1
|
Peng Q, Cheng S, Lin J, Zheng H, Xie G. Metabolic and microbial functionality during the fermentation of traditional Amaranth stems: Insights from metagenomics, flavoromics, and metabolomics. Food Chem 2025; 474:143216. [PMID: 39923519 DOI: 10.1016/j.foodchem.2025.143216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 01/19/2025] [Accepted: 02/02/2025] [Indexed: 02/11/2025]
Abstract
Fermented Amaranth stems is a traditional Chinese fermented vegetable known for its distinctive aroma, produced through natural microbial fermentation. However, the metabolic processes, flavor compounds, and microbial communities involved in its fermentation are not well understood. This study provides a comprehensive analysis using an integrated approach combining flavoromics, untargeted metabolomics, and metagenomics to examine the dynamic changes in metabolites and microbiota during fermentation. A total of 108 volatile organic compounds were identified, with sugar metabolism peaking on the third day of fermentation. The microbial community analysis revealed that key genera such as Pseudomonas, Acinetobacter, Pectobacterium, and Enterobacter play a significant role in flavor formation. The findings offer critical insights into the fermentation mechanisms and the production of flavor compounds, providing a foundation for optimizing fermentation processes and improving the flavor quality of fermented Amaranth stems. This research holds practical significance for enhancing food safety by controlling microbial communities during fermentation.
Collapse
Affiliation(s)
- Qi Peng
- National Engineering Research Center for Chinese CRW (Branch Center), School of Life and Environmental Sciences, Shaoxing University, 900 Chengnan Road, Shaoxing 312000, China
| | - Shuangqi Cheng
- National Engineering Research Center for Chinese CRW (Branch Center), School of Life and Environmental Sciences, Shaoxing University, 900 Chengnan Road, Shaoxing 312000, China
| | - Jiahao Lin
- National Engineering Research Center for Chinese CRW (Branch Center), School of Life and Environmental Sciences, Shaoxing University, 900 Chengnan Road, Shaoxing 312000, China
| | - Huajun Zheng
- National Engineering Research Center for Chinese CRW (Branch Center), School of Life and Environmental Sciences, Shaoxing University, 900 Chengnan Road, Shaoxing 312000, China
| | - Guangfa Xie
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, College of Biology and Environmental Engineering, Zhejiang Shuren University, Hangzhou 310015, China.
| |
Collapse
|
2
|
Rafieerad A, Khanahmadi S, Rahman A, Shahali H, Böhmer M, Amiri A. Induction of Chirality in MXene Nanosheets and Derived Quantum Dots: Chiral Mixed-Low-Dimensional Ti 3C 2T x Biomaterials as Potential Agricultural Biostimulants for Enhancing Plant Tolerance to Different Abiotic Stresses. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2500654. [PMID: 40176740 DOI: 10.1002/smll.202500654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 03/15/2025] [Indexed: 04/04/2025]
Abstract
This work presents two advancements in the engineering design and bio-applications of emerging MXene nanosheets and derived quantum dots. First, a facile, versatile, and universal strategy is showcased for inducing the right- or left-handed chirality into the surface of titanium carbide-based MXene (Ti3C2Tx) to form stable mixed-low-dimensional chiral MXene biomaterials with enhanced aqueous colloidal dispersibility and debonding tolerance, mimicking the natural asymmetric bio-structure of most biomolecules and living organisms. In particular, Ti3C2Tx MXene nanosheets are functionalized with carboxyl-based terminals and bound feasibly with the D/L-cysteine amino acid ligands. The physicochemical characterizations of these 2D-0D/1D chiral MXene heterostructures suggest the inclusion of Ti3C2Tx nanosheets and different levels of self-derived MXene quantum dots and surface titanium-oxide nanoparticles, providing enhanced material stability and oxidative degradation resistance for tested months. Further, the interaction and molecular binding at cysteine-Ti3C2Tx/Ti-oxide interfaces, associated ion transport and ionic conductivity analysis, and charge re/distribution mechanisms are evaluated using density functional theory (DFT) calculations and electrochemical impedance spectroscopy (EIS) measurements. The second uniqueness of this study relies on the multifunctional application of optimal chiral MXenes as potential nano-biostimulants for enhancing plant tolerance to different abiotic conditions, including severe drought, salinity, or light stress. This surface tailoring enables high biocompatibility with the seed/seedling/plant of Arabidopsis thaliana alongside promoting multi-bioactivities for enhanced seed-to-seedling transition, seedling germination/maturation, plant-induced stomatal closure, and ROS production eliciting responses. Given that the induced chirality is a pivotal factor in many agro-stimulants and amino acid-containing fertilizers for enhanced interaction with plant cells/enzymes, boosting stress tolerance, nutrient uptake, and growth, these findings open up new avenues toward multiple applications of chiral MXene biomaterials as next-generation carbon-based nano-biostimulants in agriculture.
Collapse
Affiliation(s)
- Alireza Rafieerad
- Institute for Molecular Biosciences, Johann Wolfgang Goethe Universität, 60438, Frankfurt am Main, Germany
- Institute for Biology and Biotechnology of Plants, University of Münster, Schlossplatz 8, 48143, Münster, Germany
- Regenerative Medicine Program, Institute of Cardiovascular Sciences, St. Boniface Hospital Research Centre, Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, R2H 2A6, Canada
| | - Soofia Khanahmadi
- Institute for Molecular Biosciences, Johann Wolfgang Goethe Universität, 60438, Frankfurt am Main, Germany
- Institute for Biology and Biotechnology of Plants, University of Münster, Schlossplatz 8, 48143, Münster, Germany
| | - Akif Rahman
- Department of Mechanical Engineering, The University of Tulsa, Tulsa, OK, 74104, USA
| | - Hossein Shahali
- Russell School of Chemical Engineering, University of Tulsa, Tulsa, OK, 74104, USA
| | - Maik Böhmer
- Institute for Molecular Biosciences, Johann Wolfgang Goethe Universität, 60438, Frankfurt am Main, Germany
| | - Ahmad Amiri
- Department of Mechanical Engineering, The University of Tulsa, Tulsa, OK, 74104, USA
- Russell School of Chemical Engineering, University of Tulsa, Tulsa, OK, 74104, USA
| |
Collapse
|
3
|
Yuan L, Ma L, Liu Y, Yuan X, Wang S, Zhou W, Xu Z, Yang Z. Effectiveness of a bacteriophage YZU_PF006 in controlling dairy spoilage caused by Pseudomonas fluorescens. J Dairy Sci 2025; 108:1326-1338. [PMID: 39694245 DOI: 10.3168/jds.2024-25567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 10/08/2024] [Indexed: 12/20/2024]
Abstract
Pseudomonas fluorescens is a psychrophilic bacterium that can cause dairy spoilage by producing heat-stable enzymes. Bacteriophages are proved as one of the alternatives to control spoilage bacteria in today's dairy industry. This study aimed to investigate how a previously identified phage YZU_PF006 prevents dairy spoilage caused by P. fluorescens. Results demonstrated that phage YZU_PF006 effectively controlled P. fluorescens growth and production of protease at 7°C and 28°C in milk in a phage concentration-dependent way. Phage YZU_PF006 at a multiplicity of infection (MOI) of 100 increased the pH values of milk by 1.43 at 28°C and 0.81 at 7°C, increased the particle size of milk by 2.74 μm at 28°C and 1.74 μm at 7°C. Phage YZU_PF006 reduced the free AA content by 15.36% at 28°C and 32.03% at 7°C, and decreased the contents of Glu (206.678 mmol/L at 28°C and 40.481 mmol/L at 7°C), Phe (94.137 mmol/L at 28°C and 144.137 mmol/L at 7°C) and other amino acids in milk. In contrast, high-throughput sequencing analysis revealed that phage YZU_PF006 specifically prevented the growth of Pseudomonas in raw milk at low temperatures. Results demonstrated that phage YZU_PF006 can be used alone or in combination with other control strategies to serve as one of the good antimicrobial candidates to control P. fluorescens contamination in dairy processing environments, and to promote the safety and sensory quality of raw milk and milk products.
Collapse
Affiliation(s)
- Lei Yuan
- School of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225127 China; Yangzhou Engineering Research Center of Food Intelligent Packaging and Preservation Technology, Yangzhou, Jiangsu 225127 China
| | - Lili Ma
- School of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225127 China; Yangzhou Engineering Research Center of Food Intelligent Packaging and Preservation Technology, Yangzhou, Jiangsu 225127 China
| | - Yang Liu
- School of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225127 China; Yangzhou Engineering Research Center of Food Intelligent Packaging and Preservation Technology, Yangzhou, Jiangsu 225127 China
| | - Xinhai Yuan
- School of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225127 China
| | - Shuo Wang
- School of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225127 China; Yangzhou Engineering Research Center of Food Intelligent Packaging and Preservation Technology, Yangzhou, Jiangsu 225127 China
| | - Wenyuan Zhou
- School of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225127 China; Yangzhou Engineering Research Center of Food Intelligent Packaging and Preservation Technology, Yangzhou, Jiangsu 225127 China
| | - Zhenbo Xu
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Zhenquan Yang
- School of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225127 China; Yangzhou Engineering Research Center of Food Intelligent Packaging and Preservation Technology, Yangzhou, Jiangsu 225127 China.
| |
Collapse
|
4
|
Karkoutly S, Takeuchi Y, Mehrazad Saber Z, Ye C, Tao D, Aita Y, Murayama Y, Shikama A, Masuda Y, Izumida Y, Matsuzaka T, Kawakami Y, Shimano H, Yahagi N. FoxO transcription factors regulate urea cycle through Ass1. Biochem Biophys Res Commun 2024; 739:150594. [PMID: 39191148 DOI: 10.1016/j.bbrc.2024.150594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 08/14/2024] [Accepted: 08/22/2024] [Indexed: 08/29/2024]
Abstract
When amino acids are plentiful in the diet, the liver upregulates most enzymes responsible for amino acid degradation. In particular, the activity of urea cycle enzymes increases in response to high-protein diets to facilitate the excretion of excess nitrogen. KLF15 has been established as a critical regulator of amino acid catabolism including ureagenesis and we have recently identified FoxO transcription factors as an important upstream regulator of KLF15 in the liver. Therefore, we explored the role of FoxOs in amino acid metabolism under high-protein diet. Our findings revealed that the concentrations of two urea cycle-related amino acids, arginine and ornithine, were significantly altered by FoxOs knockdown. Additionally, using KLF15 knockout mice and an in vivo Ad-luc analytical system, we confirmed that FoxOs directly regulate hepatic Ass1 expression under high-protein intake independently from KLF15. Moreover, ChIP analysis showed that the high-protein diet increased FoxOs DNA binding without altering the nuclear protein amount. Therefore, FoxOs play a direct role in regulating ureagenesis via a KLF15-independent pathway in response to high-protein intake.
Collapse
Affiliation(s)
- Samia Karkoutly
- Division of Endocrinology and Metabolism, Department of Medicine, Jichi Medical University, Tochigi, 329-0498, Japan; Nutrigenomics Research Group, Institute of Medicine, University of Tsukuba, Ibaraki, 305-8575, Japan
| | - Yoshinori Takeuchi
- Division of Endocrinology and Metabolism, Department of Medicine, Jichi Medical University, Tochigi, 329-0498, Japan; Nutrigenomics Research Group, Institute of Medicine, University of Tsukuba, Ibaraki, 305-8575, Japan
| | - Zahra Mehrazad Saber
- Division of Endocrinology and Metabolism, Department of Medicine, Jichi Medical University, Tochigi, 329-0498, Japan
| | - Chen Ye
- Division of Endocrinology and Metabolism, Department of Medicine, Jichi Medical University, Tochigi, 329-0498, Japan; Nutrigenomics Research Group, Institute of Medicine, University of Tsukuba, Ibaraki, 305-8575, Japan
| | - Duhan Tao
- Division of Endocrinology and Metabolism, Department of Medicine, Jichi Medical University, Tochigi, 329-0498, Japan; Nutrigenomics Research Group, Institute of Medicine, University of Tsukuba, Ibaraki, 305-8575, Japan
| | - Yuichi Aita
- Division of Endocrinology and Metabolism, Department of Medicine, Jichi Medical University, Tochigi, 329-0498, Japan; Nutrigenomics Research Group, Institute of Medicine, University of Tsukuba, Ibaraki, 305-8575, Japan
| | - Yuki Murayama
- Nutrigenomics Research Group, Institute of Medicine, University of Tsukuba, Ibaraki, 305-8575, Japan; Department of Internal Medicine (Endocrinology and Metabolism), Institute of Medicine, University of Tsukuba, Ibaraki, 305-8575, Japan
| | - Akito Shikama
- Nutrigenomics Research Group, Institute of Medicine, University of Tsukuba, Ibaraki, 305-8575, Japan; Department of Internal Medicine (Endocrinology and Metabolism), Institute of Medicine, University of Tsukuba, Ibaraki, 305-8575, Japan
| | - Yukari Masuda
- Division of Endocrinology and Metabolism, Department of Medicine, Jichi Medical University, Tochigi, 329-0498, Japan; Nutrigenomics Research Group, Institute of Medicine, University of Tsukuba, Ibaraki, 305-8575, Japan
| | - Yoshihiko Izumida
- Nutrigenomics Research Group, Institute of Medicine, University of Tsukuba, Ibaraki, 305-8575, Japan
| | - Takashi Matsuzaka
- Department of Internal Medicine (Endocrinology and Metabolism), Institute of Medicine, University of Tsukuba, Ibaraki, 305-8575, Japan
| | - Yasushi Kawakami
- Department of Internal Medicine (Endocrinology and Metabolism), Institute of Medicine, University of Tsukuba, Ibaraki, 305-8575, Japan
| | - Hitoshi Shimano
- Department of Internal Medicine (Endocrinology and Metabolism), Institute of Medicine, University of Tsukuba, Ibaraki, 305-8575, Japan
| | - Naoya Yahagi
- Division of Endocrinology and Metabolism, Department of Medicine, Jichi Medical University, Tochigi, 329-0498, Japan; Nutrigenomics Research Group, Institute of Medicine, University of Tsukuba, Ibaraki, 305-8575, Japan; Department of Internal Medicine (Endocrinology and Metabolism), Institute of Medicine, University of Tsukuba, Ibaraki, 305-8575, Japan.
| |
Collapse
|
5
|
Geng C, Chen F, Sun H, Lin H, Qian Y, Zhang J, Xia Q. Serum Arginine Level for Predicting Early Allograft Dysfunction in Liver Transplantation Recipients by Targeted Metabolomics Analysis: A Prospective, Single-Center Cohort Study. Adv Biol (Weinh) 2024; 8:e2400128. [PMID: 39164220 DOI: 10.1002/adbi.202400128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 07/09/2024] [Indexed: 08/22/2024]
Abstract
Early allograft dysfunction (EAD) is a frequent phenomenon, leading to increased graft loss and higher mortality after liver transplantation (LT). Despite significant efforts for early diagnosis of EAD, there is no existing approach that can predict EAD on the first post-operative day. The aim is to define a metabolite-based biomarker on the first day after LT complicated with EAD. Ten patients diagnosed with EAD and 26 non-EAD are recruited for the study. A HPLC-MS/MS is used to determine 14 amino acids and 15 bile acids serum concentration. Comparative analyses are conducted between EAD and non-EAD groups. Arginine is identified as the most significant metabolite distinguishing the EAD and non-EAD groups, and therefore, is identified as a potential biomarker of EAD. The optimal cut-off value for arginine is 52.09 µmol L-1, with an AUROC of 0.804 (95% confidence interval: 0.638-0.917, p < 0.001), yielding a sensitivity of 100%, specificity of 53.8%, and Youden index of 0.54, NPVof 100%, and PPV of 45.45%. In summary, the study indicated that targeted metabolomics analysis would be a promising strategy for discovering novel biomarkers to predict EAD. The identified arginine may be helpful in developing an objective diagnostic method for EAD.
Collapse
Affiliation(s)
- Chunmei Geng
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200127, P. R. China
- Department of Pharmacy, Tianjin First Central Hospital, School of Medicine, Nankai University, Tianjin, 300192, P. R. China
| | - Fang Chen
- Department of Pharmacy, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200127, P. R. China
| | - Hanyong Sun
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200127, P. R. China
| | - Houwen Lin
- Department of Pharmacy, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200127, P. R. China
| | - Yongbing Qian
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200127, P. R. China
| | - Jianjun Zhang
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200127, P. R. China
| | - Qiang Xia
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200127, P. R. China
| |
Collapse
|
6
|
Singh D, Menghini P, Rodriguez-Palacios A, Martino LD, Cominelli F, Basson AR. Leucine-Enriched Diet Reduces Fecal MPO but Does Not Protect Against DSS Colitis in a Mouse Model of Crohn's Disease-like Ileitis. Int J Mol Sci 2024; 25:11748. [PMID: 39519299 PMCID: PMC11545852 DOI: 10.3390/ijms252111748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 10/24/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024] Open
Abstract
Understanding the complex link between inflammation, gut health, and dietary amino acids is becoming increasingly important in the pathophysiology of inflammatory bowel disease (IBD). This study tested the hypothesis that a leucine-rich diet could attenuate inflammation and improve gut health in a mouse model of IBD. Specifically, we investigated the effects of a leucine-rich diet on dextran sulfate sodium (DSS)-induced colitis in germ-free (GF) SAMP1/YitFC (SAMP) mice colonized with human gut microbiota (hGF-SAMP). hGF-SAMP mice were fed one of four different diets: standard mouse diet (CHOW), American diet (AD), leucine-rich AD (AD + AA), or leucine-rich CHOW diet (CH + AA). Body weight, myeloperoxidase (MPO) activity, gut permeability, colonoscopy scores, and histological analysis were measured. Mice on a leucine-rich CHOW diet showed a decrease in fecal MPO prior to DSS treatment as compared to those on a regular diet (p > 0.05); however, after week five, prior to DSS, this effect had diminished. Following DSS treatment, there was no significant difference in gut permeability, fecal MPO activity, or body weight changes between the leucine-supplemented and control groups. These findings suggest that while a leucine-rich diet may transiently affect fecal MPO levels in hGF-SAMP mice, it does not confer protection against DSS-induced colitis symptoms or mitigate inflammation in the long term.
Collapse
Affiliation(s)
- Drishtant Singh
- Department of Nutrition, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA;
- Division of Gastroenterology & Liver Diseases, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA; (P.M.); (A.R.-P.); (F.C.)
| | - Paola Menghini
- Division of Gastroenterology & Liver Diseases, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA; (P.M.); (A.R.-P.); (F.C.)
- Digestive Health Research Institute, University Hospitals Cleveland Medical Center, Cleveland, OH 44106, USA
| | - Alexander Rodriguez-Palacios
- Division of Gastroenterology & Liver Diseases, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA; (P.M.); (A.R.-P.); (F.C.)
- Digestive Health Research Institute, University Hospitals Cleveland Medical Center, Cleveland, OH 44106, USA
- Mouse Models Core, Silvio O’Conte Cleveland Digestive Diseases Research Core Center, Cleveland, OH 44106, USA
- Germ-Free and Gut Microbiome Core, Digestive Health Research Institute, Case Western Reserve University, Cleveland, OH 44106, USA
- Department of Molecular Biology and Microbiology, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Luca Di Martino
- Case Digestive Health Research Institute, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA;
- Department of Medicine, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Fabio Cominelli
- Division of Gastroenterology & Liver Diseases, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA; (P.M.); (A.R.-P.); (F.C.)
- Digestive Health Research Institute, University Hospitals Cleveland Medical Center, Cleveland, OH 44106, USA
- Mouse Models Core, Silvio O’Conte Cleveland Digestive Diseases Research Core Center, Cleveland, OH 44106, USA
- Germ-Free and Gut Microbiome Core, Digestive Health Research Institute, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Abigail Raffner Basson
- Department of Nutrition, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA;
- Division of Gastroenterology & Liver Diseases, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA; (P.M.); (A.R.-P.); (F.C.)
- Digestive Health Research Institute, University Hospitals Cleveland Medical Center, Cleveland, OH 44106, USA
| |
Collapse
|
7
|
Zeng Z, Zeng Q, Lu X, Zheng M, Fang Y, Guo J, Luo F, Zeng X, Cai Z, Liu B, Deng L, Zeng F, Zou X. Comparison of nutritional value of the wild and cultivated spiny loaches at three growth stages. Open Life Sci 2024; 19:20220969. [PMID: 39464508 PMCID: PMC11512498 DOI: 10.1515/biol-2022-0969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 08/13/2024] [Accepted: 08/14/2024] [Indexed: 10/29/2024] Open
Abstract
Environmental pollution and overfishing of wild spiny loach have led to the increased demand for breeding the fish. However, the nutritional value between the wild and cultivated spiny loaches was unknown. Therefore, this study aimed to evaluate the nutritional components among the wild and cultivated spiny loaches at different growth stages by analyzing and comparing the proximate compositions, fatty acids, amino acids and volatile compounds. Results showed that the cultivated ones had significantly higher energy and fat contents than the wild. Particularly, the cultivated second-age spiny loach contained the highest contents of polyunsaturated fatty acids (4.83 ± 0.01%) and EPA + DHA (0.85 ± 0.02%). Besides, the total essential amino acid content of cultivated second-age spiny loach was 2201.28, exceeding that recommended in the FAO/WTO scoring pattern (2,190). And it had the highest flavor amino acid (6.24 ± 0.04 g/100 g), essential amino acid index value (71.82) and higher contents of volatile compounds. Overall, the cultivated spiny loach, especially that at the second growth stage, displayed the highest nutritional value. The findings of this study would help farmers to harvest the suitable breeding stage of spiny loaches from the perspective of nutritional value, which is beneficial to the sustainable fish farming.
Collapse
Affiliation(s)
- Zeguo Zeng
- Ganzhou Animal Husbandry and Fisheries Research Institute, Gannan Academy of Sciences,
Ganzhou, 341000, People’s Republic of China
- Agricultural Technology Promotion Center of Deqing County, Deqing313200, Huzhou, People’s Republic of China
| | - Qingxiang Zeng
- Ganzhou Animal Husbandry and Fisheries Research Institute, Gannan Academy of Sciences,
Ganzhou, 341000, People’s Republic of China
| | - Xinmin Lu
- Agricultural Technology Promotion Center of Ganzhou, Ganzhou, 341000, People’s Republic of China
| | - Miao Zheng
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310000, People’s Republic of China
| | - Yuan Fang
- Ganzhou Animal Husbandry and Fisheries Research Institute, Gannan Academy of Sciences,
Ganzhou, 341000, People’s Republic of China
| | - Jing Guo
- Ganzhou Animal Husbandry and Fisheries Research Institute, Gannan Academy of Sciences,
Ganzhou, 341000, People’s Republic of China
| | - Fang Luo
- Agriculture and Rural Bureau of Ruijin, Ruijing 342500, People’s Republic of China
| | - Xiaorong Zeng
- Ganzhou Animal Husbandry and Fisheries Research Institute, Gannan Academy of Sciences,
Ganzhou, 341000, People’s Republic of China
| | - Zhihuan Cai
- Agricultural Technology Promotion Center of Ganzhou, Ganzhou, 341000, People’s Republic of China
| | - Bin Liu
- Ganzhou Animal Husbandry and Fisheries Research Institute, Gannan Academy of Sciences,
Ganzhou, 341000, People’s Republic of China
| | - Lifang Deng
- Agricultural Technology Promotion Center of Yudu, Yudu 342300, Ganzhou, People’s Republic of China
| | - Fei Zeng
- Agricultural Technology Promotion Center of Yudu, Yudu 342300, Ganzhou, People’s Republic of China
| | - Xianguo Zou
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310000, People’s Republic of China
| |
Collapse
|
8
|
Cao J, Lei Y, Li W, Jiang X, Li M. Coupled digital visualization and multi-omics uncover neurobehavioral dysfunction in zebrafish induced by resorcinol bis(diphenylphosphate). ENVIRONMENT INTERNATIONAL 2024; 192:109023. [PMID: 39321538 DOI: 10.1016/j.envint.2024.109023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 08/25/2024] [Accepted: 09/17/2024] [Indexed: 09/27/2024]
Abstract
Resorcinol bis(diphenylphosphate) (RDP) is an emerging pollutant that has been frequently detected in aquatic environments, although its toxicity is poorly characterized. To understand how RDP affects the neural system, two-month-old zebrafish were exposed to RDP at concentrations of 0.1 and 10 μg/L for 60 days. Following exposure, behavioral assessments were conducted, revealing the emergence of anxiety-like symptoms and memory deficits among the adult fish exposed to RDP, especially at the higher concentration. The increased blood-brain barrier (BBB) permeability (4.67-5.58-fold higher than the control group), reduced expression of tight junction proteins and the rapid brain RDP bioaccumulation (15.63 ± 2.34 ng/g wet weight) indicated the neurotoxicity of RDP. Excess reactive oxygen species synthesis (2.20-2.50-fold) was induced by RDP, leading to mitochondrial dysfunction and decreased production of neurotransmitters in the brain, specifically serotonin (5-HT; 16.3 %) and dopamine (DA; 18.1 %). Metabolomic analysis revealed that the low-toxicity RDP dose up-regulated lipid-related metabolites, while the high-toxicity dose up-regulated arachidonic acid metabolism and disrupted amino acid metabolism, including tryptophan and tyrosine metabolism related to dopaminergic and serotonergic pathways. The dysregulation of genes in various cellular processes was identified by transcriptomics, mainly involved in cell adhesion molecules and gap junctions, and oxidative phosphorylation, which were directly associated with BBB permeability and oxidative stress, respectively. Correlation analysis of microbiome-metabolite-host links built a mechanistic hypothesis for alterations in gut microbiota (Actinobacteriota and Proteobacteria) induced by high-dose RDP leading to the alteration of tryptophan, tyrosine, and arachidonic acid metabolism, decreasing the production of 5-HT and DA through the gut-brain axis. This study provides valuable insights into the mechanism underlying RDP-induced neurotoxicity in zebrafish, which can inform ecological risk assessments.
Collapse
Affiliation(s)
- Jing Cao
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Yumeng Lei
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Wenhao Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Xiaofeng Jiang
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Mei Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China.
| |
Collapse
|
9
|
Das BK, Ganguly S, Bayen S, Talukder AK, Ray A, Das Gupta S, Kumari K. Amino Acid Composition of Thirty Food Fishes of the Ganga Riverine Environment for Addressing Amino Acid Requirement through Fish Supplementation. Foods 2024; 13:2124. [PMID: 38998630 PMCID: PMC11241810 DOI: 10.3390/foods13132124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 06/21/2024] [Accepted: 06/22/2024] [Indexed: 07/14/2024] Open
Abstract
Amino acids are significant biomolecules that govern the major metabolic processes and act as precursors for macromolecules such as proteins that are crucial to life. Fish is an integral component of human nutrition and a dietary source of high-quality animal proteins and amino acids. In this context, the crude protein and amino acid compositions of food fish from different landing stations of the Ganga river have been determined. The Kjeldahl method was utilized to determine the crude protein content and the amino acids were analyzed using high-performance liquid chromatography (HPLC); data on 30 food fish were assessed. The study showed that among the fish studied, Eleotris fusca, Macrobrachium malcomsonii, and Mystus cavasius were rich in most of the amino acids important for human nutrition, such as glycine, glutamic acid, cysteine, threonine, phenylalanine, methionine, lysine, leucine, isoleucine, histidine, and valine. Further, it was observed that the daily consumption of these fish (approximately 50 g) can fulfil the daily requirement of these individual amino acids for an adult human with a body weight of 60 kg. Therefore, the amino acid composition analyzed in the present study could be utilized for recommendation by clinicians according to the requirement for specific amino acids, and fish can be prescribed as a natural supplement against the amino acid requirement.
Collapse
Affiliation(s)
- Basanta Kumar Das
- ICAR-Central Inland Fisheries Research Institute, Kolkata 700120, India
| | | | | | | | | | | | | |
Collapse
|
10
|
Li K, Gilberti AL, Marden JA, Akula HK, Pollard AC, Guo S, Hu B, Tonge PJ, Qu W. Synthesis and Biological Evaluation of Fluorine-18 and Deuterium Labeled l-Fluoroalanines as Positron Emission Tomography Imaging Agents for Cancer Detection. J Med Chem 2024; 67:10293-10305. [PMID: 38838188 PMCID: PMC11258582 DOI: 10.1021/acs.jmedchem.4c00774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2024]
Abstract
To fully explore the potential of 18F-labeled l-fluoroalanine for imaging cancer and other chronic diseases, a simple and mild radiosynthesis method has been established to produce optically pure l-3-[18F]fluoroalanine (l-[18F]FAla), using a serine-derivatized, five-membered-ring sulfamidate as the radiofluorination precursor. A deuterated analogue, l-3-[18F]fluoroalanine-d3 (l-[18F]FAla-d3), was also prepared to improve metabolic stability. Both l-[18F]FAla and l-[18F]FAla-d3 were rapidly taken up by 9L/lacZ, MIA PaCa-2, and U87MG cells and were shown to be substrates for the alanine-serine-cysteine (ASC) amino acid transporter. The ability of l-[18F]FAla, l-[18F]FAla-d3, and the d-enantiomer, d-[18F]FAla-d3, to image tumors was evaluated in U87MG tumor-bearing mice. Despite the significant bone uptake was observed for both l-[18F]FAla and l-[18F]FAla-d3, the latter had enhanced tumor uptake compared to l-[18F]FAla, and d-[18F]FAla-d3 was not specifically taken up by the tumors. The enhanced tumor uptake of l-[18F]FAla-d3 compared with its nondeuterated counterpart, l-[18F]FAla, warranted the further biological investigation of this radiotracer as a potential cancer imaging agent.
Collapse
Affiliation(s)
- Kaixuan Li
- Center for Advanced Study of Drug Action, John S. Toll Drive, Stony Brook University, Stony Brook, NY 11794-3400, United States
- Department of Chemistry, John S. Toll Drive, Stony Brook University, Stony Brook, NY 11794-3400, United States
| | - Alexa L. Gilberti
- Center for Advanced Study of Drug Action, John S. Toll Drive, Stony Brook University, Stony Brook, NY 11794-3400, United States
- Department of Chemistry, John S. Toll Drive, Stony Brook University, Stony Brook, NY 11794-3400, United States
| | - Jocelyn A. Marden
- Department of Psychiatry and Behavioral Health, Stony Brook Renaissance School of Medicine, Stony Brook University, Stony Brook, NY 11794, United States
| | - Hari K. Akula
- Department of Psychiatry and Behavioral Health, Stony Brook Renaissance School of Medicine, Stony Brook University, Stony Brook, NY 11794, United States
- PET Research Core, Stony Brook Renaissance School of Medicine, Stony Brook University, Stony Brook, NY 11794, United States
| | - Alyssa C. Pollard
- Center for Advanced Study of Drug Action, John S. Toll Drive, Stony Brook University, Stony Brook, NY 11794-3400, United States
- Department of Chemistry, John S. Toll Drive, Stony Brook University, Stony Brook, NY 11794-3400, United States
| | - Shuwen Guo
- Center for Advanced Study of Drug Action, John S. Toll Drive, Stony Brook University, Stony Brook, NY 11794-3400, United States
- Department of Chemistry, John S. Toll Drive, Stony Brook University, Stony Brook, NY 11794-3400, United States
| | - Bao Hu
- Department of Psychiatry and Behavioral Health, Stony Brook Renaissance School of Medicine, Stony Brook University, Stony Brook, NY 11794, United States
- PET Research Core, Stony Brook Renaissance School of Medicine, Stony Brook University, Stony Brook, NY 11794, United States
| | - Peter J. Tonge
- Center for Advanced Study of Drug Action, John S. Toll Drive, Stony Brook University, Stony Brook, NY 11794-3400, United States
- Department of Chemistry, John S. Toll Drive, Stony Brook University, Stony Brook, NY 11794-3400, United States
- Department of Radiology, Stony Brook Renaissance School of Medicine, Stony Brook University, Stony Brook, NY 11794, United States
- Stony Brook Cancer Center, Stony Brook Renaissance School of Medicine, Stony Brook University, Stony Brook, NY 11794, United States
| | - Wenchao Qu
- Department of Chemistry, John S. Toll Drive, Stony Brook University, Stony Brook, NY 11794-3400, United States
- Department of Psychiatry and Behavioral Health, Stony Brook Renaissance School of Medicine, Stony Brook University, Stony Brook, NY 11794, United States
- PET Research Core, Stony Brook Renaissance School of Medicine, Stony Brook University, Stony Brook, NY 11794, United States
| |
Collapse
|
11
|
Xiao M, Hull L, Zizzo A, Lin B, Zhai M, Wang L, Cui W. Effects of radiation mitigating amino acid mixture on mice of different sexes. Front Public Health 2024; 12:1394023. [PMID: 38887249 PMCID: PMC11180883 DOI: 10.3389/fpubh.2024.1394023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 05/15/2024] [Indexed: 06/20/2024] Open
Abstract
To date, few FDA-approved medical countermeasures are available for addressing hematopoietic acute radiation syndrome (H-ARS). In this study, we present our latest research findings focusing on the evaluation of a novel radiation mitigator known as the mitigating amino acid mixture (MAAM). MAAM is composed of five amino acids as the recently reported amino acid-based oral rehydration solution for mitigating gastrointestinal (GI)-ARS. CD2F1 male and female mice were exposed to 60Co-γ total body irradiation (TBI) at 9.0 or 9.5 Gy. Following irradiation, mice were orally administered with MAAM or a saline vehicle control once daily for a duration of 14 days, commencing 24 h after TBI. Mouse survival and body weight change were monitored for 30 days after irradiation. Complete blood counts (CBCs), bone marrow (BM) stem and progenitor cell survival (clonogenicity), and a serum cytokine antibody array were analyzed using samples from day 30 surviving mice. Our data revealed that MAAM treatment significantly enhanced survival rates in irradiated male CD2F1 mice, and the survival rate increased from 25% in the vehicle control group to 60% in the MAAM-treated group (p < 0.05) after 9.0 Gy TBI. The number of BM colonies significantly increased from 41.8 ± 6.4 /104 cells (in the vehicle group) to 78.5 ± 17.0 /104 cells (in the MAAM group) following 9.0 Gy TBI. Furthermore, MAAM treatment led to a decrease in the levels of six cytokines/proteins [cluster of differentiation 40 (CD40), interleukin (IL)-17A, C-X-C motif chemokine 10 (CXCL10/CRG-2), cutaneous T cell-attracting chemokine (CTACK), macrophage inflammatory protein (MIP)-3β, and IL-1β] and an increase in the levels of five other cytokines/proteins [IL-3Rβ, IL-5, leptin, IL-6, and stem cell factor (SCF)] in mouse serum compared to the vehicle group after 9.0 Gy TBI. However, similar alleviating effects of MAAM were not observed in the irradiated CD2F1 female mice. The serum cytokine profile in the irradiated female mice was different compared to the irradiated male mice. In summary, our data suggest that the beneficial effects of the mitigative amino acid combination treatment after radiation exposure may depend on sex.
Collapse
Affiliation(s)
- Mang Xiao
- Radiation Countermeasures Program, Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Lisa Hull
- Radiation Countermeasures Program, Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
- Henry M Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, United States
| | - Alex Zizzo
- Radiation Countermeasures Program, Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Bin Lin
- Radiation Countermeasures Program, Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
- Henry M Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, United States
| | - Min Zhai
- Radiation Countermeasures Program, Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
- Henry M Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, United States
| | - Li Wang
- Radiation Countermeasures Program, Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
- Henry M Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, United States
| | - Wanchang Cui
- Radiation Countermeasures Program, Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
- Henry M Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, United States
| |
Collapse
|
12
|
Tu Z, Yang J, Fan C. The role of different nutrients in the prevention and treatment of cardiovascular diseases. Front Immunol 2024; 15:1393378. [PMID: 38799425 PMCID: PMC11116626 DOI: 10.3389/fimmu.2024.1393378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 04/29/2024] [Indexed: 05/29/2024] Open
Abstract
Cardiovascular health is a hot topic around the world, and as the incidence of cardiovascular disease increases each year, people are increasingly focusing on the management of their heart health. Dietary and lifestyle changes as non-pharmacological treatments have been increasingly recognized as important in the prevention of cardiovascular disease and in reducing the risk of cardiovascular accidents. Awareness of different nutrients and their effects on cardiovascular health is important for establishing a good dietary pattern. This review summarizes the effects of the five major nutrients in the daily diet, namely carbohydrates, proteins, dietary fats, vitamins, and minerals, on cardiovascular health, and aims to provide a more comprehensive understanding of the effects of a healthy dietary pattern on cardiovascular health.
Collapse
Affiliation(s)
| | | | - Chengming Fan
- Department of Cardiovascular Surgery, the Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
13
|
Gu X, Zhao R, Li H, Dong X, Meng M, Li T, Zhao Q, Li Y. Patterns of the Nutrients and Metabolites in Apostichopus japonicus Fermented by Bacillus natto and Their Ability to Alleviate Acute Alcohol Intoxication. Foods 2024; 13:262. [PMID: 38254563 PMCID: PMC10814447 DOI: 10.3390/foods13020262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/03/2024] [Accepted: 01/11/2024] [Indexed: 01/24/2024] Open
Abstract
The aim of this study was to understand the changes in nutrient composition and differences in metabolites in Apostichopus japonicus fermented by Bacillus natto and their function in alleviating acute alcohol intoxication (AAI) through in vivo studies. The results showed no significant difference between the basic components of sea cucumber (SC) and fermented sea cucumber (FSC). The SC proteins were degraded after fermentation, and the amino acid content in FSC was significantly increased. The differentially abundant metabolites of SC and FSC were identified by LC-MS/MS. The contents of amino acid metabolites increased after fermentation, and arachidonic acid metabolism was promoted. The results demonstrated that FSC alleviated AAI by improving the activities of alcohol-metabolizing enzymes and antioxidant enzymes in the liver but did not alleviate the accumulation of triglycerides. Our results will provide beneficial information for the development and application of new products from FSC.
Collapse
Affiliation(s)
- Xingyu Gu
- College of Food Science and Engineering, Dalian Ocean University, Dalian 116023, China; (X.G.); (R.Z.); (H.L.); (X.D.); (M.M.)
| | - Ran Zhao
- College of Food Science and Engineering, Dalian Ocean University, Dalian 116023, China; (X.G.); (R.Z.); (H.L.); (X.D.); (M.M.)
- Liaoning Provincial Marine Healthy Food Engineering Research Centre, Dalian 116023, China
| | - Haiman Li
- College of Food Science and Engineering, Dalian Ocean University, Dalian 116023, China; (X.G.); (R.Z.); (H.L.); (X.D.); (M.M.)
- Dalian Key Laboratory of Marine Bioactive Substances Development and High Value Utilization, Dalian 116023, China
| | - Xinyu Dong
- College of Food Science and Engineering, Dalian Ocean University, Dalian 116023, China; (X.G.); (R.Z.); (H.L.); (X.D.); (M.M.)
- Liaoning Provincial Marine Healthy Food Engineering Research Centre, Dalian 116023, China
| | - Meishan Meng
- College of Food Science and Engineering, Dalian Ocean University, Dalian 116023, China; (X.G.); (R.Z.); (H.L.); (X.D.); (M.M.)
| | - Tingting Li
- Key Laboratory of Biotechnology and Bioresources Utilization, Dalian Minzu University, Dalian 116650, China;
| | - Qiancheng Zhao
- Liaoning Provincial Marine Healthy Food Engineering Research Centre, Dalian 116023, China
- Dalian Key Laboratory of Marine Bioactive Substances Development and High Value Utilization, Dalian 116023, China
| | - Ying Li
- College of Food Science and Engineering, Dalian Ocean University, Dalian 116023, China; (X.G.); (R.Z.); (H.L.); (X.D.); (M.M.)
- Key Laboratory of Biotechnology and Bioresources Utilization, Dalian Minzu University, Dalian 116650, China;
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| |
Collapse
|
14
|
Bahota A, Singh KK, Yadav A, Chaudhary R, Agrawal N, Tandon P. Density Functional Theory Study of Cu 6 Nanoclusters as a Phenylalanine Detector. ACS OMEGA 2024; 9:276-282. [PMID: 38222619 PMCID: PMC10785667 DOI: 10.1021/acsomega.3c04820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 09/14/2023] [Indexed: 01/16/2024]
Abstract
Research on amino acids is an attractive area because of their application in metabolism, cancer treatment, growth, and repair of body tissue, and RNA and DNA syntheses. Twenty amino acids are primarily responsible for protein synthesis. In our study, we used a Cu6 nanocluster as an amino acid detector. For the investigation, we adsorbed amino acids on the Cu6 nanocluster and studied their UV-visible spectra. It is observed that all of the Cu6-amino acid complexes have peaks at near 380 nm wavelength except the Cu-phenylalanine complex, where two UV-visible peaks are found at wavelengths 351 nm (excitation energy 3.49 eV) and 403 nm (excitation energy 3.02 eV), respectively, which originated from the HOMO - 2 to LUMO (28%) and HOMO - 1 to LUMO (38%) transitions. Due to this unique transition, the Cu6 nanocluster can be used for the detection of the phenylalanine amino acid out of the 20 amino acids.
Collapse
Affiliation(s)
- Ashok
Singh Bahota
- Department of Physics, University
of Lucknow, 226007 Lucknow, Uttar Pradesh, India
| | - Keshav Kumar Singh
- Department of Physics, University
of Lucknow, 226007 Lucknow, Uttar Pradesh, India
| | - Arti Yadav
- Department of Physics, University
of Lucknow, 226007 Lucknow, Uttar Pradesh, India
| | - Rajni Chaudhary
- Department of Physics, University
of Lucknow, 226007 Lucknow, Uttar Pradesh, India
| | - Neelam Agrawal
- Department of Physics, University
of Lucknow, 226007 Lucknow, Uttar Pradesh, India
| | - Poonam Tandon
- Department of Physics, University
of Lucknow, 226007 Lucknow, Uttar Pradesh, India
| |
Collapse
|
15
|
Liu J, Wu Y, Zhu Y, Yu C, Zhang Y, Luo T, Wei J, Mu H, Xu H. A new insight into mechanism of colchicine poisoning based on untargeted metabolomics. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 122:155122. [PMID: 37863002 DOI: 10.1016/j.phymed.2023.155122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 08/28/2023] [Accepted: 09/27/2023] [Indexed: 10/22/2023]
Abstract
BACKGROUND Colchicine (COL) is a well-known plant-derived mitogenic toxin that has been widely applied for the treatment of immune system diseases and various cancers. However, its clinical use is severely limited by frequent occurrence of poisoning accidents, and the mechanism of COL poisoning is not clear yet. PURPOSE The present study aimed to unveil how COL works as a toxin based on untargeted metabolomics analysis of animal models and clinical human case. METHODS KM mice orally administered COL were used to establish poisoning models, and plasma samples were collected for untargeted metabolomics analysis. The data mining was performed to screen dose-dependent differences and disturbed metabolic pathways. The blood samples collected from clinical COL poisoning human case at various time points during treatment period were further analyzed to investigate the temporal changes in the metabolic disposition of COL in vivo and also verify the findings from mice. Finally, the expression of key pathways was evaluated by ELISA and Western blotting analysis. RESULTS Histological examination demonstrated systemic toxicity of COL poisoning in mice. Metabolite profiling analysis of plasma samples from model mice and clinical case both revealed that COL poisoning could significantly disturb in vivo metabolism of amino acid and lipid metabolism by the FXR/AMPK signal pathway. Quantitative monitoring of the metabolic process of COL further demonstrated that it could be greatly ameliorated with the rapid metabolic transformation of COL in vivo, which thus may be an effective detoxification pathway for COL poisoning. CONCLUSION The findings of the present study provided new insight into the molecular mechanism of COL poisoning, thus helpful for guiding reasonable application of this phytotoxin.
Collapse
Affiliation(s)
- Jiali Liu
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University, Yantai 264005, China
| | - Yan Wu
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University, Yantai 264005, China
| | - Yuanying Zhu
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University, Yantai 264005, China
| | - Cuicui Yu
- Research and Development Center, Yantai New Era Health Industry Co., Ltd., Yantai 265500
| | - Ying Zhang
- Key Laboratory of Forensic Toxicology, Ministry of Public Security, People's Republic of China (Beijing Municipal Public Security Bureau), Beijing 100192, China
| | - Ting Luo
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University, Yantai 264005, China
| | - Juanna Wei
- Key Laboratory of Forensic Toxicology, Ministry of Public Security, People's Republic of China (Beijing Municipal Public Security Bureau), Beijing 100192, China
| | - Hongjie Mu
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University, Yantai 264005, China.
| | - Hui Xu
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University, Yantai 264005, China.
| |
Collapse
|
16
|
Nagarajan V, Vaishnavi M, Bhuvaneswari R, Chandiramouli R. Novel chair graphene nanotubes as adsorbing medium for alanine and asparagine amino acids - A DFT outlook. J Mol Graph Model 2024; 126:108637. [PMID: 37801810 DOI: 10.1016/j.jmgm.2023.108637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/16/2023] [Accepted: 09/18/2023] [Indexed: 10/08/2023]
Abstract
Amino acids are required to make protein. The deficiency of amino acids leads to a lack of sleep and mood. Among various amino acids, we conducted the adsorption studies of alanine and asparagine amino acids on a novel one-dimensional material, chair graphene nanotube. The stability of the chair graphene nanotube is ensured with the negative formation energy, which is -6.490 eV/atom. The energy band gap of bare chair graphene nanotube is 1.022 eV, which possesses a semiconductor nature. The stable chair graphene nanotube is used as adsorbing material for alanine and asparagine amino acids. Besides, alanine and asparagine are physisorbed on chair graphene nanotubes that are confirmed by the range of adsorption energy from -0.107 eV to -0.718 eV. Upon adsorption of amino acids, the charge transfer outcome shows that chair graphene nanotubes behave as donors of electrons to alanine and asparagine. Further, the changes in the band gap of the chair graphene nanotube are noticed from the results of band structure and PDOS spectrum. The changes in the electron density also reveal the changes in the electronic properties of the chair graphene nanotube owing to alanine and asparagine sorption. The proposed report portrays the adsorption attributes of alanine and asparagine amino acids on 1D chair graphene nanotubes.
Collapse
Affiliation(s)
- V Nagarajan
- School of Electrical & Electronics Engineering, SASTRA Deemed University, Tirumalaisamudram, Thanjavur, 613 401, India
| | - M Vaishnavi
- School of Electrical & Electronics Engineering, SASTRA Deemed University, Tirumalaisamudram, Thanjavur, 613 401, India
| | - R Bhuvaneswari
- School of Electrical & Electronics Engineering, SASTRA Deemed University, Tirumalaisamudram, Thanjavur, 613 401, India
| | - R Chandiramouli
- School of Electrical & Electronics Engineering, SASTRA Deemed University, Tirumalaisamudram, Thanjavur, 613 401, India.
| |
Collapse
|
17
|
Rus A, López-Sánchez JA, Martínez-Martos JM, Ramírez-Expósito MJ, Molina F, Correa-Rodríguez M, Aguilar-Ferrándiz ME. Predictive Ability of Serum Amino Acid Levels to Differentiate Fibromyalgia Patients from Healthy Subjects. Mol Diagn Ther 2024; 28:113-128. [PMID: 37843759 DOI: 10.1007/s40291-023-00677-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/19/2023] [Indexed: 10/17/2023]
Abstract
BACKGROUND Fibromyalgia is a complex illness to diagnose and treat. OBJECTIVES To evaluate a broad range of circulating free amino acid (AA) levels in fibromyalgia patients as well as the ability of the AAs to differentiate fibromyalgia patients from healthy subjects. DESIGN We carried out a case-control study to evaluate AA levels in 62 patients with fibromyalgia and 78 healthy subjects. This study adheres to the STROBE guidelines. METHODS AAs content was assayed by HPLC in serum samples. The predictive value of AA levels in fibromyalgia was determined by receiver operating characteristic (ROC) curve and forward binary logistic regression analyses. RESULTS Fibromyalgia patients showed higher serum levels of aspartic acid, glutamic acid, aminoadipic acid, asparagine, histidine, 3-methyl-histidine, 5-methyl-histidine, glycine, threonine, taurine, tyrosine, valine, methionine, isoleucine, phenylalanine, leucine, ornithine, lysine, branched chain AAs (BCAAs), large neutral AAs, essential AAs (EAAs), non-essential AAs (NEAAs), basic AAs, EAAs/NEAAs ratio, phenylalanine/tyrosine ratio, and global arginine bioavailability ratio than the controls. Serum alanine levels were lower in patients than in controls. According to ROC analysis, most of these AAs may be good markers for differentiating individuals with fibromyalgia from healthy subjects. Results of logistic regression showed that the combination of glutamic acid, histidine, and alanine had the greatest predictive ability to diagnose fibromyalgia. CONCLUSIONS Our results show an imbalance in serum levels of most AAs in patients with fibromyalgia, which suggest a metabolic disturbance. The determination of serum levels of these AAs may aid in the diagnosis of fibromyalgia, in combination with clinical data of the patient.
Collapse
Affiliation(s)
- Alma Rus
- Department of Cell Biology, University of Granada, Avenida de la Fuentenueva, s/n, 18071, Granada, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, 18012, Granada, Spain
| | - José Alberto López-Sánchez
- Department of Cell Biology, University of Granada, Avenida de la Fuentenueva, s/n, 18071, Granada, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, 18012, Granada, Spain
- Department of Physical Therapy, Faculty of Health Sciences, University of Granada, Avenida de la Ilustración, 60, 18016, Granada, Spain
| | | | | | - Francisco Molina
- Department of Cell Biology, University of Granada, Avenida de la Fuentenueva, s/n, 18071, Granada, Spain
- Department of Physical Therapy, Faculty of Health Sciences, University of Granada, Avenida de la Ilustración, 60, 18016, Granada, Spain
| | - María Correa-Rodríguez
- Department of Nursing, Faculty of Health Sciences, University of Granada, Avenida de la Ilustración, 60, 18016, Granada, Spain.
| | - María Encarnación Aguilar-Ferrándiz
- Department of Cell Biology, University of Granada, Avenida de la Fuentenueva, s/n, 18071, Granada, Spain
- Department of Physical Therapy, Faculty of Health Sciences, University of Granada, Avenida de la Ilustración, 60, 18016, Granada, Spain
| |
Collapse
|
18
|
Chi J, Song Y, Feng L. A ratiometric fluorescent paper sensor based on dye-embedded MOF for high-sensitive detection of arginine. Biosens Bioelectron 2023; 241:115666. [PMID: 37690353 DOI: 10.1016/j.bios.2023.115666] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 08/23/2023] [Accepted: 09/02/2023] [Indexed: 09/12/2023]
Abstract
Ratiometric fluorescent sensors can suppress the interference of factors unrelated to analysis due to their built-in self-calibration characteristics, which exhibit higher sensitivity and more obvious visual detection in the process of qualitative and quantitative analysis. Herein, we constructed a ratiometric fluorescence probe based on fluorescent/colorimetric dual-mode method for the determination of arginine by encapsulating rhodamine B in-situ into UiO-66-NH2 MOFs (UiO-66-NH2@RhB). The as-prepared probe showed dual-emission characteristics under a single excitation wavelength. The fluorescence intensity of UiO-66-NH2 was increased significantly by arginine, while the emission peak intensity of rhodamine B remained stable, resulting in a single-signal response with fixed reference. Furthermore, the practicality of the presented sensor was successfully validated by quantitative detection of arginine in human serum. More significantly, paper-based sensors for arginine detection were devised by using carboxymethyl cellulose modified filter papers. Under the irradiation of ultraviolet light, the paper-based sensors would produce obvious color variation from lightpink to bluish violet. This work provided a convenient and efficient method for on-site detection of arginine.
Collapse
Affiliation(s)
- Jie Chi
- College of Sciences, Northeastern University, Shenyang, 110819, China; Department of Instrumentation and Analytical Chemistry, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China
| | - Yanyan Song
- College of Sciences, Northeastern University, Shenyang, 110819, China.
| | - Liang Feng
- Department of Instrumentation and Analytical Chemistry, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China.
| |
Collapse
|
19
|
Yang J, Lou J, Zhong W, Li Y, He Y, Su S, Chen X, Zhu B. Chemical Profile of Turnip According to the Plant Part and the Cultivar: A Multivariate Approach. Foods 2023; 12:3195. [PMID: 37685128 PMCID: PMC10486609 DOI: 10.3390/foods12173195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/16/2023] [Accepted: 08/21/2023] [Indexed: 09/10/2023] Open
Abstract
Turnip (Brassica rapa subsp. rapa) is a cruciferous plant cultivated worldwide that serves as a source of nutrients and bioactive compounds. Most turnip studies have focused on a few compounds or on part of the plant. The establishment of a complete chemical profile of different plant parts would facilitate its use for nutritional and medicinal purposes. In the current study, mineral elements, soluble sugars, free amino acids (FAA), total phenols (TP), total flavonoids (TF), and glucosinolates (GS) were quantified in the leaves, stems, and roots. Results were compared for 20 strains of turnip. The outcomes showed significant differences between parts of the plant and strains. The leaves exhibited the highest TF, TP, indispensable FAA, and microelement levels, and they showed a higher GS. Moreover, the stems had a high content of GS and macroelements. Furthermore, the roots showed high levels of free sugars and total FAA. The findings of this work provide the basis for utilizing each part of the turnip plant based on its chemical composition.
Collapse
Affiliation(s)
- Jing Yang
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou 311300, China (Y.L.); (Y.H.)
| | - Jiashu Lou
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou 311300, China (Y.L.); (Y.H.)
| | - Weiwei Zhong
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou 311300, China (Y.L.); (Y.H.)
| | - Yaochen Li
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou 311300, China (Y.L.); (Y.H.)
| | - Yong He
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou 311300, China (Y.L.); (Y.H.)
| | - Shiwen Su
- Wenzhou Academy of Agricultural Sciences, Wenzhou 325006, China (X.C.)
| | - Xianzhi Chen
- Wenzhou Academy of Agricultural Sciences, Wenzhou 325006, China (X.C.)
| | - Biao Zhu
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou 311300, China (Y.L.); (Y.H.)
| |
Collapse
|
20
|
Forester SM, Jennings-Dobbs EM, Sathar SA, Layman DK. Perspective: Developing a Nutrient-Based Framework for Protein Quality. J Nutr 2023; 153:2137-2146. [PMID: 37301285 DOI: 10.1016/j.tjnut.2023.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 05/09/2023] [Accepted: 06/06/2023] [Indexed: 06/12/2023] Open
Abstract
The future of precision nutrition requires treating amino acids as essential nutrients. Currently, recognition of essential amino acid requirements is embedded within a generalized measure of protein quality known as the PDCAAS (Protein Digestibility-Corrected Amino Acid Score). Calculating the PDCAAS includes the FAO/WHO/UNU amino acid score, which is based on the limiting amino acid in a food, that is, the single amino acid with the lowest concentration compared to the reference standard. That "limiting" amino acid score is then multiplied by a bioavailability factor to obtain the PDCAAS, which ranks proteins from 0.0 (poor quality) to 1.0 (high quality). However, the PDCAAS has multiple limitations: it only allows for direct protein quality comparison between 2 proteins, and it is not scalable, transparent, or additive. We therefore propose that shifting the protein quality evaluation paradigm from the current generalized perspective to a precision nutrition focus treating amino acids as unique, metabolically active nutrients will be valuable for multiple areas of science and public health. We report the development and validation of the Essential Amino Acid 9 (EAA-9) score, an innovative, nutrient-based protein quality scoring framework. EAA-9 scores can be used to ensure that dietary recommendations for each essential amino acid are met. The EAA-9 scoring framework also offers the advantages of being additive and, perhaps most importantly, allows for personalization of essential amino acid needs based on age or metabolic conditions. Comparisons of the EAA-9 score with PDCAAS demonstrated the validity of the EAA-9 framework, and practical applications demonstrated that the EAA-9 framework is a powerful tool for precision nutrition applications.
Collapse
Affiliation(s)
| | | | | | - Donald K Layman
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL
| |
Collapse
|
21
|
Zmerly H, El Ghoch M, Itani L, Kreidieh D, Yumuk V, Pellegrini M. Personalized Nutritional Strategies to Reduce Knee Osteoarthritis Severity and Ameliorate Sarcopenic Obesity Indices: A Practical Guide in an Orthopedic Setting. Nutrients 2023; 15:3085. [PMID: 37513503 PMCID: PMC10385346 DOI: 10.3390/nu15143085] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 07/05/2023] [Accepted: 07/08/2023] [Indexed: 07/30/2023] Open
Abstract
Knee osteoarthritis (KOA) is one of the most common joint diseases, especially in individuals with obesity. Another condition within this population, and which presents frequently, is sarcopenic obesity (SO), defined as an increase in body fat and a decrease in muscle mass and strength. The current paper aims to describe recent nutritional strategies which can generally improve KOA clinical severity and, at the same time, ameliorate SO indices. Searches were carried out in the PubMed and Science Direct databases and data were summarized using a narrative approach. Certain key findings have been revealed. Firstly, the screening and identification of SO in patients with KOA is important, and to this end, simple physical performance tests and anthropometric measures are available in the literature. Secondly, adherence to a Mediterranean diet and the achievement of significant body weight loss by means of low-calorie diets (LCDs) remain the cornerstone nutritional treatment in this population. Thirdly, supplementation with certain micronutrients such as vitamin D, essential and non-essential amino acids, as well as whey protein, also appear to be beneficial. In conclusion, in the current review, we presented a detailed flowchart of three different nutritional tracks that can be adopted to improve both KOA and SO based on joint disease clinical severity.
Collapse
Affiliation(s)
- Hassan Zmerly
- Orthopedics and Traumatology Unit, Villa Erbosa Hospital, 40129 Bologna, Italy;
- Ludes Campus, 6912 Lugano, Switzerland
| | - Marwan El Ghoch
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Beirut Arab University, Riad El Solh, Beirut P.O. Box 11-5020, Lebanon; (L.I.); (D.K.)
- Faculty of Medicine, UniCamillus—Saint Camillus International University of Health and Medical Sciences, Via di Sant’Alessandro, 8, 00131 Rome, Italy
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Via Giuseppe Campi, 287, 41125 Modena, Italy;
| | - Leila Itani
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Beirut Arab University, Riad El Solh, Beirut P.O. Box 11-5020, Lebanon; (L.I.); (D.K.)
| | - Dima Kreidieh
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Beirut Arab University, Riad El Solh, Beirut P.O. Box 11-5020, Lebanon; (L.I.); (D.K.)
| | - Volkan Yumuk
- Division of Endocrinology, Metabolism and Diabetes, Istanbul University Cerrahpaşa Medical Faculty, Istanbul 34452, Türkiye;
| | - Massimo Pellegrini
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Via Giuseppe Campi, 287, 41125 Modena, Italy;
| |
Collapse
|
22
|
Gao Y, Han Z, Xu YQ, Yin JF. Chemical composition and anti-cholesterol activity of tea (Camellia sinensis) flowers from albino cultivars. Front Nutr 2023; 10:1142971. [PMID: 37051128 PMCID: PMC10083420 DOI: 10.3389/fnut.2023.1142971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 03/08/2023] [Indexed: 03/29/2023] Open
Abstract
Albino tea cultivars are mutant tea plants with altered metabolisms. Current studies focus on the leaves while little is known about the flowers. To evaluate tea flowers from different albino cultivars, the chemical composition and anti-cholesterol activity of tea flowers from three albino cultivars (i.e., Baiye No.1, Huangjinya, and Yujinxiang) were compared. According to the results, tea flowers from Yujinxiang had more amino acids but less polyphenols than tea flowers from the other two albino cultivars. A reduced content of procyanidins and a high chakasaponins/floratheasaponins ratio were characteristics of tea flowers from Yujinxiang. In vitro anti-cholesterol activity assays revealed that tea flowers from Yujinxiang exhibited stronger activity in decreasing the micellar cholesterol solubility, but not in cholesterol esterase inhibition and bile salt binding. It was noteworthy that there were no specific differences on the chemical composition and anti-cholesterol activity between tea flowers from albino cultivars and from Jiukeng (a non-albino cultivar). These results increase our knowledges on tea flowers from different albino cultivars and help food manufacturers in the cultivar selection of tea flowers for use.
Collapse
Affiliation(s)
- Ying Gao
- Key Laboratory of Tea Biology and Resources Utilization, Tea Research Institute Chinese Academy of Agricultural Sciences, National Engineering Research Center for Tea Processing, Hangzhou, China
| | - Zhen Han
- Agro-Technical Extension Station of Ningbo City, Ningbo, China
| | - Yong-Quan Xu
- Key Laboratory of Tea Biology and Resources Utilization, Tea Research Institute Chinese Academy of Agricultural Sciences, National Engineering Research Center for Tea Processing, Hangzhou, China
- *Correspondence: Yong-Quan Xu,
| | - Jun-Feng Yin
- Key Laboratory of Tea Biology and Resources Utilization, Tea Research Institute Chinese Academy of Agricultural Sciences, National Engineering Research Center for Tea Processing, Hangzhou, China
- Jun-Feng Yin,
| |
Collapse
|
23
|
Hajihassan Z, Afsharian NP, Ansari-Pour N. In silico engineering a CD80 variant with increased affinity to CTLA-4 and decreased affinity to CD28 for optimized cancer immunotherapy. J Immunol Methods 2023; 513:113425. [PMID: 36638881 DOI: 10.1016/j.jim.2023.113425] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 11/20/2022] [Accepted: 01/08/2023] [Indexed: 01/11/2023]
Abstract
CD80 or cluster of differentiation 80, also known as B7-1, is a member of the immunoglobulin super family, which binds to CTLA-4 and CD28 T cell receptors and induces inhibitory and inductive signals respectively. Although CTLA-4 and CD28 receptors belong to the same protein family, slight differences in their structures leads to CD80 having a higher binding affinity to CTLA-4 (-14.55 kcal/mol) compared with CD28(-12.51 kcal/mol). In this study, we constructed a variant of CD80 protein with increased binding affinity to CTLA-4 and decreased binding affinity to CD28. This variant has no signaling capability, and can act as a cap for these receptors to protect them from natural CD80 proteins existing in the body. The first step was the evolutionary and alanine scanning analysis of CD80 protein to determine conserved regions in this protein. Next, complex alanine scanning technique was employed to determine CD80 protein hotspots in CD80-CTLA-4 and CD80-CD28 protein complexes. This information was fed into a computational model developed in R for in silico mutagenesis and CD80 variant library construction. The 3D structures of variants were modeled using the Swiss model webserver. After modeling the 3D structures, HADDOCK server was employed to build all protein-protein complexes, which contain CTLA-4-CD80 variant complexes, Wild type CD80-CD28 complexes and CD28-CD80 variant complexes. Protein-protein binding free energy was determined using FoldX and the variant number 316 with mutations at 29, 31, 33 positions showed increased binding affinity to CTLA-4 (-21.43 kcal/mol) and decreased binding affinity to CD28 (- 9.54 kcal/mol). Finally, molecular dynamics (MD) simulations confirmed the stability of variant 316. In conclusion, we designed a new CD80 protein variant with potential immunotherapeutic applications.
Collapse
Affiliation(s)
- Zahra Hajihassan
- Department of Life Science Engineering, Faculty of New Sciences & Technologies, University of Tehran, Tehran, Iran.
| | - Nessa Pesaran Afsharian
- Department of Life Science Engineering, Faculty of New Sciences & Technologies, University of Tehran, Tehran, Iran
| | - Naser Ansari-Pour
- Department of Life Science Engineering, Faculty of New Sciences & Technologies, University of Tehran, Tehran, Iran; MRC Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK.
| |
Collapse
|
24
|
Nsevolo Miankeba P, Taofic A, Kiatoko N, Mutiaka K, Francis F, Caparros Megido R. Protein Content and Amino Acid Profiles of Selected Edible Insect Species from the Democratic Republic of Congo Relevant for Transboundary Trade across Africa. INSECTS 2022; 13:994. [PMID: 36354818 PMCID: PMC9693131 DOI: 10.3390/insects13110994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/26/2022] [Accepted: 10/26/2022] [Indexed: 06/16/2023]
Abstract
This study analyzed the protein content of ten edible insect species (using the Dumas method), then focused on the amino acid (AA) profiles of the six major commercially relevant species using HPLC (high-pressure (or performance) liquid chromatography). The protein contents varied significantly from 46.1% to 52.9% (dry matter); the Orthoptera representative yielding both the highest protein content and the highest values in three essential amino acids (EAAs). Regarding Lepidoptera species, the protein content of Saturniidae varied more than for Notodontidae. Imbrasia ertli gave the best example of a species that could be suggested for dietary supplementation of cereal-based diets, as the sample contained the highest values in five EAAs and for the EAA index. Furthermore, first-limiting AAs in the selected insects have also been pointed out (based on a species-specific AA score), supporting that the real benefit from eating insects is correlated to a varied diet. Additionally, preliminary insights into AA distribution patterns according to taxa provided three clusters based on protein quality and should be completed further to help tailor prescriptions of dietary diets. Since the AA composition of the selected insects was close to the FAO/WHO EAA requirement pattern for preschool children and met the requirements of 40% EAAs with high ratio EAAs/NEAAs, the current study endorses reports of edible insects as nutrient-rich and sustainable protein sources.
Collapse
Affiliation(s)
- Papy Nsevolo Miankeba
- Faculté des Sciences Agronomiques, Université Pédagogique Nationale (UPN), Kinshasa 8815, Democratic Republic of the Congo
- Faculté des Sciences Agronomiques, Université de Kinshasa (UNIKIN), Kinshasa 15373, Democratic Republic of the Congo
- Unité d’Entomologie Fonctionnelle et Evolutive, Gembloux Agro-Bio Tech (ULiège), 5030 Gembloux, Belgium
| | - Alabi Taofic
- Unité d’Entomologie Fonctionnelle et Evolutive, Gembloux Agro-Bio Tech (ULiège), 5030 Gembloux, Belgium
| | - Nkoba Kiatoko
- International Centre of Insect Physiology and Ecology (ICIPE), Nairobi P.O. Box 30772-00100, Kenya
| | - Kambashi Mutiaka
- Faculté des Sciences Agronomiques, Université de Kinshasa (UNIKIN), Kinshasa 15373, Democratic Republic of the Congo
| | - Frédéric Francis
- Unité d’Entomologie Fonctionnelle et Evolutive, Gembloux Agro-Bio Tech (ULiège), 5030 Gembloux, Belgium
| | - Rudy Caparros Megido
- Unité d’Entomologie Fonctionnelle et Evolutive, Gembloux Agro-Bio Tech (ULiège), 5030 Gembloux, Belgium
| |
Collapse
|
25
|
Zulkifli MF, Radzi MNFM, Saludes JP, Dalisay DS, Ismail WIW. Potential of Natural Honey in Controlling Obesity and its Related Complications. J Evid Based Integr Med 2022; 27:2515690X221103304. [PMID: 36263596 PMCID: PMC9585569 DOI: 10.1177/2515690x221103304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Honey has a long history of therapeutic properties for multiple diseases, including inflammation and oxidative stress. This review aimed to provide a better understanding and renewed interest in the potential role of honey in obesity control, obesity-related diseases treatment and weight management, with specific reference to its components and the effect of honey overall. There is compelling evidence that honey possesses the desired properties for this purpose, as seen in the in vitro, in silico, in vivo and clinical analyses discussed in this review. This review also highlights the components potentially responsible for the health benefits of honey. Honey and its components reduce blood sugar levels, improve insulin sensitivity and lipid metabolism by reducing triglycerides, and reduce total cholesterol and LDL levels while increasing HDL levels that prevent excessive weight gain and reduce the risk of obesity and its complications. Further controlled studies are necessary to validate the role of honey in the management of obesity, both as a preventive and as a therapeutic agent.
Collapse
Affiliation(s)
- Muhammad Faiz Zulkifli
- Cell Signaling and Biotechnology Research Group (CesBTech), Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, Kuala Nerus, Terengganu, Malaysia
| | - Mohd Naim Fadhli Mohd Radzi
- Cell Signaling and Biotechnology Research Group (CesBTech), Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, Kuala Nerus, Terengganu, Malaysia
| | - Jonel P. Saludes
- Center for Chemical Biology & Biotechnology (C2B2) and Center for Natural Drug Discovery and Development (CND3), University of San Agustin, Iloilo City, Philippines,Balik Scientist Program, Philippine Council for Health Research and Development, Department of Science and Technology, Taguig, Philippines
| | - Doralyn S. Dalisay
- Center for Chemical Biology & Biotechnology (C2B2) and Center for Natural Drug Discovery and Development (CND3), University of San Agustin, Iloilo City, Philippines,Balik Scientist Program, Philippine Council for Health Research and Development, Department of Science and Technology, Taguig, Philippines
| | - Wan Iryani Wan Ismail
- Cell Signaling and Biotechnology Research Group (CesBTech), Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, Kuala Nerus, Terengganu, Malaysia,Biological Security and Sustainability (BIOSES) Research Group, Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, Kuala Nerus, Terengganu, Malaysia,Wan Iryani Wan Ismail, Cell Signaling and Biotechnology Research Group (CesBTech), Biological Security and Sustainability (BIOSES) Research Group, Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, 21300, Kuala Nerus, Terengganu, Malaysia.
| |
Collapse
|
26
|
Kong X, Liang H, Zhou K, Wang H, Li D, Zhang S, Sun N, Gong M, Zhou Y, Zhang Q. Deciphering the Heterogeneity of the Internal Environment of Hippocampal Neurons during Maturation by Raman Spectroscopy. ACS OMEGA 2022; 7:30571-30581. [PMID: 36061692 PMCID: PMC9435027 DOI: 10.1021/acsomega.2c04188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 08/11/2022] [Indexed: 06/15/2023]
Abstract
Hippocampal neurons are sensitive to changes in the internal environment and play a significant role in controlling learning, memory, and emotions. A remarkable characteristic of the aging brain is its ability to shift from a state of normal inflammation to excessive inflammation. Various cognitive abilities of the elderly may suffer from serious harm due to the change in the neural environment. Hippocampal neurons may have various subsets involved in controlling their internal environment at different stages of development. Developmental differences may eventually result from complex changes in the dynamic neuronal system brought on by metabolic changes. In this study, we used an in vitro hippocampal neuron model cultured in C57BL/6J mice in conjugation with Raman spectroscopy to examine the relative alterations in potential biomarkers, such as levels of metabolites in the internal environment of hippocampal neurons at various developmental stages. The various differentially expressed genes (DEGs) of hippocampal neurons at various developmental stages were simultaneously screened using bioinformatics, and the biological functions as well as the various regulatory pathways of DEGs were preliminarily analyzed, providing an essential reference for investigating novel therapeutic approaches for diseases that cause cognitive impairment, such as Alzheimer's disease. A stable hippocampal neuron model was established using the GIBCO C57BL/6J hippocampal neuron cell line as a donor and in vitro hippocampal neuron culture technology. The Raman peak intensities of culture supernatants from the experimental groups incubated for 0, 7, and 14 days in vitro(DIV) were examined. The GEO database was used to screen for different DEGs associated with various developmental stages. The data was then analyzed using a statistical method called orthogonal partial least squares discriminant analysis (OPLS-DA). The levels of ketogenic and glycogenic amino acids (such as tryptophan, phenylalanine, and tyrosine), lipid intake rate, glucose utilization rate, and nucleic acid expression in the internal environment of hippocampal neurons were significantly different in the 14 DIV group compared to the 0 DIV and 7 DIV groups (P < 0.01). The top 10 DEGs with neuronal maturation were screened, and the results were compared to the OPLS-DA model's analysis of the differential peaks. It was found that different genes involved in maturation can directly relate to changes in the body's levels of ketogenic and glycogenic amino acids (P < 0.01). The altered expression of the maturation-related genes epidermal growth factor receptor, protein tyrosine kinase 2-beta, discs large MAGUK scaffold protein 2, and Ras protein-specific guanine nucleotide releasing factor 1 may be connected to the altered uptake of ketogenic and glycogenic amino acids and nucleic acids in the internal environment of neurons at different developmental stages. The levels of ketogenic, glycogenic amino acids, and lipid intake increased while glucose utilization decreased, which may be related to mature neurons' metabolism and energy use. The decline in nucleic acid consumption could be connected to synaptic failure. The Raman spectroscopy fingerprint results of relevant biomarkers in conjugation with multivariable analysis and biological action targets suggested by differential genes interpret the heterogeneity of the internal environment of mature hippocampal neurons in the process of maturation, open a new idea for exploring the dynamic mechanism of the exchange energy metabolism of information molecules in the internal environment of hippocampal neurons, and provide a new method for studying this process.
Collapse
Affiliation(s)
- Xiaodong Kong
- Department
of Geriatrics, Tianjin Medical University
General Hospital, Tianjin Geriatrics Institute, Tianjin 300052, China
| | - Haoyue Liang
- State
Key Laboratory of Experimental Hematology, National Clinical Research
Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital,
Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| | - Kexuan Zhou
- Department
of Geriatrics, Tianjin Medical University
General Hospital, Tianjin Geriatrics Institute, Tianjin 300052, China
| | - Haoyu Wang
- State
Key Laboratory of Experimental Hematology, National Clinical Research
Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital,
Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| | - Dai Li
- Department
of Geriatrics, Tianjin Medical University
General Hospital, Tianjin Geriatrics Institute, Tianjin 300052, China
| | - Shishuang Zhang
- Department
of Geriatrics, Tianjin Medical University
General Hospital, Tianjin Geriatrics Institute, Tianjin 300052, China
| | - Ning Sun
- Department
of Geriatrics, Tianjin Medical University
General Hospital, Tianjin Geriatrics Institute, Tianjin 300052, China
| | - Min Gong
- Department
of Pharmacy, Tianjin Medical University, Tianjin 300070, China
| | - Yuan Zhou
- State
Key Laboratory of Experimental Hematology, National Clinical Research
Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital,
Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| | - Qiang Zhang
- Department
of Geriatrics, Tianjin Medical University
General Hospital, Tianjin Geriatrics Institute, Tianjin 300052, China
| |
Collapse
|
27
|
Ma L, Tian X, Xi F, He Y, Li D, Sun J, Yuan T, Li K, Fan L, Zhang C, Yang G, Yu T. Ablation of Tas1r1 Reduces Lipid Accumulation Through Reducing the de Novo Lipid Synthesis and Improving Lipid Catabolism in Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:10248-10258. [PMID: 35968935 DOI: 10.1021/acs.jafc.2c02077] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Amino acid sensing plays an important role in regulating lipid metabolism by sensing amino acid nutrient disturbance. T1R1 (umami taste receptor, type 1, member 1) is a membrane G protein-coupled receptor that senses amino acids. Tas1r1-knockout (KO) mice were used to explore the function of umami receptors in lipid metabolism. Compared with wild-type (WT) mice, Tas1r1-KO mice showed decreased fat mass (P < 0.05) and adipocyte size, lower liver triglyceride (7.835 ± 0.809 vs 12.463 ± 0.916 mg/g WT, P = 0.013) and total cholesterol levels (0.542 ± 0.109 vs 1.472 ± 0.044 mmol/g WT, P < 0.001), and reduced lipogenesis gene expressions in adipose and liver tissues. Targeted liver amino acid metabolomics showed that the amino acid content of Tas1r1-KO mice was significantly decreased, which was consistent with the branched-chain ketoacid dehydrogenase protein levels. Proteomics analysis showed that the upregulated proteins were enriched in lipid and steroid metabolism pathways, and parallel reaction monitoring results illustrated that Tas1r1 ablation promoted lipid catabolism through oxysterol 7 α-hydroxylase and insulin-like growth factor binding protein 2. In summary, Tas1r1 disruption in mice could reduce lipid accumulation by reducing de novo lipid synthesis and improving lipid catabolism.
Collapse
Affiliation(s)
- Lu Ma
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, Laboratory of Animal Fat Deposition and Muscle Development, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Xuekai Tian
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, Laboratory of Animal Fat Deposition and Muscle Development, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Fengxue Xi
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, Laboratory of Animal Fat Deposition and Muscle Development, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Yulin He
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, Laboratory of Animal Fat Deposition and Muscle Development, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Dong Li
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, Laboratory of Animal Fat Deposition and Muscle Development, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Jingchun Sun
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, Laboratory of Animal Fat Deposition and Muscle Development, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Tiantian Yuan
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, Laboratory of Animal Fat Deposition and Muscle Development, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Ke Li
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, Laboratory of Animal Fat Deposition and Muscle Development, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Lin Fan
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, Laboratory of Animal Fat Deposition and Muscle Development, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Chunlei Zhang
- Institute of Cellular and Molecular Biology, Collage of Life Sciences, Jiangsu Normal University, Xuzhou 221116, Jiangsu, China
| | - Gongshe Yang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, Laboratory of Animal Fat Deposition and Muscle Development, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Taiyong Yu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, Laboratory of Animal Fat Deposition and Muscle Development, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, China
| |
Collapse
|
28
|
Rodrigues JA, Narasimhamurthy RK, Joshi MB, Dsouza HS, Mumbrekar KD. Pesticides Exposure-Induced Changes in Brain Metabolome: Implications in the Pathogenesis of Neurodegenerative Disorders. Neurotox Res 2022; 40:1539-1552. [PMID: 35781222 PMCID: PMC9515138 DOI: 10.1007/s12640-022-00534-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 06/11/2022] [Accepted: 06/13/2022] [Indexed: 11/25/2022]
Abstract
Pesticides have been used in agriculture, public health programs, and pharmaceuticals for many decades. Though pesticides primarily target pests by affecting their nervous system and causing other lethal effects, these chemical entities also exert toxic effects in inadvertently exposed humans through inhalation or ingestion. Mounting pieces of evidence from cellular, animal, and clinical studies indicate that pesticide-exposed models display metabolite alterations of pathways involved in neurodegenerative diseases. Hence, identifying common key metabolites/metabolic pathways between pesticide-induced metabolic reprogramming and neurodegenerative diseases is necessary to understand the etiology of pesticides in the rise of neurodegenerative disorders. The present review provides an overview of specific metabolic pathways, including tryptophan metabolism, glutathione metabolism, dopamine metabolism, energy metabolism, mitochondrial dysfunction, fatty acids, and lipid metabolism that are specifically altered in response to pesticides. Furthermore, we discuss how these metabolite alterations are linked to the pathogenesis of neurodegenerative diseases and to identify novel biomarkers for targeted therapeutic approaches.
Collapse
Affiliation(s)
- Joel Arvin Rodrigues
- Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India, 576104
| | - Rekha K Narasimhamurthy
- Department of Radiation Biology and Toxicology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India, 576104
| | - Manjunath B Joshi
- Department of Ageing Research, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India, 576104
| | - Herman Sunil Dsouza
- Department of Radiation Biology and Toxicology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India, 576104
| | - Kamalesh Dattaram Mumbrekar
- Department of Radiation Biology and Toxicology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India, 576104.
| |
Collapse
|
29
|
Chandu P, Das D, Ghosh KG, Sureshkumar D. Visible‐Light Photoredox Catalyzed Decarboxylative Alkylation of Vinylcyclopropanes. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202200227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Palasetty Chandu
- Department of Chemical Sciences Indian Institute of Science Education and Research Kolkata Mohanpur West Bengal 741246 India
| | - Debabrata Das
- Department of Chemical Sciences Indian Institute of Science Education and Research Kolkata Mohanpur West Bengal 741246 India
| | - Krishna G. Ghosh
- Department of Chemical Sciences Indian Institute of Science Education and Research Kolkata Mohanpur West Bengal 741246 India
| | - Devarajulu Sureshkumar
- Department of Chemical Sciences Indian Institute of Science Education and Research Kolkata Mohanpur West Bengal 741246 India
| |
Collapse
|
30
|
Endothelial Cell Metabolism in Vascular Functions. Cancers (Basel) 2022; 14:cancers14081929. [PMID: 35454836 PMCID: PMC9031281 DOI: 10.3390/cancers14081929] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 04/05/2022] [Accepted: 04/06/2022] [Indexed: 02/04/2023] Open
Abstract
Simple Summary Recent findings in the field of vascular biology are nourishing the idea that targeting the endothelial cell metabolism may be an alternative strategy to antiangiogenic therapy, as well as a novel therapeutic approach for cardiovascular disease. Deepening the molecular mechanisms regulating how ECs re-adapt their metabolic status in response to the changeable conditions of the tissue microenvironment may be beneficial to develop novel innovative treatments to counteract the aberrant growth of vasculature. Abstract The endothelium is the innermost layer of all blood and lymphatic vessels composed of a monolayer of specialized endothelial cells (ECs). It is regarded as a dynamic and multifunctional endocrine organ that takes part in essential processes, such as the control of blood fluidity, the modulation of vascular tone, the regulation of immune response and leukocyte trafficking into perivascular tissues, and angiogenesis. The inability of ECs to perform their normal biological functions, known as endothelial dysfunction, is multi-factorial; for instance, it implicates the failure of ECs to support the normal antithrombotic and anti-inflammatory status, resulting in the onset of unfavorable cardiovascular conditions such as atherosclerosis, coronary artery disease, hypertension, heart problems, and other vascular pathologies. Notably, it is emerging that the ability of ECs to adapt their metabolic status to persistent changes of the tissue microenvironment could be vital for the maintenance of vascular functions and to prevent adverse vascular events. The main purpose of the present article is to shed light on the unique metabolic plasticity of ECs as a prospective therapeutic target; this may lead to the development of novel strategies for cardiovascular diseases and cancer.
Collapse
|
31
|
Effects of non-essential protein on D-glucose to control diabetes: DFT approach. J Mol Model 2022; 28:42. [DOI: 10.1007/s00894-021-05013-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 12/21/2021] [Indexed: 11/26/2022]
|
32
|
Alves RW, da Silva EM, Doretto-Silva L, Andrade-Oliveira V. Metabolic Pathways in Immune Cells Commitment and Fate. ESSENTIAL ASPECTS OF IMMUNOMETABOLISM IN HEALTH AND DISEASE 2022:53-82. [DOI: 10.1007/978-3-030-86684-6_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
33
|
Zhang X, Wang D, Zheng Y, Tu Y, Xu Q, Jiang H, Li C, Zhao L, Li Y, Zheng H, Gao H. Sex-dependent effects on the gut microbiota and host metabolome in type 1 diabetic mice. Biochim Biophys Acta Mol Basis Dis 2021; 1867:166266. [PMID: 34481869 DOI: 10.1016/j.bbadis.2021.166266] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 08/29/2021] [Accepted: 08/31/2021] [Indexed: 01/04/2023]
Abstract
Sexual dimorphism exists in the onset and development of type 1 diabetes (T1D), but its potential pathological mechanism is poorly understood. In the present study, we examined sex-specific changes in the gut microbiome and host metabolome of T1D mice via 16S rRNA gene sequencing and nuclear magnetic resonance (NMR)-based metabolomics approach, and aimed to investigate potential mechanism of the gut microbiota-host metabolic interaction in the sexual dimorphism of T1D. Our results demonstrate that female mice had a greater shift in the gut microbiota than male mice during the development of T1D; however, host metabolome was more susceptible to T1D in male mice. The correlation network analysis indicates that T1D-induced host metabolic changes may be regulated by the gut microbiota in a sex-specific manner, mainly involving short-chain fatty acids (SCFAs) metabolism, energy metabolism, amino acid metabolism, and choline metabolism. Therefore, our study suggests that sex-dependent "gut microbiota-host metabolism axis" may be implicated in the sexual dimorphism of T1D, and the link between microbes and metabolites might contribute to the prevention and treatment of T1D.
Collapse
Affiliation(s)
- Xi Zhang
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325015, China; Institute of Metabonomics & Medical NMR, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Die Wang
- Institute of Metabonomics & Medical NMR, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Yafei Zheng
- Institute of Metabonomics & Medical NMR, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Yingxin Tu
- Institute of Metabonomics & Medical NMR, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Qingqing Xu
- Institute of Metabonomics & Medical NMR, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Haowei Jiang
- Institute of Metabonomics & Medical NMR, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Chen Li
- Institute of Metabonomics & Medical NMR, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Liangcai Zhao
- Institute of Metabonomics & Medical NMR, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Yuping Li
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325015, China
| | - Hong Zheng
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325015, China; Institute of Metabonomics & Medical NMR, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China.
| | - Hongchang Gao
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325015, China; Institute of Metabonomics & Medical NMR, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China.
| |
Collapse
|
34
|
Strassheim D, Sullivan T, Irwin DC, Gerasimovskaya E, Lahm T, Klemm DJ, Dempsey EC, Stenmark KR, Karoor V. Metabolite G-Protein Coupled Receptors in Cardio-Metabolic Diseases. Cells 2021; 10:3347. [PMID: 34943862 PMCID: PMC8699532 DOI: 10.3390/cells10123347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 11/10/2021] [Accepted: 11/18/2021] [Indexed: 12/15/2022] Open
Abstract
G protein-coupled receptors (GPCRs) have originally been described as a family of receptors activated by hormones, neurotransmitters, and other mediators. However, in recent years GPCRs have shown to bind endogenous metabolites, which serve functions other than as signaling mediators. These receptors respond to fatty acids, mono- and disaccharides, amino acids, or various intermediates and products of metabolism, including ketone bodies, lactate, succinate, or bile acids. Given that many of these metabolic processes are dysregulated under pathological conditions, including diabetes, dyslipidemia, and obesity, receptors of endogenous metabolites have also been recognized as potential drug targets to prevent and/or treat metabolic and cardiovascular diseases. This review describes G protein-coupled receptors activated by endogenous metabolites and summarizes their physiological, pathophysiological, and potential pharmacological roles.
Collapse
Affiliation(s)
- Derek Strassheim
- Department of Medicine Cardiovascular and Pulmonary Research Laboratory, University of Colorado Denver, Denver, CO 80204, USA; (D.S.); (T.S.); (D.C.I.); (E.G.); (D.J.K.); (E.C.D.); (K.R.S.)
| | - Timothy Sullivan
- Department of Medicine Cardiovascular and Pulmonary Research Laboratory, University of Colorado Denver, Denver, CO 80204, USA; (D.S.); (T.S.); (D.C.I.); (E.G.); (D.J.K.); (E.C.D.); (K.R.S.)
| | - David C. Irwin
- Department of Medicine Cardiovascular and Pulmonary Research Laboratory, University of Colorado Denver, Denver, CO 80204, USA; (D.S.); (T.S.); (D.C.I.); (E.G.); (D.J.K.); (E.C.D.); (K.R.S.)
| | - Evgenia Gerasimovskaya
- Department of Medicine Cardiovascular and Pulmonary Research Laboratory, University of Colorado Denver, Denver, CO 80204, USA; (D.S.); (T.S.); (D.C.I.); (E.G.); (D.J.K.); (E.C.D.); (K.R.S.)
| | - Tim Lahm
- Division of Pulmonary, Critical Care and Sleep Medicine, National Jewish Health Denver, Denver, CO 80206, USA;
- Rocky Mountain Regional VA Medical Center, Aurora, CO 80045, USA
| | - Dwight J. Klemm
- Department of Medicine Cardiovascular and Pulmonary Research Laboratory, University of Colorado Denver, Denver, CO 80204, USA; (D.S.); (T.S.); (D.C.I.); (E.G.); (D.J.K.); (E.C.D.); (K.R.S.)
- Rocky Mountain Regional VA Medical Center, Aurora, CO 80045, USA
- Division of Pulmonary Sciences and Critical Care Medicine, School of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Edward C. Dempsey
- Department of Medicine Cardiovascular and Pulmonary Research Laboratory, University of Colorado Denver, Denver, CO 80204, USA; (D.S.); (T.S.); (D.C.I.); (E.G.); (D.J.K.); (E.C.D.); (K.R.S.)
- Rocky Mountain Regional VA Medical Center, Aurora, CO 80045, USA
- Division of Pulmonary Sciences and Critical Care Medicine, School of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Kurt R. Stenmark
- Department of Medicine Cardiovascular and Pulmonary Research Laboratory, University of Colorado Denver, Denver, CO 80204, USA; (D.S.); (T.S.); (D.C.I.); (E.G.); (D.J.K.); (E.C.D.); (K.R.S.)
| | - Vijaya Karoor
- Department of Medicine Cardiovascular and Pulmonary Research Laboratory, University of Colorado Denver, Denver, CO 80204, USA; (D.S.); (T.S.); (D.C.I.); (E.G.); (D.J.K.); (E.C.D.); (K.R.S.)
- Division of Pulmonary, Critical Care and Sleep Medicine, National Jewish Health Denver, Denver, CO 80206, USA;
- Division of Pulmonary Sciences and Critical Care Medicine, School of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, USA
| |
Collapse
|
35
|
Williamson M, Moustaid-Moussa N, Gollahon L. The Molecular Effects of Dietary Acid Load on Metabolic Disease (The Cellular PasaDoble: The Fast-Paced Dance of pH Regulation). FRONTIERS IN MOLECULAR MEDICINE 2021; 1:777088. [PMID: 39087082 PMCID: PMC11285710 DOI: 10.3389/fmmed.2021.777088] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 10/27/2021] [Indexed: 08/02/2024]
Abstract
Metabolic diseases are becoming more common and more severe in populations adhering to western lifestyle. Since metabolic conditions are highly diet and lifestyle dependent, it is suggested that certain diets are the cause for a wide range of metabolic dysfunctions. Oxidative stress, excess calcium excretion, inflammation, and metabolic acidosis are common features in the origins of most metabolic disease. These primary manifestations of "metabolic syndrome" can lead to insulin resistance, diabetes, obesity, and hypertension. Further complications of the conditions involve kidney disease, cardiovascular disease, osteoporosis, and cancers. Dietary analysis shows that a modern "Western-style" diet may facilitate a disruption in pH homeostasis and drive disease progression through high consumption of exogenous acids. Because so many physiological and cellular functions rely on acid-base reactions and pH equilibrium, prolonged exposure of the body to more acids than can effectively be buffered, by chronic adherence to poor diet, may result in metabolic stress followed by disease. This review addresses relevant molecular pathways in mammalian cells discovered to be sensitive to acid - base equilibria, their cellular effects, and how they can cascade into an organism-level manifestation of Metabolic Syndromes. We will also discuss potential ways to help mitigate this digestive disruption of pH and metabolic homeostasis through dietary change.
Collapse
Affiliation(s)
- Morgan Williamson
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, United States
| | - Naima Moustaid-Moussa
- Department of Nutrition Sciences, Texas Tech University, Lubbock, TX, United States
- Obesity Research Institute, Texas Tech University, Lubbock, TX, United States
| | - Lauren Gollahon
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, United States
- Department of Nutrition Sciences, Texas Tech University, Lubbock, TX, United States
- Obesity Research Institute, Texas Tech University, Lubbock, TX, United States
| |
Collapse
|
36
|
Comprehensive characterization of Chaenomeles seeds as a potential source of nutritional and biologically active compounds. J Food Compost Anal 2021. [DOI: 10.1016/j.jfca.2021.104065] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
37
|
Nafikova E, Mironova I, Gazeev I, Blagov D, Nigmatiyanov A. The effect of an energy additive on the metabolism of cattle. CANADIAN JOURNAL OF VETERINARY RESEARCH = REVUE CANADIENNE DE RECHERCHE VETERINAIRE 2021; 85:210-217. [PMID: 34248266 PMCID: PMC8243801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 01/13/2021] [Indexed: 06/13/2023]
Abstract
The objective of this study was to determine the effect of an energy additive on the metabolism of cattle. This article provides information on the analysis of the diet of young cattle calculated for when the animals were both indoors and outdoors. The ration was prepared for 40 heifers, divided into 4 groups consisting of 10 animals in each group. Three of these groups were fed different amounts of a high-energy additive, which was not fed to the control group. The effectiveness of the additive was analyzed according to the balance experiment and by calculating digestibility coefficients. It was determined that the percentage of nitrogen use in young animals was higher in the groups that were fed the additive than in the control group. Increasing the dose of the additive increased the level of nitrogen use. Comparative analysis of live weight indicated intergroup differences in favor of heifers in the groups that were fed the additive of 1.34% to 2.41% at the age of 9 mo; 2.51% to 4.16% at 12 mo; 3.14% to 5.46% at 15 mo; and 3.57% to 6.30% at 18 mo. The average daily growth dynamics indicated a gradual increase in all animals up to 15 mo, with a slight decrease by 18 mo of age. The difference among the groups ranged from 5.08% to 8.85% at 6 to 9 mo of age; 7.08% to 10.79% at 9 to 12 mo; 5.64% to 10.97% at 12 to 15 mo; and 6.05% to 11.11% at 18 mo. It was concluded that feeding the energy additive Tanrem to heifers increased their metabolism so that nitrogen use was improved, and feed was digested more efficiently, which in turn improved the growth of animals. Using an energy additive at the mid-range dose of 500 g a day per animal is recommended, since the effect was similar at the mid-range and maximum dosages.
Collapse
Affiliation(s)
- Elina Nafikova
- Department of Technologies of Meat, Dairy Products and Chemistry (Nafikova, Mironova), Department of Life Safety and Process Equipment (Gazeev), and Department of Technology Catering and Processing of Vegetable Raw Materials (Nigmatiyanov), Federal State Budgetary Educational Establishment of Higher Education "Bashkir State Agrarian University," 50-letia Octyabrya Str., 34, Ufa, 450099, Russia; Department for Information Technologies in Agricultural Production, Institute of Technical Support of Agriculture (ITSA) - Branch of the Federal State Budgetary Scientific Institution "Federal Scientific Agroengineering Center (FSAC) VIM," Ryazan, Russia (Blagov)
| | - Irina Mironova
- Department of Technologies of Meat, Dairy Products and Chemistry (Nafikova, Mironova), Department of Life Safety and Process Equipment (Gazeev), and Department of Technology Catering and Processing of Vegetable Raw Materials (Nigmatiyanov), Federal State Budgetary Educational Establishment of Higher Education "Bashkir State Agrarian University," 50-letia Octyabrya Str., 34, Ufa, 450099, Russia; Department for Information Technologies in Agricultural Production, Institute of Technical Support of Agriculture (ITSA) - Branch of the Federal State Budgetary Scientific Institution "Federal Scientific Agroengineering Center (FSAC) VIM," Ryazan, Russia (Blagov)
| | - Igor Gazeev
- Department of Technologies of Meat, Dairy Products and Chemistry (Nafikova, Mironova), Department of Life Safety and Process Equipment (Gazeev), and Department of Technology Catering and Processing of Vegetable Raw Materials (Nigmatiyanov), Federal State Budgetary Educational Establishment of Higher Education "Bashkir State Agrarian University," 50-letia Octyabrya Str., 34, Ufa, 450099, Russia; Department for Information Technologies in Agricultural Production, Institute of Technical Support of Agriculture (ITSA) - Branch of the Federal State Budgetary Scientific Institution "Federal Scientific Agroengineering Center (FSAC) VIM," Ryazan, Russia (Blagov)
| | - Dmitry Blagov
- Department of Technologies of Meat, Dairy Products and Chemistry (Nafikova, Mironova), Department of Life Safety and Process Equipment (Gazeev), and Department of Technology Catering and Processing of Vegetable Raw Materials (Nigmatiyanov), Federal State Budgetary Educational Establishment of Higher Education "Bashkir State Agrarian University," 50-letia Octyabrya Str., 34, Ufa, 450099, Russia; Department for Information Technologies in Agricultural Production, Institute of Technical Support of Agriculture (ITSA) - Branch of the Federal State Budgetary Scientific Institution "Federal Scientific Agroengineering Center (FSAC) VIM," Ryazan, Russia (Blagov)
| | - Azat Nigmatiyanov
- Department of Technologies of Meat, Dairy Products and Chemistry (Nafikova, Mironova), Department of Life Safety and Process Equipment (Gazeev), and Department of Technology Catering and Processing of Vegetable Raw Materials (Nigmatiyanov), Federal State Budgetary Educational Establishment of Higher Education "Bashkir State Agrarian University," 50-letia Octyabrya Str., 34, Ufa, 450099, Russia; Department for Information Technologies in Agricultural Production, Institute of Technical Support of Agriculture (ITSA) - Branch of the Federal State Budgetary Scientific Institution "Federal Scientific Agroengineering Center (FSAC) VIM," Ryazan, Russia (Blagov)
| |
Collapse
|
38
|
Affiliation(s)
- Roymon Joseph
- Department of Chemistry Sacred Heart College (Autonomous), Thevara Kochi Kerala India – 682013
- Department of Chemistry University of Calicut Malappuram Kerala India – 673635
| |
Collapse
|
39
|
Zou L, Tan WK, Du Y, Lee HW, Liang X, Lei J, Striegel L, Weber N, Rychlik M, Ong CN. Nutritional metabolites in Brassica rapa subsp. chinensis var. parachinensis (choy sum) at three different growth stages: Microgreen, seedling and adult plant. Food Chem 2021; 357:129535. [PMID: 33892360 DOI: 10.1016/j.foodchem.2021.129535] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 02/08/2021] [Accepted: 03/03/2021] [Indexed: 11/17/2022]
Abstract
Choy sum is a commonly consumed Asian green leafy brassica vegetable. A comprehensive spectrum of nutritional important metabolites, including amino acids, plant sugars, essential minerals, vitamins (A, B9, E, and K1) and glucosinolates were systematically quantified using LC-QQQ-MS, GC-QQQ-MS and ICP-MS. Significant metabolic profile shifts were observed during the three major developmental stages (microgreen, seedling and adult) studied. Primary metabolites, especially essential amino acids decreased while most plant sugars increased from microgreens to seedlings. Carotenoids, such as violaxanthin, neoxanthin, together with vitamin K1 were higher in the seedlings whereas CHO-folate vitamers and β-cryptoxanthin were much lower in adult plants. Most essential minerals were concentrated in the microgreens, while sodium increased in adult plants. Aliphatic glucosinolates in microgreens were converted to indolic glucosinolates in the seedlings and further to aromatic glucosinolates in the adults. Overall findings reveal that most of the nutritional metabolites were concentrated either in the microgreens or seedlings.
Collapse
Affiliation(s)
- Li Zou
- Saw Swee Hock School of Public Health, National University of Singapore, Tahir Foundation Building #11-01, 12 Science Drive 2, Singapore 117549, Singapore
| | - Wee Kee Tan
- NUS Environmental Research Institute, National University of Singapore, T-Lab #02-01, 5A Engineering Drive 1, Singapore 117411, Singapore
| | - Yuanyuan Du
- NUS Environmental Research Institute, National University of Singapore, T-Lab #02-01, 5A Engineering Drive 1, Singapore 117411, Singapore
| | - Hui Wen Lee
- NUS Environmental Research Institute, National University of Singapore, T-Lab #02-01, 5A Engineering Drive 1, Singapore 117411, Singapore
| | - Xu Liang
- NUS Environmental Research Institute, National University of Singapore, T-Lab #02-01, 5A Engineering Drive 1, Singapore 117411, Singapore
| | - Jiajia Lei
- NUS Environmental Research Institute, National University of Singapore, T-Lab #02-01, 5A Engineering Drive 1, Singapore 117411, Singapore
| | - Lisa Striegel
- Chair of Analytical Food Chemistry, Technical University of Munich, Max-von-Imhof Forum 2, DE-85354 Freising, Germany
| | - Nadine Weber
- Chair of Analytical Food Chemistry, Technical University of Munich, Max-von-Imhof Forum 2, DE-85354 Freising, Germany
| | - Michael Rychlik
- Chair of Analytical Food Chemistry, Technical University of Munich, Max-von-Imhof Forum 2, DE-85354 Freising, Germany; Centre for Nutrition and Food Sciences, University of Queensland, St Lucia, QLD 4069, Australia
| | - Choon Nam Ong
- Saw Swee Hock School of Public Health, National University of Singapore, Tahir Foundation Building #11-01, 12 Science Drive 2, Singapore 117549, Singapore; NUS Environmental Research Institute, National University of Singapore, T-Lab #02-01, 5A Engineering Drive 1, Singapore 117411, Singapore.
| |
Collapse
|