1
|
Mohammadparast-Tabas P, Arab-Zozani M, Naseri K, Darroudi M, Aramjoo H, Ahmadian H, Ashrafipour M, Farkhondeh T, Samarghandian S. Polychlorinated biphenyls and thyroid function: a scoping review. REVIEWS ON ENVIRONMENTAL HEALTH 2024; 39:679-706. [PMID: 37434382 DOI: 10.1515/reveh-2022-0156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 05/27/2023] [Indexed: 07/13/2023]
Abstract
OBJECTIVE Numerous evidence indicates the association between polychlorinated biphenyls (PCBs), an endocrine disrupter, with thyroid hormone disruption, contradictory findings also exist. Herein, we tried to address this question by performing a scoping review. CONTENT The search was performed on PubMed, Scopus, Web of Science, and Google Scholar databases from 2010 onwards. Animal studies on PCBs' effect on thyroid function were searched. The SYRCLE's RoB scale assessed the risk of bias. I2 and Q tests are used for investigating heterogeneity. A random-effects model with the pooled standard means difference (SMD) and 95 % confidence interval (CI) was performed for the TSH, TT4, TT3, and FT4 outcomes using Comprehensive Meta-Analyses (CMA) Software version 3. Also, we conducted subgroup analyses based on the different types of PCB. The initial search identified 1,279 publications from the main databases 26 of them fulfilled our eligibility criteria for the study, and then five studies among selected studies had sufficient data for analysis. Meta-analysis of data revealed that Aroclor 1260 (SDM: -0.47, 95 % CI: -0.92, -0.01, p=0.044) and PCB 126 (SDM: 0.17, 95 % CI: -0.40, 0.75, p=0.559) significantly increased TSH concentration in the exposed groups vs. the control groups. Related to the effects of PCBs on the TT4, our findings indicated a significant reduction the TT4 concentration of animals exposed to Aroclor 1260 (SDM: -5.62, 95 % CI: -8.30, -2.94, p=0.0001), PCB 118 (SDM: -6.24, 95 % CI: -7.76, -4.72, p=0.0001), PCB 126 (SDM: -1.81, 95 % CI: -2.90, -0.71, p=0.001), and PCB 153 (SDM: -1.32, 95 % CI: -2.29, -0.35, p=0.007) vs. the controls. Our meta-analysis indicated a significant increase in TT3 concentration following exposure to PCB 118 and PCB 153 (SDM: -0.89, 95 % CI: -1.36, -0.42, p=0.0001, and SDM: -1.45, 95 % CI: -2.15, -0.75, p=0.0001, respectively). Aroclor 1254 and PCB 126 significantly decreased TT3 concentration (SDM: 1.25, 95 % CI: 0.29, 2.21, p=0.01 and SDM: 3.33, 95 % CI: 2.49, 4.18, p=0.0001, respectively). PCB 126 significantly decreased FT4 in the exposed groups vs. the control groups (SDM: -7.80, 95 % CI: -11.51, -5.35, p=0.0001). SUMMARY Our findings showed an association between PCBs exposure and hypothyroidism in rodents, fish, and chicken embryos. OUTLOOK Regarding to the most evidence of hypothyroidism effects of PCBs in animal species, it is necessary to consider large cohort studies to address the association between PCBs exposure and thyroid function impairment in humans.
Collapse
Affiliation(s)
| | - Morteza Arab-Zozani
- Social Determinants of Health Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Kobra Naseri
- Department of Toxicology and Pharmacology, School of Pharmacy, Birjand University of Medical Sciences, Birjand, Iran
| | - Majid Darroudi
- Department of Basic Sciences, Neyshabur University of Medical Sciences, Neyshabur, Iran
| | - Hamed Aramjoo
- Student Research Committee, Birjand University of Medical Sciences, Birjand, Iran
| | - Hanie Ahmadian
- Student Research Committee, Birjand University of Medical Sciences, Birjand, Iran
| | - Mostafa Ashrafipour
- Department of Parasitology and Mycology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Tahereh Farkhondeh
- Department of Toxicology and Pharmacology, School of Pharmacy, Birjand University of Medical Sciences, Birjand, Iran
| | - Saeed Samarghandian
- Healthy Ageing Research Centre, Neyshabur University of Medical Sciences, Neyshabur, Iran
| |
Collapse
|
2
|
Dutta D, Singh NS, Verma AK. Genotoxicity, acute and sub-acute toxicity profiles of methanolic Cordyceps militaris (L.) Fr. extract in Swiss Albino Mice. JOURNAL OF ETHNOPHARMACOLOGY 2024; 335:118603. [PMID: 39067832 DOI: 10.1016/j.jep.2024.118603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/14/2024] [Accepted: 07/19/2024] [Indexed: 07/30/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Cordyceps militaris, a traditional medicinal fungus, parasitizes the intestines of lepidopteron pupae or larvae, predominantly during the winter, and undergoes fruiting in the summer or autumn. Compounds extracted from C. militaris have demonstrated a broad spectrum of pharmacological effects, including antioxidant, anti-tumor, anti-metastatic, anti-inflammatory, antiviral, anti-diabetic, and various others. AIM OF THE STUDY Herein, our study aimed at elucidating the acute, sub-acute toxicity, and genotoxicity profiles of C. militaris methanolic extract following oral administration in Swiss albino mice, representing the inaugural comprehensive exploration of the toxicological and safety profiles of C. militaris. MATERIALS AND METHODS Prior studies have predominantly focused on its biological activities rather than its toxicity. Acute oral toxicity study was conducted at 500, 1000, and 2000 mg/Kg B.W. doses of C. militaris over a 14-day period. For sub-acute toxicity study, three groups of mice were administered 100, 300, and 600 mg/Kg B.W. of C. militaris extract for 28 consecutive days; one group served as a control. Mice were monitored for their body weight and behavioural changes once daily. Hematological, serum biochemical, histopathological, histomorphometric, seminal parameters, and mutagenic investigations were performed post-treatment period. RESULTS Acute oral toxicity study at 2000 mg/Kg revealed no signs of toxicity, with an LD50 value surpassing 2000 mg/Kg. No occurrences of mortality observed, and no significant changes were noted in body weight, organ weight, or behaviour. Hematological analysis illustrated a marked upsurge in RBC, Hb, HCT, PLT, MPV, and PCT, alongside minor variations in differential leucocyte count post 28-day treatment. Liver enzyme tests indicated slight elevation in ALP, while renal enzyme tests showed alterations in CRE and BUN levels. Genotoxicity profile and histopathological assessments of the liver, spleen, testis, and ovary manifested no remarkable irregularities, except for mild renal toxicity. Seminal parameters including sperm concentration, motility and testosterone levels demonstrated a noteworthy increase. CONCLUSIONS The study sheds light on the potential risks and safety considerations associated with C. militaris-based medicinal products. These findings establish a foundation for further investigations and the refinement of dosage optimization in the application of C. militaris, with the aim of mitigating any potential adverse effects.
Collapse
Affiliation(s)
- Diksha Dutta
- Department of Zoology, Cell and Biochemical Technology Laboratory, Cotton University, Guwahati, 781001, Assam, India.
| | - Namram Sushindrajit Singh
- Department of Zoology, Cell and Biochemical Technology Laboratory, Cotton University, Guwahati, 781001, Assam, India.
| | - Akalesh Kumar Verma
- Department of Zoology, Cell and Biochemical Technology Laboratory, Cotton University, Guwahati, 781001, Assam, India.
| |
Collapse
|
3
|
Liamin M, Lara MP, Michelet O, Rouault M, Quintela JC, Le Bloch J. Olive juice dry extract containing hydroxytyrosol, as a nontoxic and safe substance: Results from pre-clinical studies and review of toxicological studies. Toxicol Rep 2023; 10:245-260. [PMID: 36852231 PMCID: PMC9958074 DOI: 10.1016/j.toxrep.2023.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/31/2023] [Accepted: 02/11/2023] [Indexed: 02/17/2023] Open
Abstract
Products derived from olives, such as the raw fruit and oils, are widely consumed due to their taste, and purported nutritional/health benefits. Phenolic compounds, especially hydroxytyrosol (HT), have been proposed as one of the key substances involved in these effects. An olive juice extract, standardized to contain 20% HT ("OE20HT"), was produced to investigate its health benefits. The aim of this study was to demonstrate the genotoxic safety of this ingredient based on in vitro Ames assay and in vitro micronucleus assay. Results indicated that OE20HT was not mutagenic at concentrations of up to 5000 µg/plate, with or without metabolic activation, and was neither aneugenic nor clastogenic after 3-hour exposure at concentrations of up to 60 µg/mL with or without metabolic activation, or after 24-hour exposure at concentrations of up to 40 µg/mL. To further substantiate the safety of OE20HT following ingestion without conducting additional animal studies, a comprehensive literature review was conducted. No safety concerns were identified based on acute or sub-chronic studies in animals, including reproductive and developmental studies. These results were supported by clinical studies demonstrating the absence of adverse effects after oral supplementation with olive extracts or HT. Based on in vitro data and the literature review, the OE20HT extract is therefore considered as safe for human consumption at doses up to 2.5 mg/kg body weight/day.
Collapse
Key Words
- 2AA, 2-aminoanthracene
- 9AA, 9-aminoacridine
- CBI, Centre for the Promotion of Imports from developing countries
- CP, cyclophosphamide monohydrate
- EFSA, European Food Safety Authority
- Food product
- Genotoxicity
- HT, hydroxytyrosol
- Hydroxytyrosol
- MF, mutation factor
- MMC, mitomycin C
- MMS, methyl-methanesulfonate
- Mutagenicity
- NDP, 4-nitro-1,2-phenylene-diamine
- NOAEL, no observed adverse effect level
- OE20HT, olive juice dry extract titrated 20% hydroxytyrosol
- OECD, Organization for Economic Co-operation and Development
- Olive fruit extract
- PD, population doubling
- RICC, relative increase in cell count
- RPD, relative population doubling
- SAZ, sodium azide
- Safety
Collapse
Affiliation(s)
- Marie Liamin
- Nutraveris, A Food Chain ID Company, 6 rue de la gare, 22000 Saint-Brieuc, France,Corresponding author.
| | - Maria Pilar Lara
- NATAC Biotech S.L., C/ Electrónica 7, 28923 Alcorcón, Madrid, Spain
| | - Olivier Michelet
- Nutraveris, A Food Chain ID Company, 6 rue de la gare, 22000 Saint-Brieuc, France
| | - Marie Rouault
- Nutraveris, A Food Chain ID Company, 6 rue de la gare, 22000 Saint-Brieuc, France
| | | | - Jérôme Le Bloch
- Nutraveris, A Food Chain ID Company, 6 rue de la gare, 22000 Saint-Brieuc, France
| |
Collapse
|
4
|
Sabahi A, Asadi F, Rabiei R, Paydar S. Providing a Population Based Registry Model of Drug Poisoning in Iran. IRANIAN JOURNAL OF PHARMACEUTICAL RESEARCH : IJPR 2022; 21:e130124. [PMID: 36937211 PMCID: PMC10016136 DOI: 10.5812/ijpr-130124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/31/2022] [Accepted: 09/11/2022] [Indexed: 11/16/2022]
Abstract
Background The prevalence of drug poisoning is on the rise in Iran due to the increased public access to drugs. A national drug poisoning registry system is a suitable tool for better management, control, and prevention of drug poisoning. Objectives This study aimed to propose a national drug poisoning registry model for Iran. Methods This was an applied research conducted in two major phases. In the first phase, all sources pertaining to drug poisoning registries were reviewed, and a national drug poisoning registry model was proposed. In the second phase, this model was validated and finalized using a researcher-made questionnaire and through a two-stage Delphi technique. Results The focus of national drug poisoning activities and registry management reached the 100% consensus of experts at the Drug and Poison Information Center of the Food and Drug Organization (Ministry of Health and Medical Education). Goals, data sources, registry system structure, data set, standards, data exchange, registry features, and processes of the proposed model also achieved unanimous expert consensus. Conclusions Given the importance of a national drug poisoning registry in gathering, storing, analyzing, and reporting the data of patients, it is essential to provide a framework for evaluating and controlling drug poisoning and for generating valuable data for decision-making. The model proposed herein can offer the information infrastructure for designing and implementing such a system.
Collapse
Affiliation(s)
- Azam Sabahi
- Department of Health Information Technology, Ferdows School of Health and Allied Medical Sciences, Birjand University of Medical Sciences, Birjand, Iran
| | - Farkhondeh Asadi
- Department of Health Information Management, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Corresponding Author: Department of Health Information Management, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran. Tel: +98-2122737474, Fax: +98-2122754101,
| | - Reza Rabiei
- Department of Health Information Technology and Management, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Somayeh Paydar
- Department of Health Information Technology, School of Allied Medical Sciences, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
5
|
Mussarat S, Adnan M, Begum S, Alamgeer, Ullah R, Kowalczyk A. In Vivo Efficacy, Toxicity Assessment, and Elemental Analysis of Traditionally Used Polyherbal Recipe for Diarrhea. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2022; 2022:5977795. [PMID: 36045659 PMCID: PMC9423949 DOI: 10.1155/2022/5977795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 07/14/2022] [Indexed: 11/18/2022]
Abstract
A polyherbal formulation consisting of Mentha piperita L., Camellia sinensis L. Kuntze, and Elettaria cardamomum (L.) Maton with a ratio of 10 : 5 : 2, respectively, was recommended for curing nausea, vomiting, and diarrhea. Experimental validation is crucial to affirm its therapeutic property leads toward the development of modified antidiarrheal agents. This research aimed to investigate the in vivo antidiarrheal efficacy of traditionally used polyherbal recipe in a castor oil-induced animal model. Moreover, the study also presents the elemental screening and in vivo toxicity of tested polyherbal recipe. Individual plant parts of the polyherbal recipe were mixed according to the traditional prescription ratio, and hydromethanolic extract was prepared by the cold maceration process. The antidiarrheal activity was assessed by castor oil induction method, charcoal meal test, and enteropooling procedure in Sprague-Dawley rats. Elemental analysis and in vivo subacute toxicity were carried out, followed by biochemical, hematological, and histopathological analyses. Polyherbal extract significantly delayed the diarrhea onset in a dose-dependent manner and showed marked inhibition at 200 and 400 mg/kg. Fecal weight was reduced significantly (p < 0.05) at 200 mg/kg (0.26 ± 0.25) in comparison with the control (1.63 ± 0.15). The diarrhea score was zero at a concentration of 200 and 400 mg/kg. Antienteropooling effect of the extract was greater than that of loperamide. Following subacute toxicity, all the treated rats were normal, survived, and showed no changes in behavior. There were no significant differences between values of blood parameters in both the control and extract-treated groups except a significant decrease in monocytes (control 8.4; polyherbal 2.2). Elemental analysis showed a slight increase in the amount of manganese (Mn, 8.076 ppm) as compared to the WHO recommended level (2 ppm). Traditionally used polyherbal recipe is effective and safe for combating diarrheal diseases. In vivo evidence supported the use, safety, and efficacy of the polyherbal recipe that has been used as an alternative medicine for diarrhea in the study area. Inhibition of castor oil-induced diarrhea and antisecretory effect of the studied polyherbal recipe makes it a potent antidiarrheal drug without no or limited toxic effects at the tested dose after further analysis.
Collapse
Affiliation(s)
- Sakina Mussarat
- Department of Botany, Kohat University of Science and Technology, Kohat 26000, Khyber Pakhtunkhwa, Pakistan
| | - Muhammad Adnan
- Department of Botany, Kohat University of Science and Technology, Kohat 26000, Khyber Pakhtunkhwa, Pakistan
| | - Shaheen Begum
- Department of Environmental Sciences, Fatima Jinnah Women University, Rawalpindi, Pakistan
| | - Alamgeer
- College of Pharmacy, University of Punjab, Lahore, Pakistan
| | - Riaz Ullah
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Alicja Kowalczyk
- Department of Environmental Hygiene and Animal Welfare, Wrocław University of Environmental and Life Sciences, Chełmońskiego 38C, Wrocław 51-630, Poland
| |
Collapse
|
6
|
Chemical Characterization and In Vivo Toxicological Safety Evaluation of Emu Oil. Nutrients 2022; 14:nu14112238. [PMID: 35684037 PMCID: PMC9182831 DOI: 10.3390/nu14112238] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 05/24/2022] [Accepted: 05/25/2022] [Indexed: 11/16/2022] Open
Abstract
In this study, the physicochemical properties, fatty acid composition, antioxidant activities, and in vitro as well as in vivo toxicological safety of emu oil were investigated. Emu oil was shown to have a low acid and peroxide value, low amounts of carotenoid and phenolic compounds, and high doses of oleic acid and linoleic acid. Furthermore, in a bacterial reverse mutation assay, emu oil demonstrated no change in the amount of revertant colonies for all strains. In a chromosomal assay, no aberrations occurred in any of the emu oil treatment groups (1.25, 2.5, and 5 μg/mL). In the bone marrow micronucleus test, emu oil up to 20 mL/kg showed no significant increase in the incidence of micronucleated polychromatic erythrocytes. Moreover, emu oil up to 19.3 mg/kg body weight did not affect body weight in an acute oral toxicity study. These results are crucial for the adoption of emu oil as an alternative source of edible oil.
Collapse
|
7
|
Farkhondeh T, Mehrpour O, Sadeghi M, Aschner M, Aramjoo H, Roshanravan B, Samarghandian S. A systematic review on the metabolic effects of chlorpyrifos. REVIEWS ON ENVIRONMENTAL HEALTH 2022; 37:137-151. [PMID: 33962508 DOI: 10.1515/reveh-2020-0150] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Accepted: 04/07/2021] [Indexed: 06/12/2023]
Abstract
Organophosphate (OP) pesticides, including chlorpyrifos (CPF), can alter metabolic hemostasis. The current systematic study investigated blood glucose, lipid profiles, and body weight alterations in rodents and fish exposed to CPF. The systematic review was performed according to the Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) Guidelines, querying online databases, including Web of Science, PubMed, and Scopus and also search engine including Google Scholar, through January 2021. Studies on rodent and fish exposed to CPF assessing metabolic functions were selected. All studies were in the English language, with other languages being excluded from the review. Two investigators independently assessed each of the articles. The first author's name, publication date, animal model, age, sample size, gender, dose, duration, and route of exposure and outcomes were extracted from each publication. The present review summarizes findings from 61 publications on glycemic, lipid profile, insulin, and body weight changes in rodents and fish exposed to CPF exposure. Most of the studies reported hyperglycemia, hyperlipidemia, and decreased insulin levels and body weight following exposure to CPF. Additionally, we confirmed that the CPF-induced metabolic alterations were both dose- and time-dependent. Our findings support an association between CPF exposure and metabolic diseases. However, more studies are needed to identify the metabolic-disrupting effects of CPF and their underlying mechanisms.
Collapse
Affiliation(s)
- Tahereh Farkhondeh
- Cardiovascular Diseases Research Center, Birjand University of Medical Sciences (BUMS), Birjand, Iran
- Faculty of Pharmacy, Birjand University of Medical Sciences (BUMS), Birjand, Iran
| | - Omid Mehrpour
- Medical Toxicology and Drug Abuse Research Center (MTDRC), Birjand University of Medical Sciences (BUMS), Birjand, Iran
- Mel and Enid Zuckerman College of Public Health, University of Arizona, Tucson, AZ, USA
| | - Mahmood Sadeghi
- Medical Toxicology and Drug Abuse Research Center (MTDRC), Birjand University of Medical Sciences (BUMS), Birjand, Iran
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Hamed Aramjoo
- Student Research Committee, Medical Laboratory Science, Birjand University of Medical Sciences, Birjand, Iran
| | - Babak Roshanravan
- Student Research Committee, Birjand University of Medical Sciences, Birjand, Iran
| | - Saeed Samarghandian
- Noncommunicable Diseases Research Center, Neyshabur University of Medical Sciences, Neyshabur, Iran
| |
Collapse
|
8
|
Anwar F, Saleem U, rehman AU, Ahmad B, Ismail T, Mirza MU, Ahmad S. Acute Oral, Subacute, and Developmental Toxicity Profiling of Naphthalene 2-Yl, 2-Chloro, 5-Nitrobenzoate: Assessment Based on Stress Response, Toxicity, and Adverse Outcome Pathways. Front Pharmacol 2022; 12:810704. [PMID: 35126145 PMCID: PMC8811508 DOI: 10.3389/fphar.2021.810704] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Accepted: 12/20/2021] [Indexed: 12/18/2022] Open
Abstract
The U.S. National Research Council (NRC) introduced new approaches to report toxicity studies. The NRC vision is to explore the toxicity pathways leading to the adverse effects in intact organisms by the exposure of the chemicals. This study examines the toxicity profiling of the naphthalene-2-yl 2-chloro-5-dinitrobenzoate (SF5) by adopting the vision of NRC that moves from traditional animal studies to the cellular pathways. Acute, subacute, and developmental toxicity studies were assayed according to the Organization for Economic Cooperation and Development (OECD) guidelines. The stress response pathway, toxicity pathway, and adverse effects outcome parameters were analyzed by using their standard protocols. The results showed that the acute toxicity study increases the liver enzyme levels. In a subacute toxicity study, alkaline phosphatase (ALP) levels were raised in both male and female animals. SF5 significantly increases the normal sperm count in the male animals corresponding to a decrease in the abnormality count. Developmental toxicity showed the normal skeletal and morphological parameters, except little hydrocephalus was observed in developmental toxicity. Doses of 20 mg/kg in males and 4 mg/kg in females showed decreased glutathione (GSH) levels in the kidney and liver. MDA levels were also increased in the kidney and liver. However, histopathological studies did not show any cellular change in these organs. No statistical difference was observed in histamine levels, testosterone, nuclear factor erythroid two-related factor-2 (Nrf2), and nuclear factor-kappa B (NF-κB), which showed no initiation of the stress response, toxicity, and adverse effect pathways. Immunomodulation was observed at low doses in subacute toxicity studies. It was concluded that SF5 did not produce abrupt and high-toxicity levels in organs and biochemical parameters. So, it is safe for further studies.
Collapse
Affiliation(s)
- Fareeha Anwar
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Lahore, Pakistan
- Riphah Institute of Pharmaceutical Sciences, Faculty of Pharmaceutical Sciences, Riphah International University, Islamabad, Pakistan
| | - Uzma Saleem
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Govt. College University, Faisalabad, Pakistan
| | - Atta ur rehman
- Department of Pharmacy, Forman Christian College, Lahore, Pakistan
| | - Bashir Ahmad
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Lahore, Pakistan
- Riphah Institute of Pharmaceutical Sciences, Faculty of Pharmaceutical Sciences, Riphah International University, Islamabad, Pakistan
| | - Tariq Ismail
- Department of Pharmacy, COMSATS Institute of Information Technology—Abbottabad Campus, Abottabad, Pakistan
| | - Muhammad Usman Mirza
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, ON, Canada
| | - Sarfraz Ahmad
- Drug Design and Development Research Group (DDDRG), Department of Chemistry, Faculty of Science, Universiti Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
9
|
Anwar F, Saleem U, Rehman AU, Ahmad B, Ismail T, Mirza MU, Kee LY, Abdullah I, Ahmad S. Toxicological Screening of 4-Phenyl-3,4-dihydrobenzo[ h]quinolin-2(1 H)-one: A New Potential Candidate for Alzheimer's Treatment. ACS OMEGA 2021; 6:10897-10909. [PMID: 34056243 PMCID: PMC8153932 DOI: 10.1021/acsomega.1c00654] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 04/07/2021] [Indexed: 05/04/2023]
Abstract
Toxicity studies are necessary for the development of a new drug. Naphthalene is a bicyclic molecule and is easy to derivatize. In our previous study, a derivative of naphthalene (4-phenyl,3,4-dihydrobenzoquinoline-2(H)one) was synthesized and reported its in vitro activity on different enzymes. This study was a probe to investigate the toxicity potential of that compound (SF3). Acute oral (425), subacute (407), and teratogenicity (414) studies were planned according to their respective guidelines given by organization of economic cooperation and development (OECD). Acute oral, subacute, and teratogenicity studies were carried out on 2000, 5-40, and 40 mg/kg doses. Blood samples were collected for hematological and biochemical analyses. Vital organs were excised for oxidative stress (superoxide dismutase, catalase, glutathione, and malondialdehyde) and histopathological analysis. LD 50 of SF3 was higher than 2000 mg/kg. In acute and subacute studies, levels of alkaline phosphates and aspartate transaminase were increased. Teratogenicity showed no resorptions, no skeletal or soft tissue abnormalities, and no cleft pallet. Oxidative stress biomarkers were close to the normal, and no increase in the malondialdehyde level was seen. Histopathological studies revealed normal tissue architecture of the selected organs, except kidney, in acute oral and subacute toxicity studies at 40 mg/kg. The study concluded that SF3 is safer if used as a drug.
Collapse
Affiliation(s)
- Fareeha Anwar
- Riphah
Institute of Pharmaceutical Sciences, Riphah
International University, Lahore 54000 Pakistan
- Riphah
Institute of Pharmaceutical Sciences, Faculty of Pharmaceutical Sciences, Riphah International University, Islamabad 44000, Pakistan
| | - Uzma Saleem
- Department
of Pharmacology, Faculty of Pharmaceutical Sciences, Govt. College University, Faisalabad 38040, Pakistan
| | - Atta ur Rehman
- Department
of Pharmacy, Forman Christian College, Lahore 54600, Pakistan
| | - Bashir Ahmad
- Riphah
Institute of Pharmaceutical Sciences, Riphah
International University, Lahore 54000 Pakistan
- Riphah
Institute of Pharmaceutical Sciences, Faculty of Pharmaceutical Sciences, Riphah International University, Islamabad 44000, Pakistan
| | - Tariq Ismail
- Department
of Pharmacy, COMSATS Institute of Information
Technology, Abbottabad Campus, Abottabad 22060, Pakistan
| | - Muhammad Usman Mirza
- Department
of Pharmaceutical and Pharmacological Sciences, Rega Institute for
Medical Research, Medicinal Chemistry, University
of Leuven, Leuven B-3000, Belgium
- Department
of Chemistry and Biochemistry, University
of Windsor, Windsor, Ontario N9B 3P4, Canada
| | - Lee Yean Kee
- Drug
Design and Development Research Group (DDDRG), Department of Chemistry,
Faculty of Science, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Iskandar Abdullah
- Drug
Design and Development Research Group (DDDRG), Department of Chemistry,
Faculty of Science, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Sarfraz Ahmad
- Drug
Design and Development Research Group (DDDRG), Department of Chemistry,
Faculty of Science, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| |
Collapse
|
10
|
Fritsche E, Haarmann-Stemmann T, Kapr J, Galanjuk S, Hartmann J, Mertens PR, Kämpfer AAM, Schins RPF, Tigges J, Koch K. Stem Cells for Next Level Toxicity Testing in the 21st Century. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2006252. [PMID: 33354870 DOI: 10.1002/smll.202006252] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 11/13/2020] [Indexed: 06/12/2023]
Abstract
The call for a paradigm change in toxicology from the United States National Research Council in 2007 initiates awareness for the invention and use of human-relevant alternative methods for toxicological hazard assessment. Simple 2D in vitro systems may serve as first screening tools, however, recent developments infer the need for more complex, multicellular organotypic models, which are superior in mimicking the complexity of human organs. In this review article most critical organs for toxicity assessment, i.e., skin, brain, thyroid system, lung, heart, liver, kidney, and intestine are discussed with regards to their functions in health and disease. Embracing the manifold modes-of-action how xenobiotic compounds can interfere with physiological organ functions and cause toxicity, the need for translation of such multifaceted organ features into the dish seems obvious. Currently used in vitro methods for toxicological applications and ongoing developments not yet arrived in toxicity testing are discussed, especially highlighting the potential of models based on embryonic stem cells and induced pluripotent stem cells of human origin. Finally, the application of innovative technologies like organs-on-a-chip and genome editing point toward a toxicological paradigm change moves into action.
Collapse
Affiliation(s)
- Ellen Fritsche
- IUF - Leibniz Research Institute for Environmental Medicine, Düsseldorf, 40225, Germany
- Medical Faculty, Heinrich-Heine University Düsseldorf, Düsseldorf, 40225, Germany
| | | | - Julia Kapr
- IUF - Leibniz Research Institute for Environmental Medicine, Düsseldorf, 40225, Germany
| | - Saskia Galanjuk
- IUF - Leibniz Research Institute for Environmental Medicine, Düsseldorf, 40225, Germany
| | - Julia Hartmann
- IUF - Leibniz Research Institute for Environmental Medicine, Düsseldorf, 40225, Germany
| | - Peter R Mertens
- Department of Nephrology and Hypertension, Diabetes and Endocrinology, Otto-von-Guericke-University Magdeburg, Magdeburg, 39106, Germany
| | - Angela A M Kämpfer
- IUF - Leibniz Research Institute for Environmental Medicine, Düsseldorf, 40225, Germany
| | - Roel P F Schins
- IUF - Leibniz Research Institute for Environmental Medicine, Düsseldorf, 40225, Germany
| | - Julia Tigges
- IUF - Leibniz Research Institute for Environmental Medicine, Düsseldorf, 40225, Germany
| | - Katharina Koch
- IUF - Leibniz Research Institute for Environmental Medicine, Düsseldorf, 40225, Germany
| |
Collapse
|
11
|
Farkhondeh T, Aschner M, Sadeghi M, Mehrpour O, Naseri K, Amirabadizadeh A, Roshanravan B, Aramjoo H, Samarghandian S. The effect of diazinon on blood glucose homeostasis: a systematic and meta-analysis study. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:4007-4018. [PMID: 33175357 DOI: 10.1007/s11356-020-11364-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 10/21/2020] [Indexed: 06/11/2023]
Abstract
Though evidence exists on the association between diazinon (DZN), an organophosphate pesticide, with hyperglycemia, contrasting reports also exist. Herein, we performed a systematic and meta-analysis study to address this issue. A systematic search was conducted in PubMed, Ovid Medline, Google Scholar, Scopus, and Web of Science up to April 5, 2020, searching for animal studies (rodents and fish) that assessed the impact of DZN on blood glucose concentration. The risk of bias was assessed by the SYRCLE's RoB scale. Once each article's quality was assessed, a random-effects meta-regression was used to pool the data into a meta-analysis. Heterogeneity between the studies was evaluated with the I square and Q test. Random-effect meta-analysis of 19 studies (I2 = 90.5%, p < 0.001) indicated low heterogeneity between the studies. DZN significantly increased blood glucose levels in the exposed versus control groups (95% CI: 2.46-4.94; Z = 5.86; p < 0.001). Subgroup analysis indicated that the effect of high-dose (3.40 (95% CI: 2.03-4.76)) DZN on changes in blood glucose was more pronounced than in the low dose (4.83 (95% CI: 1.56-8.11)). It was also ascertained that the blood glucose level was significantly higher in females (3.55 (95% CI: 2.21-4.89)) versus males (4.87 (95% CI: 0.20-9.55)) exposed to DZN. No publication bias was observed. Sensitivity analysis showed the robustness of the (standardized mean differences: 3.26-4.03). Our findings establish an association between DZN exposure and hyperglycemia in rodents and fish, which is both dose- and gender-dependent.
Collapse
Affiliation(s)
- Tahereh Farkhondeh
- Medical Toxicology and Drug Abuse Research Center (MTDRC), Birjand University of Medical Sciences (BUMS), Birjand, Iran
- Faculty of Pharmacy, Birjand University of Medical Sciences, Birjand, Iran
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Forchheimer 209, 1300 Morris Park Avenue, Bronx, NY, USA
| | - Mahmood Sadeghi
- Medical Toxicology and Drug Abuse Research Center (MTDRC), Birjand University of Medical Sciences (BUMS), Birjand, Iran
| | - Omid Mehrpour
- Arizona Poison & Drug Information Center, the University of Arizona, college of pharmacy and university of Arizona, Tucson, Arizona, USA
- Scientific unlimited horizon, Tucson, Arizona, USA
| | - Kobra Naseri
- Medical Toxicology and Drug Abuse Research Center (MTDRC), Birjand University of Medical Sciences (BUMS), Birjand, Iran
- Faculty of Pharmacy, Birjand University of Medical Sciences, Birjand, Iran
| | - Alireza Amirabadizadeh
- Cardiovascular Diseases Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Babak Roshanravan
- Student Research Committee, Birjand University of Medical Sciences, Birjand, Iran
| | - Hamed Aramjoo
- Student Research Committee, BSc Student in Medical LaboratoryScience, Birjand University of Medical Sciences, Birjand, Iran
| | - Saeed Samarghandian
- Noncommunicable Diseases Research Center, Neyshabur University of Medical Sciences, Neyshabur, Iran.
| |
Collapse
|
12
|
Casuso RA, Al Fazazi S, Ruiz-Ojeda FJ, Plaza-Diaz J, Rueda-Robles A, Aragón-Vela J, Huertas JR. Hydroxytyrosol modifies skeletal muscle GLUT4/AKT/Rac1 axis in trained rats. J Cell Physiol 2021; 236:489-494. [PMID: 32542704 DOI: 10.1002/jcp.29876] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 06/01/2020] [Indexed: 12/16/2022]
Abstract
Training induces a number of healthy effects including a rise in skeletal muscle (SKM) glucose uptake. These adaptations are at least in part due to the reactive oxygen species produced within SKM, which is in agreement with the notion that antioxidant supplementation blunts some training-induced adaptations. Here, we tested whether hydroxytyrosol (HT), the main polyphenol of olive oil, would modify the molecular regulators of glucose uptake when HT is supplemented during exercise. Rats were included into sedentary and exercised (EXE) groups. EXE group was further divided into a group consuming a low HT dose (0.31 mg·kg·d; EXElow), a moderate HT dose (4.61 mg·kg·d; EXEmid), and a control group (EXE). EXE raised glucose transporter type 4 (GLUT4) protein content, Ras-related C3 botulinum toxin substrate 1 (Rac1) activity, and protein kinase b (AKT) phosphorylation in SKM. Furthermore, EXElow blunted GLUT4 protein content and AKT phosphorylation while EXEmid showed a downregulation of the GLUT4/AKT/Rac1 axis. Hence, a low-to-moderate dose of HT, when it is supplemented as an isolated compound, might alter the beneficial effect of training on basal AKT phosphorylation and Rac1 activity in rats.
Collapse
Affiliation(s)
- Rafael A Casuso
- Department of Physiology, Faculty of Sport Sciences, Institute of Nutrition and Food Technology, Biomedical Research Centre, University of Granada, Armilla, Spain
| | - Saad Al Fazazi
- Department of Physiology, Faculty of Sport Sciences, Institute of Nutrition and Food Technology, Biomedical Research Centre, University of Granada, Armilla, Spain
| | - Francisco J Ruiz-Ojeda
- Department of Physiology, Faculty of Sport Sciences, Institute of Nutrition and Food Technology, Biomedical Research Centre, University of Granada, Armilla, Spain
| | - Julio Plaza-Diaz
- Department of Physiology, Faculty of Sport Sciences, Institute of Nutrition and Food Technology, Biomedical Research Centre, University of Granada, Armilla, Spain
| | - Ascensión Rueda-Robles
- Department of Physiology, Faculty of Sport Sciences, Institute of Nutrition and Food Technology, Biomedical Research Centre, University of Granada, Armilla, Spain
| | - Jerónimo Aragón-Vela
- Department of Physiology, Faculty of Sport Sciences, Institute of Nutrition and Food Technology, Biomedical Research Centre, University of Granada, Armilla, Spain
| | - Jesús R Huertas
- Department of Physiology, Faculty of Sport Sciences, Institute of Nutrition and Food Technology, Biomedical Research Centre, University of Granada, Armilla, Spain
| |
Collapse
|