1
|
Micheli L, Muraglia M, Corbo F, Venturi D, Clodoveo ML, Tardugno R, Santoro V, Piccinelli AL, Di Cesare Mannelli L, Nobili S, Ghelardini C. The Unripe Carob Extract ( Ceratonia siliqua L.) as a Potential Therapeutic Strategy to Fight Oxaliplatin-Induced Neuropathy. Nutrients 2024; 17:121. [PMID: 39796555 PMCID: PMC11723348 DOI: 10.3390/nu17010121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 12/21/2024] [Accepted: 12/28/2024] [Indexed: 01/30/2025] Open
Abstract
BACKGROUND Oxaliplatin-induced neuropathy (OIN) is a severe painful condition that strongly affects the patient's quality of life and cannot be counteracted by the available drugs or adjuvants. Thus, several efforts are devoted to discovering substances that can revert or reduce OIN, including natural compounds. The carob tree, Ceratonia siliqua L., possesses several beneficial properties. However, its antalgic properties have not been substantially investigated and only a few investigations have been conducted on the unripe carob (up-CS) pods. Thus, the aims of this study were to evaluate for the first time the unripe variety of Apulian carob, chemically characterized and profiled as antioxidant potential of polyphenolic compounds as well as to investigate the ability of up-CS to reduce the neurotoxicity in a mouse model of oxaliplatin-induced neuropathic pain. METHODS By UHPLC-HRMS/MS analyses, 50 phenolic compounds, belonging mainly to n-galloylated glucoses and flavonoids were detected. RESULTS In a mouse model of oxaliplatin-induced neurotoxicity (2.4 mg/kg, 10 injections over two weeks), acute per os treatment with up-CS provoked a dose-dependent pain-relieving effect that completely counteracted oxaliplatin hypersensitivity at the dose of 200 mg/kg. Repeated oral administration of up-CS (100 mg/kg), concomitantly with oxaliplatin injection, exerted a protective effect against the development of thermal and mechanical allodynia. In addition, up-CS exerted a neuroprotective role against oxaliplatin-induced astrocytes activation in the spinal cord measured as GFAP-fluorescence intensity. CONCLUSIONS Overall, our study contributes to the knowledge on up-CS properties by highlighting its protective activity in the painful condition related to the administration of oxaliplatin.
Collapse
Affiliation(s)
- Laura Micheli
- Department of Neurosciences, Psychology, Drug Research and Child Health (NEUROFARBA), Section of Pharmacology and Toxicology, University of Florence, 50139 Florence, Italy; (D.V.); (L.D.C.M.); (S.N.); (C.G.)
| | - Marilena Muraglia
- Department of Pharmacy-Drug Sciences, University of Bari Aldo Moro, 70125 Bari, Italy; (F.C.); (R.T.)
| | - Filomena Corbo
- Department of Pharmacy-Drug Sciences, University of Bari Aldo Moro, 70125 Bari, Italy; (F.C.); (R.T.)
| | - Daniel Venturi
- Department of Neurosciences, Psychology, Drug Research and Child Health (NEUROFARBA), Section of Pharmacology and Toxicology, University of Florence, 50139 Florence, Italy; (D.V.); (L.D.C.M.); (S.N.); (C.G.)
| | - Maria Lisa Clodoveo
- Interdisciplinary Department of Medicine, School of Medicine, University of Bari Aldo Moro, 70124 Bari, Italy;
| | - Roberta Tardugno
- Department of Pharmacy-Drug Sciences, University of Bari Aldo Moro, 70125 Bari, Italy; (F.C.); (R.T.)
| | - Valentina Santoro
- Department of Pharmacy, University of Salerno, 84084 Fisciano, Italy; (V.S.); (A.L.P.)
- National Biodiversity Future Center (NBFC), 90133 Palermo, Italy
| | - Anna Lisa Piccinelli
- Department of Pharmacy, University of Salerno, 84084 Fisciano, Italy; (V.S.); (A.L.P.)
- National Biodiversity Future Center (NBFC), 90133 Palermo, Italy
| | - Lorenzo Di Cesare Mannelli
- Department of Neurosciences, Psychology, Drug Research and Child Health (NEUROFARBA), Section of Pharmacology and Toxicology, University of Florence, 50139 Florence, Italy; (D.V.); (L.D.C.M.); (S.N.); (C.G.)
| | - Stefania Nobili
- Department of Neurosciences, Psychology, Drug Research and Child Health (NEUROFARBA), Section of Pharmacology and Toxicology, University of Florence, 50139 Florence, Italy; (D.V.); (L.D.C.M.); (S.N.); (C.G.)
| | - Carla Ghelardini
- Department of Neurosciences, Psychology, Drug Research and Child Health (NEUROFARBA), Section of Pharmacology and Toxicology, University of Florence, 50139 Florence, Italy; (D.V.); (L.D.C.M.); (S.N.); (C.G.)
| |
Collapse
|
2
|
Arias HR, Micheli L, Rudin D, Bento O, Borsdorf S, Ciampi C, Marin P, Ponimaskin E, Manetti D, Romanelli MN, Ghelardini C, Liechti ME, Di Cesare Mannelli L. Non-hallucinogenic compounds derived from iboga alkaloids alleviate neuropathic and visceral pain in mice through a mechanism involving 5-HT 2A receptor activation. Biomed Pharmacother 2024; 177:116867. [PMID: 38889634 DOI: 10.1016/j.biopha.2024.116867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/28/2024] [Accepted: 06/03/2024] [Indexed: 06/20/2024] Open
Abstract
The aim of this study was to determine the anti-hypersensitivity activity of novel non-hallucinogenic compounds derived from iboga alkaloids (i.e., ibogalogs), including tabernanthalog (TBG), ibogainalog (IBG), and ibogaminalog (DM506), using mouse models of neuropathic (Chronic Constriction Injury; CCI) and visceral pain (dextrane sulfate sodium; DSS). Ibogalogs decreased mechanical hyperalgesia and allodynia induced by CCI in a dose- and timeframe-dependent manner, where IBG showed the longest anti-hyperalgesic activity at a comparatively lower dose, whereas DM506 displayed the quickest response. These compounds also decreased hypersensitivity induced by colitis, where DM506 showed the longest activity. To understand the mechanisms involved in these effects, two approaches were utilized: ibogalogs were challenged with the 5-HT2A receptor antagonist ketanserin and the pharmacological activity of these compounds was assessed at the respective 5-HT2A, 5-HT6, and 5-HT7 receptor subtypes. The behavioral results clearly demonstrated that ketanserin abolishes the pain-relieving activity of ibogalogs without inducing any effect per se, supporting the concept that 5-HT2A receptor activation, but not inhibition, is involved in this process. The functional results showed that ibogalogs potently activate the 5-HT2A and 5-HT6 receptor subtypes, whereas they behave as inverse agonists (except TBG) at the 5-HT7 receptor. Considering previous studies showing that 5-HT6 receptor inhibition, but not activation, and 5-HT7 receptor activation, but not inhibition, relieved chronic pain, we can discard these two receptor subtypes as participating in the pain-relieving activity of ibogalogs. The potential involvement of 5-HT2B/2 C receptor subtypes was also ruled out. In conclusion, the anti-hypersensitivity activity of ibogalogs in mice is mediated by a mechanism involving 5-HT2A receptor activation.
Collapse
Affiliation(s)
- Hugo R Arias
- Department of Pharmacology and Physiology, College of Osteopathic Medicine, Oklahoma State University Center for Health Sciences, Tahlequah, OK, USA
| | - Laura Micheli
- Department of Neurosciences, Psychology, Drug Research and Child Health (NEUROFARBA), Section of Pharmacology and Toxicology, University of Florence, Florence, Italy.
| | - Deborah Rudin
- Division of Clinical Pharmacology and Toxicology, Department of Biomedicine, University Hospital Basel, Basel, Switzerland; Division of Clinical Pharmacology and Toxicology, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Ophelie Bento
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, Montpellier, France
| | - Saskia Borsdorf
- Cellular Neurophysiology, Hannover Medical School, Hannover, Germany
| | - Clara Ciampi
- Department of Neurosciences, Psychology, Drug Research and Child Health (NEUROFARBA), Section of Pharmacology and Toxicology, University of Florence, Florence, Italy
| | - Philippe Marin
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, Montpellier, France
| | - Evgeni Ponimaskin
- Cellular Neurophysiology, Hannover Medical School, Hannover, Germany
| | - Dina Manetti
- Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Florence, Italy
| | - Maria Novella Romanelli
- Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Florence, Italy
| | - Carla Ghelardini
- Department of Neurosciences, Psychology, Drug Research and Child Health (NEUROFARBA), Section of Pharmacology and Toxicology, University of Florence, Florence, Italy
| | - Matthias E Liechti
- Division of Clinical Pharmacology and Toxicology, Department of Biomedicine, University Hospital Basel, Basel, Switzerland; Division of Clinical Pharmacology and Toxicology, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Lorenzo Di Cesare Mannelli
- Department of Neurosciences, Psychology, Drug Research and Child Health (NEUROFARBA), Section of Pharmacology and Toxicology, University of Florence, Florence, Italy
| |
Collapse
|
3
|
Roohi TF, Mehdi S, Aarfi S, Krishna KL, Pathak S, Suhail SM, Faizan S. Biomarkers and signaling pathways of diabetic nephropathy and peripheral neuropathy: possible therapeutic intervention of rutin and quercetin. Diabetol Int 2024; 15:145-169. [PMID: 38524936 PMCID: PMC10959902 DOI: 10.1007/s13340-023-00680-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 11/30/2023] [Indexed: 03/26/2024]
Abstract
Diabetic nephropathy and peripheral neuropathy are the two main complications of chronic diabetes that contribute to high morbidity and mortality. These conditions are characterized by the dysregulation of multiple molecular signaling pathways and the presence of specific biomarkers such as inflammatory cytokines, indicators of oxidative stress, and components of the renin-angiotensin system. In this review, we systematically collected and collated the relevant information from MEDLINE, EMBASE, ELSEVIER, PUBMED, GOOGLE, WEB OF SCIENCE, and SCOPUS databases. This review was conceived with primary objective of revealing the functions of these biomarkers and signaling pathways in the initiation and progression of diabetic nephropathy and peripheral neuropathy. We also highlighted the potential therapeutic effectiveness of rutin and quercetin, two plant-derived flavonoids known for their antioxidant and anti-inflammatory properties. The findings of our study demonstrated that both flavonoids can regulate important disease-promoting systems, such as inflammation, oxidative stress, and dysregulation of the renin-angiotensin system. Importantly, rutin and quercetin have shown protective benefits against nephropathy and neuropathy in diabetic animal models, suggesting them as potential therapeutic agents. These findings provide a solid foundation for further comprehensive investigations and clinical trials to evaluate the potential of rutin and quercetin in the management of diabetic nephropathy and peripheral neuropathy. This may contribute to the development of more efficient and comprehensive treatment approaches for diabetes-associated complications.
Collapse
Affiliation(s)
- Tamsheel Fatima Roohi
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysore, Karnataka 570015 India
| | - Seema Mehdi
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysore, Karnataka 570015 India
| | - Sadaf Aarfi
- Department of Pharmaceutics, Amity University, Lucknow, Uttar Pradesh India
| | - K. L. Krishna
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysore, Karnataka 570015 India
| | - Suman Pathak
- Department of Dravyaguna, Govt. Ayurvedic Medical College, Shimoga, Karnataka 577 201 India
| | - Seikh Mohammad Suhail
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysore, Karnataka 570015 India
| | - Syed Faizan
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysore, Karnataka 570015 India
| |
Collapse
|
4
|
Kalinovskii AP, Sintsova OV, Gladkikh IN, Leychenko EV. Natural Inhibitors of Mammalian α-Amylases as Promising Drugs for the Treatment of Metabolic Diseases. Int J Mol Sci 2023; 24:16514. [PMID: 38003703 PMCID: PMC10671682 DOI: 10.3390/ijms242216514] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/07/2023] [Accepted: 11/13/2023] [Indexed: 11/26/2023] Open
Abstract
α-Amylase is a generally acknowledged molecular target of a distinct class of antidiabetic drugs named α-glucosidase inhibitors. This class of medications is scarce and rather underutilized, and treatment with current commercial drugs is accompanied by unpleasant adverse effects. However, mammalian α-amylase inhibitors are abundant in nature and form an extensive pool of high-affinity ligands that are available for drug discovery. Individual compounds and natural extracts and preparations are promising therapeutic agents for conditions associated with impaired starch metabolism, e.g., diabetes mellitus, obesity, and other metabolic disorders. This review focuses on the structural diversity and action mechanisms of active natural products with inhibitory activity toward mammalian α-amylases, and emphasizes proteinaceous inhibitors as more effective compounds with significant potential for clinical use.
Collapse
Affiliation(s)
- Aleksandr P. Kalinovskii
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia
| | - Oksana V. Sintsova
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences, Vladivostok 690022, Russia; (O.V.S.); (I.N.G.)
| | - Irina N. Gladkikh
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences, Vladivostok 690022, Russia; (O.V.S.); (I.N.G.)
| | - Elena V. Leychenko
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences, Vladivostok 690022, Russia; (O.V.S.); (I.N.G.)
| |
Collapse
|
5
|
Angeli A, Micheli L, Turnaturi R, Pasquinucci L, Parenti C, Alterio V, Di Fiore A, De Simone G, Monti SM, Carta F, Di Cesare Mannelli L, Ghelardini C, Supuran CT. Discovery of a novel series of potent carbonic anhydrase inhibitors with selective affinity for μ Opioid receptor for Safer and long-lasting analgesia. Eur J Med Chem 2023; 260:115783. [PMID: 37678143 DOI: 10.1016/j.ejmech.2023.115783] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 08/29/2023] [Accepted: 08/30/2023] [Indexed: 09/09/2023]
Abstract
In this study, we investigated the development of dual-targeted ligands that bind to both μ-opioid receptor (MOR) and carbonic anhydrase (CA) enzymes, using fentanyl structure as a template. We synthesized and evaluated 21 novel compounds with dual-targeted affinity identifying the lead candidate compound 8, showing selective affinity for MOR and potent inhibition of several cytosolic CA isoforms. By means of repeated treatment of 3 daily administrations for 17 days, fentanyl (0.1 mg/kg, subcutaneously) led to tolerance development, pain threshold alterations and withdrawal symptoms in CD-1 mice, as well as astrocyte and microglia activation in the dorsal horn of the lumbar spinal cord. In contrast, compound 8 (0.32 mg/kg s.c.) maintained stable during days its analgesic effect at the higher dose tested with fewer withdrawal symptoms, allodynia development and glial cells activation. Our results suggest that targeting both MOR and CA enzymes can lead to the development of new class of potent analgesic agents with fewer side effects and reduced tolerance development. Further studies are needed to explore the potential mechanisms underlying these effects and to further optimize the therapeutic potential of these compounds.
Collapse
Affiliation(s)
- Andrea Angeli
- NEUROFARBA Department, Sezione di Scienze Farmaceutiche, University of Florence, Via Ugo Schiff 6, 50019, Sesto Fiorentino, Florence, Italy.
| | - Laura Micheli
- Pharmacology and Toxicology Section, Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Viale G. Pieraccini, 50139, Florence, Italy
| | - Rita Turnaturi
- Department of Drug Sciences and Health, Medicinal Chemistry Section, Università degli Studi di Catania, Viale A. Doria, 6, 95125, Catania, Italy
| | - Lorella Pasquinucci
- Department of Drug Sciences and Health, Medicinal Chemistry Section, Università degli Studi di Catania, Viale A. Doria, 6, 95125, Catania, Italy
| | - Carmela Parenti
- Department of Drug Sciences and Health, Pharmacology and Toxicology Section, Università degli Studi di Catania, Viale A. Doria, 6, 95125, Catania, Italy
| | - Vincenzo Alterio
- Istituto di Biostrutture e Bioimmagini-CNR, via Pietro Castellino, 111, 80131, Naples, Italy
| | - Anna Di Fiore
- Istituto di Biostrutture e Bioimmagini-CNR, via Pietro Castellino, 111, 80131, Naples, Italy
| | - Giuseppina De Simone
- Istituto di Biostrutture e Bioimmagini-CNR, via Pietro Castellino, 111, 80131, Naples, Italy
| | - Simona Maria Monti
- Istituto di Biostrutture e Bioimmagini-CNR, via Pietro Castellino, 111, 80131, Naples, Italy
| | - Fabrizio Carta
- NEUROFARBA Department, Sezione di Scienze Farmaceutiche, University of Florence, Via Ugo Schiff 6, 50019, Sesto Fiorentino, Florence, Italy
| | - Lorenzo Di Cesare Mannelli
- Pharmacology and Toxicology Section, Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Viale G. Pieraccini, 50139, Florence, Italy
| | - Carla Ghelardini
- Pharmacology and Toxicology Section, Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Viale G. Pieraccini, 50139, Florence, Italy
| | - Claudiu T Supuran
- NEUROFARBA Department, Sezione di Scienze Farmaceutiche, University of Florence, Via Ugo Schiff 6, 50019, Sesto Fiorentino, Florence, Italy
| |
Collapse
|
6
|
Nainu F, Frediansyah A, Mamada SS, Permana AD, Salampe M, Chandran D, Emran TB, Simal-Gandara J. Natural products targeting inflammation-related metabolic disorders: A comprehensive review. Heliyon 2023; 9:e16919. [PMID: 37346355 PMCID: PMC10279840 DOI: 10.1016/j.heliyon.2023.e16919] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 05/31/2023] [Accepted: 06/01/2023] [Indexed: 06/23/2023] Open
Abstract
Currently, the incidence of metabolic disorders is increasing, setting a challenge to global health. With major advancement in the diagnostic tools and clinical procedures, much has been known in the etiology of metabolic disorders and their corresponding pathophysiologies. In addition, the use of in vitro and in vivo experimental models prior to clinical studies has promoted numerous biomedical breakthroughs, including in the discovery and development of drug candidates to treat metabolic disorders. Indeed, chemicals isolated from natural products have been extensively studied as prospective drug candidates to manage diabetes, obesity, heart-related diseases, and cancer, partly due to their antioxidant and anti-inflammatory properties. Continuous efforts have been made in parallel to improve their bioactivity and bioavailability using selected drug delivery approaches. Here, we provide insights on recent progress in the role of inflammatory-mediated responses on the initiation of metabolic disorders, with particular reference to diabetes mellitus, obesity, heart-related diseases, and cancer. In addition, we discussed the prospective role of natural products in the management of diabetes, obesity, heart-related diseases, and cancers and provide lists of potential biological targets for high throughput screening in drug discovery and development. Lastly, we discussed findings observed in the preclinical and clinical studies prior to identifying suitable approaches on the phytochemical drug delivery systems that are potential to be used in the treatment of metabolic disorders.
Collapse
Affiliation(s)
- Firzan Nainu
- Department of Pharmacy, Faculty of Pharmacy, Hasanuddin University, Tamalanrea, Makassar 90245, Indonesia
| | - Andri Frediansyah
- Research Center for Food Technology and Processing (PRTPP), National Research and Innovation Agency (BRIN), Yogyakarta 55861, Indonesia
| | - Sukamto S. Mamada
- Department of Pharmacy, Faculty of Pharmacy, Hasanuddin University, Tamalanrea, Makassar 90245, Indonesia
| | - Andi Dian Permana
- Department of Pharmaceutical Science and Technology, Faculty of Pharmacy, Hasanuddin University, Tamalanrea, Makassar 90245, Indonesia
| | | | - Deepak Chandran
- Department of Veterinary Sciences and Animal Husbandry, Amrita School of Agricultural Sciences, Amrita Vishwa Vidyapeetham University, Coimbatore 642109, India
| | - Talha Bin Emran
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School & Legorreta Cancer Center, Brown University, Providence, RI 02912, USA
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong 4381, Bangladesh
| | - Jesus Simal-Gandara
- Universidade de Vigo, Nutrition and Bromatology Group, Analytical Chemistry and Food Science Department, Faculty of Science, E32004 Ourense, Spain
| |
Collapse
|
7
|
Environment friendly green synthesis method based natural bioactive functional “catechin and gingerol” loaded nanomedicine for the management of obesity. Int J Pharm 2022; 628:122340. [DOI: 10.1016/j.ijpharm.2022.122340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 10/10/2022] [Accepted: 10/22/2022] [Indexed: 11/06/2022]
|
8
|
Avagliano C, De Caro C, Cuozzo M, Liguori FM, La Rana G, Micheli L, Di Cesare Mannelli L, Ghelardini C, Paciello O, Russo R. Phaseolus vulgaris extract ameliorates high-fat diet-induced colonic barrier dysfunction and inflammation in mice by regulating peroxisome proliferator-activated receptor expression and butyrate levels. Front Pharmacol 2022; 13:930832. [PMID: 36034787 PMCID: PMC9403263 DOI: 10.3389/fphar.2022.930832] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 07/04/2022] [Indexed: 11/16/2022] Open
Abstract
Obesity is a health concern worldwide, and its onset is multifactorial. In addition to metabolic syndrome, a high-fat diet induces many deleterious downstream effects, such as chronic systemic inflammation, a loss of gut barrier integrity, and gut microbial dysbiosis, with a reduction of many butyrate-producing bacteria. These conditions can be ameliorated by increasing legumes in the daily diet. White and kidney beans (Phaseolus vulgaris L.) and their non-nutritive bioactive component phaseolamin were demonstrated to mitigate several pathological features related to a metabolic syndrome-like condition. The aim of the present study was to investigate the molecular pathways involved in the protective effects on the intestinal and liver environment of a chronic oral treatment with P. vulgaris extract (PHAS) on a murine model of the high-fat diet. Results show that PHAS treatment has an anti-inflammatory effect on the liver, colon, and cecum. This protective effect was mediated by peroxisome proliferator-activated receptor (PPAR)-α and γ. Moreover, we also observed that repeated PHAS treatment was able to restore tight junctions’ expression and protective factors of colon and cecum integrity disrupted in HFD mice. This improvement was correlated with a significant increase of butyrate levels in serum and fecal samples compared to the HFD group. These data underline that prolonged treatment with PHAS significantly reduces some pathological features related to the metabolic syndrome-like condition, such as inflammation and intestinal barrier disruption; therefore, PHAS could be a valid tool to be associated with the therapeutic strategy.
Collapse
Affiliation(s)
- Carmen Avagliano
- Department of Pharmacy, University of Naples “Federico II”, Naples, Italy
| | - Carmen De Caro
- Department of Health Sciences, School of Medicine, University of Catanzaro “Magna Graecia”, Catanzaro, Italy
| | | | | | - Giovanna La Rana
- Department of Pharmacy, University of Naples “Federico II”, Naples, Italy
| | - Laura Micheli
- Department of Neuroscience, Psychology, Drug Research and Child Health–Neurofarba-Pharmacology and Toxicology Section, University of Florence, Florence, Italy
| | - Lorenzo Di Cesare Mannelli
- Department of Neuroscience, Psychology, Drug Research and Child Health–Neurofarba-Pharmacology and Toxicology Section, University of Florence, Florence, Italy
| | - Carla Ghelardini
- Department of Neuroscience, Psychology, Drug Research and Child Health–Neurofarba-Pharmacology and Toxicology Section, University of Florence, Florence, Italy
| | - Orlando Paciello
- Department of Veterinary Medicine and Animal Production, University of Naples “Federico II”, Naples, Italy
| | - Roberto Russo
- Department of Pharmacy, University of Naples “Federico II”, Naples, Italy
- *Correspondence: Roberto Russo,
| |
Collapse
|
9
|
Stefanucci A, Scioli G, Marinaccio L, Zengin G, Locatelli M, Tartaglia A, Della Valle A, Cichelli A, Novellino E, Pieretti S, Mollica A. A Comparative Study on Phytochemical Fingerprint of Two Diverse Phaseolus vulgarisvar. Tondino del Tavo and Cannellino Bio Extracts. Antioxidants (Basel) 2022; 11:antiox11081474. [PMID: 36009193 PMCID: PMC9405002 DOI: 10.3390/antiox11081474] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 07/25/2022] [Indexed: 12/04/2022] Open
Abstract
Common bean (Phaseolus vulgaris) represents one of the most famous foods with antiobesity activity showing a significant efficacy against fat accumulation, insulin resistance and dyslipidaemia. In this work, two Italian varieties of common bean, i.e., Tondino del Tavo and Cannellino Bio, from the centre of Italy were studied to characterise their phenolic profile by HPLC-PDA in relation to different fractions after a straightforward extraction procedure. Antioxidant property and enzymatic inhibition power were also evaluated in order to delineate a possible biological profile. Results show a considerable phenolic content (0.79 and 1.1 µg/mg of 3-hydroxybenzoic acid for hexane extract of Tondino del Tavo and Cannellino Bio, respectively; 0.30 µg/mg p-coumaric acid for n-hexane extract of Tondino del Tavo) for both varieties, and a strong antioxidant activity according to the major phenolic concentration of the extracts. The anti-inflammatory activity of the decoction extracts was also investigated through a zymosan-induced edema formation assay, revealing a moderate ability for both of them. These preliminary data prompt us to further explore the nutrient components of these two varieties in the future.
Collapse
Affiliation(s)
- Azzurra Stefanucci
- Department of Pharmacy, University of Chieti–Pescara “G. d’Annunzio”, Via dei Vestini 31, 66100 Chieti, Italy; (G.S.); (L.M.); (M.L.); (A.T.); (A.D.V.); (A.M.)
- Correspondence:
| | - Giuseppe Scioli
- Department of Pharmacy, University of Chieti–Pescara “G. d’Annunzio”, Via dei Vestini 31, 66100 Chieti, Italy; (G.S.); (L.M.); (M.L.); (A.T.); (A.D.V.); (A.M.)
| | - Lorenza Marinaccio
- Department of Pharmacy, University of Chieti–Pescara “G. d’Annunzio”, Via dei Vestini 31, 66100 Chieti, Italy; (G.S.); (L.M.); (M.L.); (A.T.); (A.D.V.); (A.M.)
| | - Gokhan Zengin
- Department of Biology, Science Faculty, Selcuk University, 42250 Konya, Turkey;
| | - Marcello Locatelli
- Department of Pharmacy, University of Chieti–Pescara “G. d’Annunzio”, Via dei Vestini 31, 66100 Chieti, Italy; (G.S.); (L.M.); (M.L.); (A.T.); (A.D.V.); (A.M.)
| | - Angela Tartaglia
- Department of Pharmacy, University of Chieti–Pescara “G. d’Annunzio”, Via dei Vestini 31, 66100 Chieti, Italy; (G.S.); (L.M.); (M.L.); (A.T.); (A.D.V.); (A.M.)
| | - Alice Della Valle
- Department of Pharmacy, University of Chieti–Pescara “G. d’Annunzio”, Via dei Vestini 31, 66100 Chieti, Italy; (G.S.); (L.M.); (M.L.); (A.T.); (A.D.V.); (A.M.)
| | - Angelo Cichelli
- Department of Innovative Technologies in Medicine and Dentistry, University of Chieti–Pescara “G. d’Annunzio”, Via dei Vestini 31, 66100 Chieti, Italy;
| | - Ettore Novellino
- Department of Medicine and Surgery, Università Cattolica del Sacro Cuore, 00168 Rome, Italy;
- NGN Healthcare-New Generation Nutraceuticals s.r.l., Torrette Via Nazionale 207, 83013 Mercogliano, Italy
| | - Stefano Pieretti
- National Centre for Drug Research and Evaluation, Istituto Superiore di Sanità, 00161 Rome, Italy;
| | - Adriano Mollica
- Department of Pharmacy, University of Chieti–Pescara “G. d’Annunzio”, Via dei Vestini 31, 66100 Chieti, Italy; (G.S.); (L.M.); (M.L.); (A.T.); (A.D.V.); (A.M.)
| |
Collapse
|
10
|
Rahman M, Islam R, Rabbi F, Islam MT, Sultana S, Ahmed M, Sehgal A, Singh S, Sharma N, Behl T. Bioactive Compounds and Diabetes Mellitus: Prospects and Future Challenges. Curr Pharm Des 2022; 28:1304-1320. [PMID: 35418280 DOI: 10.2174/1381612828666220412090808] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 01/27/2022] [Indexed: 11/22/2022]
Abstract
Diabetes mellitus is a metabolic condition that influences the endocrine framework. Hyperglycemia and hyperlipidemia are two of the most widely recognized metabolic irregularities in diabetes, just as two of the most well-known reasons for diabetic intricacies. Diabetes mellitus is a persistent illness brought about by metabolic irregularities in hyperglycemic pancreatic cells. Hyperglycemia can be brought about by an absence of insulin-producing beta cells in the pancreas (Type 1 diabetes mellitus) or inadequate insulin creation that does not work effectively (Type 2 diabetes mellitus). Present diabetes medication is directed toward directing blood glucose levels in the systemic circulation to the typical levels. Numerous advanced prescription medicines have many negative results that can bring about unexpected severe issues during treatment of the bioactive compound from a different source that is beneficially affected by controlling, adjusting metabolic pathways or cycles. Moreover, a few new bioactive medications disengaged from plants have shown antidiabetic action with more noteworthy adequacy than the oral hypoglycemic agent that specialists have utilized in clinical treatment lately. Since bioactive mixtures are collected from familiar sources, they have a great activity in controlling diabetes mellitus. This study discusses bioactive compounds and their activity to manage diabetes mellitus and their prospects. Though bioactive compound has many health beneficial properties, adequate clinical studies still need to gain large acknowledge that they are effective in the management of diabetes mellitus.
Collapse
Affiliation(s)
- Mominur Rahman
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
| | - Rezaul Islam
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
| | - Fazle Rabbi
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
| | - Mohammad Touhidul Islam
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
| | - Sharifa Sultana
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
| | - Muniruddin Ahmed
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
| | - Aayush Sehgal
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Sukhbir Singh
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Neelam Sharma
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Tapan Behl
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| |
Collapse
|
11
|
Rodríguez L, Mendez D, Montecino H, Carrasco B, Arevalo B, Palomo I, Fuentes E. Role of Phaseolus vulgaris L. in the Prevention of Cardiovascular Diseases-Cardioprotective Potential of Bioactive Compounds. PLANTS (BASEL, SWITZERLAND) 2022; 11:186. [PMID: 35050073 PMCID: PMC8779353 DOI: 10.3390/plants11020186] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/30/2021] [Accepted: 01/01/2022] [Indexed: 05/07/2023]
Abstract
In terms of safe and healthy food, beans play a relevant role. This crop belongs to the species of Phaseolusvulgaris L., being the most consumed legume worldwide, both for poor and developed countries, the latter seek to direct their diet to healthy feeding, mainly low in fat. Phaseolus vulgaris L. stands out in this area-an important source of protein, vitamins, essential minerals, soluble fiber, starch, phytochemicals, and low in fat from foods. This species has been attributed many beneficial properties for health; it has effects on the circulatory system, immune system, digestive system, among others. It has been suggested that Phaseolus vulgaris L. has a relevant role in the prevention of cardiovascular events, the main cause of mortality and morbidity worldwide. Conversely, the decrease in the consumption of this legume has been related to an increase in the prevalence of cardiovascular diseases. This review will allow us to relate the nutritional level of this species with cardiovascular events, based on the correlation of the main bioactive compounds and their role as cardiovascular protectors, in addition to revealing the main mechanisms that explain the cardioprotective effects regulated by the bioactive components.
Collapse
Affiliation(s)
- Lyanne Rodríguez
- Thrombosis Research Center, Department of Clinical Biochemistry and Immunohematology, Faculty of Health Sciences, Medical Technology School, Universidad de Talca, Talca 3460000, Chile; (L.R.); (D.M.); (H.M.)
| | - Diego Mendez
- Thrombosis Research Center, Department of Clinical Biochemistry and Immunohematology, Faculty of Health Sciences, Medical Technology School, Universidad de Talca, Talca 3460000, Chile; (L.R.); (D.M.); (H.M.)
| | - Hector Montecino
- Thrombosis Research Center, Department of Clinical Biochemistry and Immunohematology, Faculty of Health Sciences, Medical Technology School, Universidad de Talca, Talca 3460000, Chile; (L.R.); (D.M.); (H.M.)
| | - Basilio Carrasco
- Centro de Estudios en Alimentos Procesados, Talca 3460000, Chile; (B.C.); (B.A.)
| | - Barbara Arevalo
- Centro de Estudios en Alimentos Procesados, Talca 3460000, Chile; (B.C.); (B.A.)
| | - Iván Palomo
- Thrombosis Research Center, Department of Clinical Biochemistry and Immunohematology, Faculty of Health Sciences, Medical Technology School, Universidad de Talca, Talca 3460000, Chile; (L.R.); (D.M.); (H.M.)
| | - Eduardo Fuentes
- Thrombosis Research Center, Department of Clinical Biochemistry and Immunohematology, Faculty of Health Sciences, Medical Technology School, Universidad de Talca, Talca 3460000, Chile; (L.R.); (D.M.); (H.M.)
| |
Collapse
|
12
|
Li Y, Cheng Y, Zhou Y, Du H, Zhang C, Zhao Z, Chen Y, Zhou Z, Mei J, Wu W, Chen M. High fat diet-induced obesity leads to depressive and anxiety-like behaviors in mice via AMPK/mTOR-mediated autophagy. Exp Neurol 2021; 348:113949. [PMID: 34902357 DOI: 10.1016/j.expneurol.2021.113949] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 12/02/2021] [Accepted: 12/07/2021] [Indexed: 12/28/2022]
Abstract
Depression is one of the most common mental illnesses in modern society. In recent years, several studies show that there are disturbances in lipid metabolism in depressed patients. High-fat diet may lead to anxiety and depression, but the mechanisms involved remain unclear. In our study, we found that 8 weeks of high-fat feeding effectively induced metabolic disorders, including obesity and hyperlipidemia in mice. Interestingly, the mice also showed depressive and anxiety-like behaviors. We further found activated microglia and astrocyte, increased neuroinflammation, decreased autophagy and BDNF levels in mice after high-fat feeding. Besides, high-fat feeding can also inhibit AMPK phosphorylation and induce mTOR phosphorylation. After treating with the mTOR inhibitor rapamycin, autophagy and BDNF levels were elevated. The number of activated microglia and astrocyte, and pro-inflammation levels were reduced. Besides, rapamycin can also reduce the body weight and serum lipid level in high fat feeding mice. Depressive and anxiety-like behaviors were also ameliorated to some extent after rapamycin treatment. In summary, these results suggest that high-fat diet-induced obesity may lead to depressive and anxiety-like behaviors in mice by inhibiting AMPK phosphorylation and promoting mTOR shift to phosphorylation to inhibit autophagy. Therefore, improving lipid metabolism or enhancing autophagy through the AMPK/mTOR pathway could be potential targets for the treatment of obesity depression.
Collapse
Affiliation(s)
- Yong Li
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China
| | - Yujie Cheng
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China
| | - Yuan Zhou
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China
| | - Hongmei Du
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China
| | - Cui Zhang
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China
| | - Zhentao Zhao
- Department of Otorhinolaryngology, Head and Neck Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230601, China
| | - Yuenan Chen
- Department of Clinical Pharmacy, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Zhongnan Zhou
- Department of Clinical Pharmacy, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Jinyu Mei
- Department of Otorhinolaryngology, Head and Neck Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230601, China.
| | - Wenning Wu
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China.
| | - Ming Chen
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China.
| |
Collapse
|
13
|
Shikov AN, Narkevich IA, Akamova AV, Nemyatykh OD, Flisyuk EV, Luzhanin VG, Povydysh MN, Mikhailova IV, Pozharitskaya ON. Medical Species Used in Russia for the Management of Diabetes and Related Disorders. Front Pharmacol 2021; 12:697411. [PMID: 34354589 PMCID: PMC8330883 DOI: 10.3389/fphar.2021.697411] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 06/28/2021] [Indexed: 12/19/2022] Open
Abstract
Background: Polyherbal mixtures called "medical species" are part of traditional and officinal medicine in Russia. This review aimed to analyze medical species used in Russia for the treatment of diabetes and related disorders. The information relevant to medical species, diabetes, and obesity was collected from local libraries, the online service E-library.ru, and Google Scholar. The prediction of the antidiabetic activity for the principal compounds identified in plants was performed using the free web resource PASS Online. Results: We collected and analyzed information about the compositions, specificities of use, and posology of 227 medical species. The medical species represent mixtures of 2-15 plants, while the most frequently mentioned in the literature are species comprising 3-6 plants. The top 10 plants among the 158 mentioned in the literature include Vaccinium myrtillus L., Phaseolus vulgaris L., Taraxacum campylodes G.E. Haglund., Urtica dioica L., Rosa spp., Hypericum spp., Galega officinalis L., Mentha × piperita L., Arctium spp, and Fragaria vesca L. The leading binary combination found in medical species comprises the leaves of V. myrtillus and pericarp of P. vulgaris; leaves of V. myrtillus and leaves of U. dioica; and leaves of V. myrtillus and aerial parts of G. officinalis. In triple combinations, in addition to the above-mentioned components, the roots of T. campylodes are often used. These combinations can be regarded as basic mixtures. Other plants are added to improve the efficacy, treat associated disorders, improve gastrointestinal function, prevent allergic reactions, etc. Meanwhile, an increase in plants in the mixture necessitates advanced techniques for quality control. A feature of medical species in Russia is the addition of fresh juices, birch sap, seaweeds, and adaptogenic plants. Modern studies of the mechanisms of action and predicted activities of the principal compounds from medicinal plants support the rationality of polyherbal mixtures. Nevertheless, the mechanisms are not well studied and reported due to the limited number of compounds. Further investigations with calculations of synergistic or additive indices are important for strengthening the scientific fundamentals for the wider use of medical species in the therapy of diabetes. Two medical species, "Arfazetin" (7 medicinal plants) and "Myrphasinum" (12 medicinal plants), are approved for use in officinal medicine. The efficacy of these species was confirmed in several in vivo experiments and clinical trials. According to modern regulatory rules, additional experiments and clinical trials are required for more detailed investigations of the mechanisms of action and confirmation of efficacy. Conclusion: We believe that the scientifically based utilization of rich plant resources and knowledge of Russian herbal medicine can significantly contribute to the local economy as well as to the sectors seeking natural healing products.
Collapse
Affiliation(s)
- Alexander N Shikov
- Saint-Petersburg State Chemical Pharmaceutical University, Saint-Petersburg, Russia
| | - Igor A Narkevich
- Saint-Petersburg State Chemical Pharmaceutical University, Saint-Petersburg, Russia
| | - Alexandra V Akamova
- Saint-Petersburg State Chemical Pharmaceutical University, Saint-Petersburg, Russia
| | - Oksana D Nemyatykh
- Saint-Petersburg State Chemical Pharmaceutical University, Saint-Petersburg, Russia
| | - Elena V Flisyuk
- Saint-Petersburg State Chemical Pharmaceutical University, Saint-Petersburg, Russia
| | | | - Mariia N Povydysh
- Saint-Petersburg State Chemical Pharmaceutical University, Saint-Petersburg, Russia
| | - Iuliia V Mikhailova
- Saint-Petersburg State Chemical Pharmaceutical University, Saint-Petersburg, Russia
| | - Olga N Pozharitskaya
- Murmansk Marine Biological Institute of the Russian Academy of Sciences (MMBI RAS), Murmansk, Russia
| |
Collapse
|
14
|
Yu L, Zhou X, Duan H, Chen Y, Cui S, Guo R, Xue Y, Tian F, Zhao J, Zhang H, Zhai Q, Chen W. Synergistic Protective Effects of Different Dietary Supplements Against Type 2 Diabetes via Regulating Gut Microbiota. J Med Food 2021; 24:319-330. [PMID: 33739885 DOI: 10.1089/jmf.2020.4759] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Diabetes mellitus is a global health problem, and its prevalence continues to increase. Dietary supplements, including probiotics, prebiotics, and plant extracts, have been shown to alleviate diabetes. In this study, the synergistic effects of two types of dietary supplements were investigated in a mouse model of type 2 diabetes mellitus (T2DM). Sixty mice were divided into the following six groups: control, model (induced by a high-fat diet and intraperitoneal injection of streptozotocin), drug (metformin), probiotic (Lactobacillus spp.), formula A (probiotics, plant extracts, and soybean peptide), and formula B (probiotics, prebiotics, and soybean peptide). All three dietary interventions (probiotic, formula A, and formula B groups) significantly reduced the blood glucose level and oral glucose tolerance level and effectively improved some biochemical parameters (e.g., chronic inflammation, oxidative stress, and blood lipid level) and regulated gut microbiota. Notably, formula B exhibited a better ability on reducing the blood glucose level, regulating the gut microbiota, and increasing the short-chain fatty acid levels compared with the probiotics alone and formula A. Thus, formula B may exert synergistic protective effects against T2DM through a mechanism involving probiotics and prebiotics of gut microbiota regulation. This study provides a theoretical basis for the application of probiotic dietary supplements to the treatment of T2DM.
Collapse
Affiliation(s)
- Leilei Yu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.,School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.,International Joint Research Laboratory for Probiotics at Jiangnan University, Wuxi, Jiangsu, China
| | - Xingting Zhou
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.,School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Hui Duan
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.,School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Ying Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.,School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Shumao Cui
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.,School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Renmei Guo
- Suzhou Setek Biotechnology Ltd., Suzhou, China
| | - Yuzheng Xue
- Department of Gastroenterology, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, China
| | - Fengwei Tian
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.,School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.,International Joint Research Laboratory for Probiotics at Jiangnan University, Wuxi, Jiangsu, China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.,School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.,National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu, China
| | - Hao Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.,School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.,International Joint Research Laboratory for Probiotics at Jiangnan University, Wuxi, Jiangsu, China.,(Yangzhou) Institute of Food Biotechnology, Jiangnan University, Yangzhou, China
| | - Qixiao Zhai
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.,School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.,International Joint Research Laboratory for Probiotics at Jiangnan University, Wuxi, Jiangsu, China
| | - Wei Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.,School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.,National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu, China.,Beijing Innovation Centre of Food Nutrition and Human Health, Beijing Technology and Business University, Beijing, China
| |
Collapse
|
15
|
Micheli L, Vasarri M, Barletta E, Lucarini E, Ghelardini C, Degl’Innocenti D, Di Cesare Mannelli L. Efficacy of Posidonia oceanica Extract against Inflammatory Pain: In Vivo Studies in Mice. Mar Drugs 2021; 19:md19020048. [PMID: 33494253 PMCID: PMC7909763 DOI: 10.3390/md19020048] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 01/14/2021] [Accepted: 01/19/2021] [Indexed: 12/27/2022] Open
Abstract
Posidonia oceanica (L.) Delile is traditionally used for its beneficial properties. Recently, promising antioxidant and anti-inflammatory biological properties emerged through studying the in vitro activity of the ethanolic leaves extract (POE). The present study aims to investigate the anti-inflammatory and analgesic role of POE in mice. Inflammatory pain was modeled in CD-1 mice by the intraplantar injection of carrageenan, interleukin IL-1β and formalin. Pain threshold was measured by von Frey and paw pressure tests. Nociceptive pain was studied by the hot-plate test. POE (10–100 mg kg−1) was administered per os. The paw soft tissue of carrageenan-treated animals was analyzed to measure anti-inflammatory and antioxidant effects. POE exerted a dose-dependent, acute anti-inflammatory effect able to counteract carrageenan-induced pain and paw oedema. Similar anti-hyperalgesic and anti-allodynic results were obtained when inflammation was induced by IL-1β. In the formalin test, the pre-treatment with POE significantly reduced the nocifensive behavior. Moreover, POE was able to evoke an analgesic effect in naïve animals. Ex vivo, POE reduced the myeloperoxidase activity as well as TNF-α and IL-1β levels; further antioxidant properties were highlighted as a reduction in NO concentration. POE is the candidate for a new valid strategy against inflammation and pain.
Collapse
Affiliation(s)
- Laura Micheli
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA)‐Pharmacology and Toxicology Section, University of Florence, Viale Gaetano Pieraccini, 6, 50139 Florence, Italy; (L.M.); (E.L.); (C.G.)
| | - Marzia Vasarri
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Viale Morgagni 50, 50134 Florence, Italy; (M.V.); (E.B.); (D.D.)
| | - Emanuela Barletta
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Viale Morgagni 50, 50134 Florence, Italy; (M.V.); (E.B.); (D.D.)
| | - Elena Lucarini
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA)‐Pharmacology and Toxicology Section, University of Florence, Viale Gaetano Pieraccini, 6, 50139 Florence, Italy; (L.M.); (E.L.); (C.G.)
| | - Carla Ghelardini
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA)‐Pharmacology and Toxicology Section, University of Florence, Viale Gaetano Pieraccini, 6, 50139 Florence, Italy; (L.M.); (E.L.); (C.G.)
| | - Donatella Degl’Innocenti
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Viale Morgagni 50, 50134 Florence, Italy; (M.V.); (E.B.); (D.D.)
- Interuniversity Center of Marine Biology and Applied Ecology “G. Bacci” (CIBM), Viale N. Sauro 4, 57128 Livorno, Italy
| | - Lorenzo Di Cesare Mannelli
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA)‐Pharmacology and Toxicology Section, University of Florence, Viale Gaetano Pieraccini, 6, 50139 Florence, Italy; (L.M.); (E.L.); (C.G.)
- Correspondence:
| |
Collapse
|
16
|
Zhen S, Cai R, Yang X, Ma Y, Wen D. Association of Serum Galectin-3-Binding Protein and Metabolic Syndrome in a Chinese Adult Population. Front Endocrinol (Lausanne) 2021; 12:726154. [PMID: 34858323 PMCID: PMC8631730 DOI: 10.3389/fendo.2021.726154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 09/23/2021] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Galectin-3-binding protein (GAL-3BP) is a ubiquitous and multifunctional secreted glycoprotein, which functions in innate immunity and has been highlighted as a potential mediator of adipose inflammation in obesity. In this study, we aimed to identify whether GAL-3BP is a novel biological marker for metabolic syndrome (MetS). METHODS The biochemical and anthropometric variables of the 570 participants in this study were evaluated using standard procedures. Their serum GAL-3BP levels were measured using enzyme-linked immunosorbent assay (ELISA), while the association between the glycoprotein and MetS was analyzed using multiple logistic regression analyses. Moreover, an experimental MetS model was established. The expression of GAL-3BP in serum and adipose tissue was measured using ELISA and western blotting. Lipid accumulation was determined with the use of immunohistochemistry and immunofluorescent staining. RESULTS The serum GAL-3BP level was found to be positively associated with MetS. The logistic regression analyses demonstrated that participants expressing the upper levels of GAL-3BP were more likely to develop MetS than those expressing less of the glycoprotein (OR = 2.39, 95%CI: 1.49, 3.83). The association between the serum GAL-3BP level and MetS was found preferentially in postmenopausal women (OR = 2.30, 95%CI: 1.31, 4.05). In addition, GAL-3BP was increased in the serum and visceral adipose tissue (VAT) of high fat diet (HFD) mice. Moreover, GAL-3BP was highly expressed in VAT macrophages. CONCLUSIONS This study confirmed serum GAL-3BP to be positively associated with MetS, highlighting it as a useful biological marker of MetS in Chinese participants.
Collapse
Affiliation(s)
- Shihan Zhen
- Institute of Health Sciences, China Medical University, Shenyang, China
| | - Ruoxin Cai
- Institute of Health Sciences, China Medical University, Shenyang, China
| | - Xuelian Yang
- Institute of Health Sciences, China Medical University, Shenyang, China
| | - Yanan Ma
- School of Public Health, China Medical University, Shenyang, China
| | - Deliang Wen
- Institute of Health Sciences, China Medical University, Shenyang, China
- *Correspondence: Deliang Wen,
| |
Collapse
|
17
|
Leonardi BF, Gosmann G, Zimmer AR. Modeling Diet-Induced Metabolic Syndrome in Rodents. Mol Nutr Food Res 2020; 64:e2000249. [PMID: 32978870 DOI: 10.1002/mnfr.202000249] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 08/24/2020] [Indexed: 12/17/2022]
Abstract
Standardized animal models represent one of the most valuable tools available to understand the mechanism underlying the metabolic syndrome (MetS) and to seek for new therapeutic strategies. However, there is considerable variability in the studies conducted with this essential purpose. This review presents an updated discussion of the most recent studies using diverse experimental conditions to induce MetS in rodents with unbalanced diets, discusses the key findings in metabolic outcomes, and critically evaluates what we have been learned from them and how to advance in the field. The study includes scientific reports sourced from the Web of Science and PubMed databases, published between January 2013 and June 2020, which used hypercaloric diets to induce metabolic disorders, and address the impact of the diet on metabolic parameters. The collected data are used as support to discuss variables such as sex, species, and age of the animals, the most favorable type of diet, and the ideal diet length to generate metabolic changes. The experimental characteristics propose herein improve the performance of a preclinical model that resembles the human MetS and will guide researchers to investigate new therapeutic alternatives with confidence and higher translational validity.
Collapse
Affiliation(s)
- Bianca F Leonardi
- Phytochemistry and Organic Synthesis Laboratory, Pharmaceutical Sciences Graduate Program, Faculty of Pharmacy, Federal University of Rio Grande do Sul (UFRGS), 2752 Ipiranga avenue, Porto Alegre, RS, 90610-000, Brazil
| | - Grace Gosmann
- Phytochemistry and Organic Synthesis Laboratory, Pharmaceutical Sciences Graduate Program, Faculty of Pharmacy, Federal University of Rio Grande do Sul (UFRGS), 2752 Ipiranga avenue, Porto Alegre, RS, 90610-000, Brazil
| | - Aline R Zimmer
- Phytochemistry and Organic Synthesis Laboratory, Pharmaceutical Sciences Graduate Program, Faculty of Pharmacy, Federal University of Rio Grande do Sul (UFRGS), 2752 Ipiranga avenue, Porto Alegre, RS, 90610-000, Brazil
| |
Collapse
|
18
|
Tran N, Pham B, Le L. Bioactive Compounds in Anti-Diabetic Plants: From Herbal Medicine to Modern Drug Discovery. BIOLOGY 2020; 9:E252. [PMID: 32872226 PMCID: PMC7563488 DOI: 10.3390/biology9090252] [Citation(s) in RCA: 148] [Impact Index Per Article: 29.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 08/25/2020] [Accepted: 08/26/2020] [Indexed: 12/22/2022]
Abstract
Natural products, including organisms (plants, animals, or microorganisms) have been shown to possess health benefits for animals and humans. According to the estimation of the World Health Organization, in developing countries, 80% of the population has still depended on traditional medicines or folk medicines which are mostly prepared from the plant for prevention or treatment diseases. Traditional medicine from plant extracts has proved to be more affordable, clinically effective and relatively less adverse effects than modern drugs. Literature shows that the attention on the application of phytochemical constituents of medicinal plants in the pharmaceutical industry has increased significantly. Plant-derived secondary metabolites are small molecules or macromolecules biosynthesized in plants including steroids, alkaloids, phenolic, lignans, carbohydrates and glycosides, etc. that possess a diversity of biological properties beneficial to humans, such as their antiallergic, anticancer, antimicrobial, anti-inflammatory, antidiabetic and antioxidant activities Diabetes mellitus is a chronic disease result of metabolic disorders in pancreas β-cells that have hyperglycemia. Hyperglycemia can be caused by a deficiency of insulin production by pancreatic (Type 1 diabetes mellitus) or insufficiency of insulin production in the face of insulin resistance (Type 2 diabetes mellitus). The current medications of diabetes mellitus focus on controlling and lowering blood glucose levels in the vessel to a normal level. However, most modern drugs have many side effects causing some serious medical problems during a period of treating. Therefore, traditional medicines have been used for a long time and play an important role as alternative medicines. Moreover, during the past few years, some of the new bioactive drugs isolated from plants showed antidiabetic activity with more efficacy than oral hypoglycemic agents used in clinical therapy. Traditional medicine performed a good clinical practice and is showing a bright future in the therapy of diabetes mellitus. World Health Organization has pointed out this prevention of diabetes and its complications is not only a major challenge for the future, but essential if health for all is to be attained. Therefore, this paper briefly reviews active compounds, and pharmacological effects of some popular plants which have been widely used in diabetic treatment. Morphological data from V-herb database of each species was also included for plant identification.
Collapse
Affiliation(s)
- Ngan Tran
- School of Biotechnology, International University—Vietnam National University, Ho Chi Minh City 721400, Vietnam;
| | - Bao Pham
- Information Science Faculty, Saigon University, Ho Chi Minh City 711000, Vietnam;
| | - Ly Le
- School of Biotechnology, International University—Vietnam National University, Ho Chi Minh City 721400, Vietnam;
| |
Collapse
|
19
|
Nolan R, Shannon OM, Robinson N, Joel A, Houghton D, Malcomson FC. It's No Has Bean: A Review of the Effects of White Kidney Bean Extract on Body Composition and Metabolic Health. Nutrients 2020; 12:nu12051398. [PMID: 32414090 PMCID: PMC7284421 DOI: 10.3390/nu12051398] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 04/27/2020] [Accepted: 05/02/2020] [Indexed: 12/18/2022] Open
Abstract
The rising prevalence of overweight and obesity is a global concern, increasing the risk of numerous non-communicable diseases and reducing quality of life. A healthy diet and exercise remain the cornerstone treatments for obesity. However, adherence rates can be low and the effectiveness of these interventions is often less than anticipated, due to compensatory changes in other aspects of the energy balance equation. Whilst some alternative weight-loss therapies are available, these strategies are often associated with side effects and are expensive. An alternative or adjunct to traditional weight-loss approaches may be the use of bioactive compounds extracted from food sources, which can be incorporated into habitual diet with a low cost and minimal burden. One product which has attracted attention in this regard is white kidney bean extract (WKBE), which has been suggested to inhibit the enzyme α-amylase, limiting carbohydrate digestion and absorption with small but potentially meaningful attendant beneficial effects on body weight and metabolic health. In this review, drawing evidence from both human and animal studies, we discuss the current evidence around the effects of WKBE on body composition and metabolic health. In addition, we discuss evidence on the safety of this supplement and explore potential directions for future research.
Collapse
Affiliation(s)
- Ruth Nolan
- Human Nutrition Research Centre, Population Health Sciences Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, UK; (R.N.); (O.M.S.); (A.J.)
- School of Agriculture and Food Science, University College Dublin, 4 Dublin, Ireland
| | - Oliver M. Shannon
- Human Nutrition Research Centre, Population Health Sciences Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, UK; (R.N.); (O.M.S.); (A.J.)
| | - Natassia Robinson
- Biosciences Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, UK;
| | - Abraham Joel
- Human Nutrition Research Centre, Population Health Sciences Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, UK; (R.N.); (O.M.S.); (A.J.)
| | - David Houghton
- Wellcome Centre for Mitochondrial Research, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, UK;
| | - Fiona C. Malcomson
- Human Nutrition Research Centre, Population Health Sciences Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, UK; (R.N.); (O.M.S.); (A.J.)
- Wellcome Centre for Mitochondrial Research, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, UK;
- Correspondence: ; Tel.: +0191-208-1141
| |
Collapse
|
20
|
Sudirman S, Chen CK, Long BT, Chang HW, Tsou D, Kong ZL. Vitellaria paradoxa Nut Triterpene-Rich Extract Ameliorates Symptoms of Inflammation on Post-Traumatic Osteoarthritis in Obese Rats. J Pain Res 2020; 13:261-271. [PMID: 32099450 PMCID: PMC6997037 DOI: 10.2147/jpr.s228766] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 12/10/2019] [Indexed: 12/23/2022] Open
Abstract
Purpose To investigate the ameliorative effects of Vitellaria paradoxa (VP) nut extract for an anterior cruciate ligament transection with medial meniscectomy (ACLT+MMx)-induced osteoarthritis (OA) in high-fat diet (HFD)-induced obese rats. Methods The rats were fed by HFD for 5 weeks before surgery-induced OA. Rats were treated orally with three different doses of VP nut extract (111.6, 223.2, and 446.4 mg/kg) for 8 weeks. Results The VP nut triterpene-rich extract decreased the level of triglycerides and increased high-density lipoprotein-cholesterol. The level of nitric oxide, interleukin (IL)-1β, IL-6, and tumor necrosis factor-α decreased after treatment with VP nut triterpene-rich extract, especially in high-doses. The VP nut triterpene-rich extracts also alleviated swelling in the knee OA, weight-bearing difference, and suppressed cartilage degradation. Conclusion The Vitellaria paradoxa nut triterpene-rich extract suppressed proinflammatory mediators and attenuated the cartilage degradation and pain in osteoarthritis with an obesity rat model. As such, Vitellaria paradoxa nut triterpene-rich extract can be used as an alternative for osteoarthritis treatment.
Collapse
Affiliation(s)
- Sabri Sudirman
- Department of Food Science, National Taiwan Ocean University, Keelung City 20224, Taiwan
| | - Chun-Kai Chen
- Department of Food Science, National Taiwan Ocean University, Keelung City 20224, Taiwan
| | - Bing-Ting Long
- Department of Food Science, National Taiwan Ocean University, Keelung City 20224, Taiwan
| | - Heng-Wei Chang
- Department of Food Science, National Taiwan Ocean University, Keelung City 20224, Taiwan
| | - David Tsou
- Department of Food Science, National Taiwan Ocean University, Keelung City 20224, Taiwan
| | - Zwe-Ling Kong
- Department of Food Science, National Taiwan Ocean University, Keelung City 20224, Taiwan
| |
Collapse
|
21
|
Thompson HJ. Dietary Bean Consumption and Human Health. Nutrients 2019; 11:nu11123074. [PMID: 31861044 PMCID: PMC6949954 DOI: 10.3390/nu11123074] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 12/16/2019] [Indexed: 12/14/2022] Open
Affiliation(s)
- Henry J Thompson
- Cancer Prevention Laboratory, Colorado State University, Fort Collins, CO 80523, USA
| |
Collapse
|