is a widely occurring sphingolipid that is a major plasma membrane constituent. Milk and dairy products are rich SM sources, and human milk has high SM content. Numerous studies have evaluated the roles of SM in maintaining cell membrane structure and cellular signal transduction. There has been a growing interest in exploring the role of dietary SM, especially from human milk, in imparting health benefits. This review focuses on recent publications regarding SM content in several dietary sources and dietary SM metabolism. SM digestion and absorption are slow and incomplete and mainly occur in the middle sections of the small intestine. This review also evaluates the effect of dietary SM on gut health and cognitive development. Studies indicate that SM may promote gut health by reducing intestinal cholesterol absorption in adults. However, there has been a lack of data supporting clinical trials. An association between milk SM and neural development is evident before childhood. Hence, additional studies and well-designed randomized controlled trials that incorporate dietary SM evaluation, SM metabolism, and its long-term functions on infants and children are required.
Collapse
Affiliation(s)
- Chenyu Jiang
- State Key Lab of Food Science and Technology, Jiangnan University, Wuxi, China,Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Ling-Zhi Cheong
- Department of Food Science and Engineering, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, China
| | - Xue Zhang
- State Key Lab of Food Science and Technology, Jiangnan University, Wuxi, China,Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Abdelmoneim H Ali
- State Key Lab of Food Science and Technology, Jiangnan University, Wuxi, China,Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Qingzhe Jin
- State Key Lab of Food Science and Technology, Jiangnan University, Wuxi, China,Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Wei Wei
- Address correspondence to WW (e-mail: )
| | - Xingguo Wang
- State Key Lab of Food Science and Technology, Jiangnan University, Wuxi, China,Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Wuxi, China
| |
Collapse
|
12
|
Nikooyeh B, Neyestani TR. Contribution of vitamin D status as a determinant of cardiometabolic risk factors: a structural equation model, National Food and Nutrition Surveillance. BMC Public Health 2021; 21:1819. [PMID: 34627185 PMCID: PMC8501625 DOI: 10.1186/s12889-021-11839-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Accepted: 09/22/2021] [Indexed: 11/18/2022] Open
Abstract
Background Structural equation modeling (SEM) is a method used to evaluate linear causal relationships among variables. This study aimed to investigate the direct and indirect effects of serum 25(OH) D on certain cardiovascular risk factors using SEM. Methods An analytical cross-sectional study was conducted in six provinces of Iran. Subjects (n = 922), aged 19–65 years, were selected from National Food and Nutrition Surveillance. The assessments were sun-exposure behavior, anthropometric and biochemical measurements. A series of SEM models were tested and the model with the best fit indices was considered for use in the structural part of the model. Based on the literature review of previous theoretical models and supporting bivariate analyses, an overall SEM examined direct or indirect associations among observed and latent variables. We put the demographic, duration of sun exposure, anthropometric and metabolic variables in our model. Results The paths between serum 25(OH) D and BMI were inverse and statistically significant, whereas age showed a positive association with BMI (B = 0.06, p < 0.001), both direct (st. effect = 0.11, p = 0.01) and indirect via vitamin D (st. effect = − 0.02, p = 0.01). The results confirmed that serum 25(OH) D concentration is a predictor for latent variable of lipid profile (B = − 0.13, p = 0.01) both through direct (p = 0.02) and indirect effects via BMI (p = 0.01). Conclusion Serum 25(OH) D concentration is a predictor of BMI and also a latent variable of lipid profile via direct and indirect effects. It can also attenuate the harmful effect of age on BMI and lipid profile particularly in women.
Collapse
Affiliation(s)
- Bahareh Nikooyeh
- National Nutrition and Food Technology Research Institute and Faculty of Nutrition Science and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, 1981619573, Iran
| | - Tirang R Neyestani
- National Nutrition and Food Technology Research Institute and Faculty of Nutrition Science and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, 1981619573, Iran.
| |
Collapse
|
13
|
Xu J, Qu P, Du X, Xiang Q, Guo L, Zhu L, Tan Y, Fu Y, Wen T, Liu L. Change in Postprandial Level of Remnant Cholesterol After a Daily Breakfast in Chinese Patients With Hypertension. Front Cardiovasc Med 2021; 8:685385. [PMID: 34212015 PMCID: PMC8239280 DOI: 10.3389/fcvm.2021.685385] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 05/11/2021] [Indexed: 12/28/2022] Open
Abstract
Background: Hypertension (HBP) is usually accompanied by hypertriglyceridemia that represents the increased triglyceride-rich lipoproteins and cholesterol content in remnant lipoproteins [i.e., remnant cholesterol (RC)]. According to the European Atherosclerosis Society (EAS), high RC (HRC) is defined as fasting RC ≥0.8 mmol/L and/or postprandial RC ≥0.9 mmol/L. However, little is known about postprandial change in RC level after a daily meal in Chinese patients with HBP. Methods: One hundred thirty-five subjects, including 90 hypertensive patients (HBP group) and 45 non-HBP controls (CON group), were recruited in this study. Serum levels of blood lipids, including calculated RC, were explored at 0, 2, and 4 h after a daily breakfast. Receiver operating characteristic (ROC) curve analysis was used to determine the cutoff point of postprandial HRC. Results: Fasting TG and RC levels were significantly higher in the HBP group (P < 0.05), both of which increased significantly after a daily meal in the two groups (P < 0.05). Moreover, postprandial RC level was significantly higher in the HBP group (P < 0.05). ROC curve analysis showed that the optimal cutoff point for RC after a daily meal to predict HRC corresponding to fasting RC of 0.8 mmol/L was 0.91 mmol/L, which was very close to that recommended by the EAS, i.e., 0.9 mmol/L. Fasting HRC was found in 31.1% of hypertensive patients but not in the controls. According to the postprandial cutoff point, postprandial HRC was found in approximately half of hypertensive patients and ~1-third of the controls. Conclusion: Postprandial RC level increased significantly after a daily meal, and hypertensive patients had higher percentage of HRC at both fasting and postprandial states. More importantly, the detection of postprandial lipids could be helpful to find HRC.
Collapse
Affiliation(s)
- Jin Xu
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, China.,Research Institute of Blood Lipid and Atherosclerosis, Central South University, Changsha, China.,Modern Cardiovascular Disease Clinical Technology Research Center of Hunan Province, Changsha, China.,Cardiovascular Disease Research Center of Hunan Province, Changsha, China
| | - Peiliu Qu
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, China.,Research Institute of Blood Lipid and Atherosclerosis, Central South University, Changsha, China.,Modern Cardiovascular Disease Clinical Technology Research Center of Hunan Province, Changsha, China.,Cardiovascular Disease Research Center of Hunan Province, Changsha, China
| | - Xiao Du
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, China.,Research Institute of Blood Lipid and Atherosclerosis, Central South University, Changsha, China.,Modern Cardiovascular Disease Clinical Technology Research Center of Hunan Province, Changsha, China.,Cardiovascular Disease Research Center of Hunan Province, Changsha, China
| | - Qunyan Xiang
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, China.,Research Institute of Blood Lipid and Atherosclerosis, Central South University, Changsha, China.,Modern Cardiovascular Disease Clinical Technology Research Center of Hunan Province, Changsha, China.,Cardiovascular Disease Research Center of Hunan Province, Changsha, China
| | - Liling Guo
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, China.,Research Institute of Blood Lipid and Atherosclerosis, Central South University, Changsha, China.,Modern Cardiovascular Disease Clinical Technology Research Center of Hunan Province, Changsha, China.,Cardiovascular Disease Research Center of Hunan Province, Changsha, China
| | - Liyuan Zhu
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, China.,Research Institute of Blood Lipid and Atherosclerosis, Central South University, Changsha, China.,Modern Cardiovascular Disease Clinical Technology Research Center of Hunan Province, Changsha, China.,Cardiovascular Disease Research Center of Hunan Province, Changsha, China
| | - Yangrong Tan
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, China.,Research Institute of Blood Lipid and Atherosclerosis, Central South University, Changsha, China.,Modern Cardiovascular Disease Clinical Technology Research Center of Hunan Province, Changsha, China.,Cardiovascular Disease Research Center of Hunan Province, Changsha, China
| | - Yan Fu
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, China.,Research Institute of Blood Lipid and Atherosclerosis, Central South University, Changsha, China.,Modern Cardiovascular Disease Clinical Technology Research Center of Hunan Province, Changsha, China.,Cardiovascular Disease Research Center of Hunan Province, Changsha, China
| | - Tie Wen
- Department of Emergency Medicine, Second Xiangya Hospital, Central South University, Changsha, China.,Emergency Medicine and Difficult Diseases Institute, Second Xiangya Hospital, Central South University, Changsha, China
| | - Ling Liu
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, China.,Research Institute of Blood Lipid and Atherosclerosis, Central South University, Changsha, China.,Modern Cardiovascular Disease Clinical Technology Research Center of Hunan Province, Changsha, China.,Cardiovascular Disease Research Center of Hunan Province, Changsha, China
| |
Collapse
|
14
|
Faraji S, Alizadeh M. Mechanistic Effects of Vitamin D Supplementation on Metabolic Syndrome Components in Patients with or without Vitamin D Deficiency. J Obes Metab Syndr 2020; 29:270-280. [PMID: 32747610 PMCID: PMC7789020 DOI: 10.7570/jomes20003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 01/21/2020] [Accepted: 05/17/2020] [Indexed: 12/11/2022] Open
Abstract
The prevalences of metabolic syndrome (MetS) and vitamin D deficiency are increasing dramatically worldwide. MetS is a major challenge because it can increase the risk of most non-communicable diseases. The beneficial effect of vitamin D on MetS components remains controversial, so the present review focused on the clinical effects of vitamin D supplementation on MetS components. Vitamin D can inhibit the protein expression of nuclear factor beta; improve arterial stiffness; decrease renin-angiotensin-aldosterone system activity, parathyroid hormone levels, inflammatory cytokines, 3-hydroxy-3-methylglutaryl-coenzyme A reductase, and lanosterol 14 α-demethylase enzyme activity; increase the activity of lipoprotein lipase; alter gene expression in C2C12 cells; and improve phospholipid metabolism and mitochondrial oxidation. We tried to elucidate and analyze almost all evidence from randomized controlled trial studies of the efficacy of vitamin D supplementation in patients with MetS. The findings of the present study reported beneficial effects of vitamin D supplementation on mentioned factors. Vitamin D supplementation is recommended in people with vitamin D deficiency even if it has no considerable effect on most MetS factors. However, existing data from interventional studies are insufficient to reach a definitive conclusion about the effect of vitamin D supplementation on MetS components in patients without vitamin D deficiency. Thus, new clinical studies are needed to test the hypothesis that vitamin D supplementation could alleviate MetS components in patients with sufficient intake of vitamin D.
Collapse
Affiliation(s)
- Samira Faraji
- Student Research Committee, Urmia University of Medical Sciences, Urmia, Iran.,Department of Nutrition, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Mohammad Alizadeh
- Department of Nutrition, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran.,Food and Beverages Safety Research Center, Urmia University of Medical Sciences, Urmia, Iran
| |
Collapse
|
15
|
Liakh I, Sledzinski T, Kaska L, Mozolewska P, Mika A. Sample Preparation Methods for Lipidomics Approaches Used in Studies of Obesity. Molecules 2020; 25:E5307. [PMID: 33203044 PMCID: PMC7696154 DOI: 10.3390/molecules25225307] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/11/2020] [Accepted: 11/12/2020] [Indexed: 02/06/2023] Open
Abstract
Obesity is associated with alterations in the composition and amounts of lipids. Lipids have over 1.7 million representatives. Most lipid groups differ in composition, properties and chemical structure. These small molecules control various metabolic pathways, determine the metabolism of other compounds and are substrates for the syntheses of different derivatives. Recently, lipidomics has become an important branch of medical/clinical sciences similar to proteomics and genomics. Due to the much higher lipid accumulation in obese patients and many alterations in the compositions of various groups of lipids, the methods used for sample preparations for lipidomic studies of samples from obese subjects sometimes have to be modified. Appropriate sample preparation methods allow for the identification of a wide range of analytes by advanced analytical methods, including mass spectrometry. This is especially the case in studies with obese subjects, as the amounts of some lipids are much higher, others are present in trace amounts, and obese subjects have some specific alterations of the lipid profile. As a result, it is best to use a method previously tested on samples from obese subjects. However, most of these methods can be also used in healthy, nonobese subjects or patients with other dyslipidemias. This review is an overview of sample preparation methods for analysis as one of the major critical steps in the overall analytical procedure.
Collapse
Affiliation(s)
- Ivan Liakh
- Department of Pharmaceutical Biochemistry, Medical University of Gdansk, Debinki 1, 80-211 Gdansk, Poland; (I.L.); (T.S.); (P.M.)
- Department of Toxicology, Medical University of Gdańsk, Al. Gen. Hallera 107, 80-416 Gdańsk, Poland
| | - Tomasz Sledzinski
- Department of Pharmaceutical Biochemistry, Medical University of Gdansk, Debinki 1, 80-211 Gdansk, Poland; (I.L.); (T.S.); (P.M.)
| | - Lukasz Kaska
- Department of General, Endocrine and Transplant Surgery, Faculty of Medicine, Medical University of Gdansk, Smoluchowskiego 17, 80-214 Gdansk, Poland;
| | - Paulina Mozolewska
- Department of Pharmaceutical Biochemistry, Medical University of Gdansk, Debinki 1, 80-211 Gdansk, Poland; (I.L.); (T.S.); (P.M.)
| | - Adriana Mika
- Department of Pharmaceutical Biochemistry, Medical University of Gdansk, Debinki 1, 80-211 Gdansk, Poland; (I.L.); (T.S.); (P.M.)
- Department of Environmental Analysis, Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, 80-308 Gdansk, Poland
| |
Collapse
|
16
|
Luque de Castro M, Quiles-Zafra R. Lipidomics: An omics discipline with a key role in nutrition. Talanta 2020; 219:121197. [DOI: 10.1016/j.talanta.2020.121197] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 05/16/2020] [Accepted: 05/19/2020] [Indexed: 12/14/2022]
|
17
|
Determination of optimal cut-off points after a high-fat meal corresponding to fasting elevations of triglyceride and remnant cholesterol in Chinese subjects. Lipids Health Dis 2019; 18:206. [PMID: 31767005 PMCID: PMC6876091 DOI: 10.1186/s12944-019-1146-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Accepted: 11/07/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Postprandial high triglyceride (HTG), marking elevated level of remnant cholesterol (RC), is an independent risk factor of coronary heart disease (CHD). The postprandial cut-off points for HTG and high RC (HRC) after a daily meal are recommended as 2.0 mmol/L and 0.9 mmol/L, respectively, by the European Atherosclerosis Society (EAS), while those after a high-fat meal in Chinese subjects were not explored. METHODS Ninety subjects, including 60 CHD patients (CHD group) and 30 non-CHD controls (CON group), were enrolled in this study. Serum levels of blood lipids, including calculated RC, were monitored at 0, 2, 4 and 6 h after a high-fat meal with 800 kcal and 50 g fat. Analysis of c-statistic was used to determine the cut-off points for postprandial HTG and HRC. RESULTS Postprandial levels of triglyceride (TG) and RC significantly increased and peaked at 4 h after a high-fat meal in two groups, although those in CHD group were significantly higher (P < 0.05). The optimal cut-off point to predict HTG at 4 h corresponding to fasting TG ≥ 1.7 mmol/L was 3.12 mmol/L, and that to predict HRC at 4 h corresponding to fasting RC ≥ 0.8 mmol/L was 1.36 mmol/L. According to the new cut-off points, the omissive diagnosis rates of postprandial HTG and HRC decreased obviously. CONCLUSION The cut-off points of postprandial HTG and HRC in Chinese subjects after a high-fat meal were higher than those after a daily meal recommended by the EAS, indicating that specific cut-off points should be determined after a certain high-fat meal.
Collapse
|
18
|
Moukayed M, Grant WB. Linking the metabolic syndrome and obesity with vitamin D status: risks and opportunities for improving cardiometabolic health and well-being. Diabetes Metab Syndr Obes 2019; 12:1437-1447. [PMID: 31496777 PMCID: PMC6701609 DOI: 10.2147/dmso.s176933] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 07/16/2019] [Indexed: 12/11/2022] Open
Abstract
The global death toll from noncommunicable diseases is exceptionally high, reported to cause 71% of global deaths worldwide. Metabolic syndrome risk factors, especially excessive adiposity and obesity, are at the heart of the problem resulting in increased co-morbidities such as cardiometabolic diseases and cancer, increased health costs, poorer quality of life, and shortened survival. Vitamin D3 can positively reverse many of these adverse effects and outcomes through blocking signaling mechanisms that predispose to cardiometabolic and metastatic disease. As an affordable natural agent, vitamin D3 can be used to counteract obesity-induced inflammation, block early adipogenesis, enhance glucose uptake, counteract hyperleptinemia, ameliorate insulin resistance, and reduce hypertension. This is supported by data from in vitro, in vivo and epidemiological studies and clinical trials. We propose that everyone in general and obese patients in particular consider raising 25-hydroxyvitamin D levels through UVB exposure and/or supplemental vitamin D3 intake to reduce cardiometabolic and metastatic disease and increase longevity.
Collapse
Affiliation(s)
- Meis Moukayed
- School of Arts and Sciences, American University in Dubai, Dubai, UAE
| | - William B Grant
- Sunlight, Nutrition, and Health Research Center, San Francisco, CA94164-1603, USA
| |
Collapse
|