1
|
Liu T, Asif IM, Bai C, Huang Y, Li B, Wang L. The effectiveness and safety of natural food and food-derived extract supplements for treating functional gastrointestinal disorders-current perspectives. Nutr Rev 2025; 83:e1158-e1171. [PMID: 38908001 DOI: 10.1093/nutrit/nuae047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/24/2024] Open
Abstract
Functional gastrointestinal disorders (FGIDs) were highly prevalent and involve gastrointestinal discomfort characterized by non-organic abnormalities in the morphology and physiology of the gastrointestinal tract. According to the Rome IV criteria, irritable bowel syndrome and functional dyspepsia are the most common FGIDs. Complementary and alternative medicines are employed by increasing numbers of individuals around the world, and they include herbal and dietary supplements, acupuncture, and hypnosis. Of these, herbal and dietary supplements seem to have the greatest potential for relieving FGIDs, through multiple modes of action. However, despite the extensive application of natural extracts in alternative treatments for FGIDs, the safety and effectiveness of food and orally ingested food-derived extracts remain uncertain. Many randomized controlled trials have provided compelling evidence supporting their potential, as detailed in this review. The consumption of certain foods (eg, kiwifruit, mentha, ginger, etc) and food ingredients may contribute to the alleviation of symptoms associated with FGID,. However, it is crucial to emphasize that the short-term consumption of these components may not yield satisfactory efficacy. Physicians are advised to share both the benefits and potential risks of these alternative therapies with patients. Furthermore, larger randomized clinical trials with appropriate comparators are imperative.
Collapse
Affiliation(s)
- Tianxu Liu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
- Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University), Ministry of Education, Wuhan, Hubei 430070, China
| | - Ismail Muhammad Asif
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
- Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University), Ministry of Education, Wuhan, Hubei 430070, China
| | - Chengmei Bai
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
- Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University), Ministry of Education, Wuhan, Hubei 430070, China
| | - Yutian Huang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
- Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University), Ministry of Education, Wuhan, Hubei 430070, China
| | - Bin Li
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
- Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University), Ministry of Education, Wuhan, Hubei 430070, China
| | - Ling Wang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
- Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University), Ministry of Education, Wuhan, Hubei 430070, China
| |
Collapse
|
2
|
Caterbi S, Buttarini C, Garetto S, Franco Moscardini I, Ughetto S, Guerrini A, Panizzi E, Rumio C, Mattioli L, Perfumi M, Maidecchi A, Cossu A, des Varannes SB, Regula J, Malfertheiner P, Sardi C, Lucci J. A Non-Pharmacological Paradigm Captures the Complexity in the Mechanism of Action of Poliprotect Against Gastroesophageal Reflux Disease and Dyspepsia. Int J Mol Sci 2025; 26:1181. [PMID: 39940951 PMCID: PMC11818618 DOI: 10.3390/ijms26031181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 01/21/2025] [Accepted: 01/24/2025] [Indexed: 02/16/2025] Open
Abstract
When the protective mechanisms of the gastroesophageal mucosa are overwhelmed by injurious factors, the structural and functional mucosal integrity is compromised, resulting in a wide spectrum of disorders. Poliprotect has recently been shown to be non-inferior to standard-dose omeprazole for the treatment of endoscopy-negative patients with heartburn and/or epigastric pain or burning. Here, we provide preclinical data describing the mechanism of action of the Poliprotect formulation, a 100% natural, biodegradable, and environmental friendly medical device according to EU 2017/745 and containing UVCB (unknown or variable composition, complex-reaction products, or biological materials) substances of botanical and mineral origin, according to the REACH and European Chemical Agency definitions. Different in vitro assays demonstrated the capability of Poliprotect to adhere to mucus-secreting gastric cells and concomitantly deliver a local barrier with buffering and antioxidant activity. In studies conducted in accordance with systems biology principles, we evaluated the effects of this barrier on human gastric cells exposed to acidic stress. Biological functions identified via Ingenuity Pathway Analysis highlighted the product's ability to create a microenvironment that supports the mucosal structural and functional integrity, promotes healing, and restores a balanced mucosal inflammatory status. Additionally, transepithelial electrical resistance and an Ussing chamber showed the product's capability of preserving the integrity of the gastric and esophageal epithelial barriers when exposed to an acid solution. Two in vivo models of erosive gastropathy further highlighted its topical protection against ethanol- and drug-induced mucosal injury. Overall, our findings sustain the feasibility of a paradigm shift in therapeutics R&D by depicting a very innovative and desirable mode of interaction with the human body based on the emerging biophysical, rather than the pharmacological properties of these therapeutic agents.
Collapse
Affiliation(s)
- Sara Caterbi
- Bios-Therapy, Physiological Systems for Health S.p.A., Località Aboca 20, 52037 Sansepolcro, Italy; (S.C.); (C.B.); (S.G.); (I.F.M.); (S.U.); (A.G.); (E.P.); (C.S.)
| | - Claudio Buttarini
- Bios-Therapy, Physiological Systems for Health S.p.A., Località Aboca 20, 52037 Sansepolcro, Italy; (S.C.); (C.B.); (S.G.); (I.F.M.); (S.U.); (A.G.); (E.P.); (C.S.)
| | - Stefano Garetto
- Bios-Therapy, Physiological Systems for Health S.p.A., Località Aboca 20, 52037 Sansepolcro, Italy; (S.C.); (C.B.); (S.G.); (I.F.M.); (S.U.); (A.G.); (E.P.); (C.S.)
| | - Isabelle Franco Moscardini
- Bios-Therapy, Physiological Systems for Health S.p.A., Località Aboca 20, 52037 Sansepolcro, Italy; (S.C.); (C.B.); (S.G.); (I.F.M.); (S.U.); (A.G.); (E.P.); (C.S.)
| | - Stefano Ughetto
- Bios-Therapy, Physiological Systems for Health S.p.A., Località Aboca 20, 52037 Sansepolcro, Italy; (S.C.); (C.B.); (S.G.); (I.F.M.); (S.U.); (A.G.); (E.P.); (C.S.)
| | - Angela Guerrini
- Bios-Therapy, Physiological Systems for Health S.p.A., Località Aboca 20, 52037 Sansepolcro, Italy; (S.C.); (C.B.); (S.G.); (I.F.M.); (S.U.); (A.G.); (E.P.); (C.S.)
| | - Elena Panizzi
- Bios-Therapy, Physiological Systems for Health S.p.A., Località Aboca 20, 52037 Sansepolcro, Italy; (S.C.); (C.B.); (S.G.); (I.F.M.); (S.U.); (A.G.); (E.P.); (C.S.)
| | - Cristiano Rumio
- Department of Pharmacology and Biomolecular Sciences, University of Milan, Via Trentacoste 2, 20134 Milan, Italy;
| | - Laura Mattioli
- Department of Experimental Medicine and Public Health, University of Camerino, Via Madonna delle Carceri 9, 62032 Camerino, Italy; (L.M.); (M.P.)
| | - Marina Perfumi
- Department of Experimental Medicine and Public Health, University of Camerino, Via Madonna delle Carceri 9, 62032 Camerino, Italy; (L.M.); (M.P.)
| | - Anna Maidecchi
- Aboca S.p.A, Società Agricola, Località Aboca 20, 52037 Sansepolcro, Italy; (A.M.); (A.C.)
| | - Andrea Cossu
- Aboca S.p.A, Società Agricola, Località Aboca 20, 52037 Sansepolcro, Italy; (A.M.); (A.C.)
| | - Stanislas Bruley des Varannes
- Department of Gastroenterology Hepatology and Clinical Oncology, Institut des Maladies de l’Appareil Digestif, Universitary Hospital, 44000 Nantes, France;
| | - Jaroslaw Regula
- Department of Oncological Gastroenterology, Maria Sklodowska-Curie National Research Institute of Oncology, 00-001 Warsaw, Poland;
- Department of Gastroenterology, Hepatology and Clinical Oncology, Centre of Postgraduate Medical Education, 01-813 Warsaw, Poland
| | - Peter Malfertheiner
- LMU Klinikum Medizinische Klinik und Poliklinik II, Campus Großhadern, Marchioninistr. 15, 81377 München, Germany;
- Otto-von-Guericke Universität Magdeburg Klinik für Gastroenterologie, Hepatologie und Infektiologie, 39120 Magdeburg, Germany
| | - Claudia Sardi
- Bios-Therapy, Physiological Systems for Health S.p.A., Località Aboca 20, 52037 Sansepolcro, Italy; (S.C.); (C.B.); (S.G.); (I.F.M.); (S.U.); (A.G.); (E.P.); (C.S.)
| | - Jacopo Lucci
- Bios-Therapy, Physiological Systems for Health S.p.A., Località Aboca 20, 52037 Sansepolcro, Italy; (S.C.); (C.B.); (S.G.); (I.F.M.); (S.U.); (A.G.); (E.P.); (C.S.)
| |
Collapse
|
3
|
Jiang YR, Liu RJ, Tang J, Li MQ, Zhang DK, Pei ZQ, Fan SH, Xu RC, Huang HZ, Lin JZ. The health benefits of dietary polyphenols on pediatric intestinal diseases: Mechanism of action, clinical evidence and future research progress. Phytother Res 2024; 38:3782-3800. [PMID: 38839050 DOI: 10.1002/ptr.8218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 04/02/2024] [Accepted: 04/14/2024] [Indexed: 06/07/2024]
Abstract
Pediatric intestinal development is immature, vulnerable to external influences and produce a variety of intestinal diseases. At present, breakthroughs have been made in the treatment of pediatric intestinal diseases, but there are still many challenges, such as toxic side effects, drug resistance, and the lack of more effective treatments and specific drugs. In recent years, dietary polyphenols derived from plants have become a research hotspot in the treatment of pediatric intestinal diseases due to their outstanding pharmacological activities such, as anti-inflammatory, antibacterial, antioxidant and regulation of intestinal flora. This article reviewed the mechanism of action and clinical evidence of dietary polyphenols in the treatment of pediatric intestinal diseases, and discussed the influence of physiological characteristics of children on the efficacy of polyphenols, and finally prospected the new dosage forms of polyphenols in pediatrics.
Collapse
Affiliation(s)
- Yu-Rou Jiang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ren-Jie Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jun Tang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Meng-Qi Li
- Department of Pharmacy, Sichuan Nursing Vocational College, Chengdu, China
| | - Ding-Kun Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Sichuan Provincial Engineering Research Center of Innovative Re-development of Famous Classical Formulas, Tianfu TCM Innovation Harbour, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zhao-Qing Pei
- Sichuan Provincial Engineering Research Center of Innovative Re-development of Famous Classical Formulas, Tianfu TCM Innovation Harbour, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - San-Hu Fan
- Sanajon Pharmaceutical Group, Chengdu, China
| | - Run-Chun Xu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hao-Zhou Huang
- State key Laboratory of Southwestern Chinese Medicine Resources, Innovative Institute of Chinese Medicine and Pharmacy, Meishan Hospital, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jun-Zhi Lin
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, PR China
| |
Collapse
|
4
|
Bartolini D, Zatini L, Migni A, Frammartino T, Guerrini A, Garetto S, Lucci J, Moscardini IF, Marcantonini G, Stabile AM, Rende M, Galli F. TRANSCRIPTOMICS OF NATURAL AND SYNTHETIC VITAMIN D IN HUMAN HEPATOCYTE LIPOTOXICITY. J Nutr Biochem 2023; 117:109319. [PMID: 36963728 DOI: 10.1016/j.jnutbio.2023.109319] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 01/29/2023] [Accepted: 03/14/2023] [Indexed: 03/26/2023]
Abstract
Vitamin D (VD) has been used to prevent non-alcoholic fatty liver disease (NAFLD), a condition of lipotoxicity associated with a defective metabolism and function of this vitamin. Different forms of VD are available and can be used for this scope, but their effects on liver cell lipotoxicity remain unexplored. In this study we compared a natural formulation rich in VD2 (Shiitake Mushroom extract or SM-VD2) with a synthetic formulation containing pure VD3 (SV-VD3) and the bioactive metabolite 1,25(OH)2-D3. These were investigated in chemoprevention mode in human HepaRG liver cells supplemented with oleic and palmitic acid to induce lipotoxicity. All the different forms of VD showed similar efficacy in reducing the levels of lipotoxicity and the changes that lipotoxicity induced on the cellular transcriptome. However, the three forms of VD generated different gene fingerprints suggesting diverse, even if functionally convergent, cytoprotective mechanisms. Main differences were 1) the number of differentially expressed genes (SV-VD3 > 1,25(OH)2-D3 > SM-VD2), 2) their identity that demonstrated significant gene homology between SM-VD2 and 1,25(OH)2-D3, and 3) the number and type of biological functions identified by Ingenuity Pathway Analysis as relevant to liver metabolism and cytoprotection annotations. Immunoblot confirmed a different response of VDR and other VDR-related proteins to natural and synthetic VD formulations, including FXR, PXR, PPARγ/PGC-1α, and CYP3A4 and CYP24A1. In conclusion, different responses of the cellular transcriptome drive the cytoprotective effect of natural and synthetic formulations of VD in the free fatty acid-induced lipotoxicity of human hepatocytes.
Collapse
Affiliation(s)
- Desirée Bartolini
- Department of Pharmaceutical Sciences, University of Perugia, 06126 Perugia, Italy; Department of Medicine and Surgery, Section of Human, Clinical and Forensic Anatomy, University of Perugia, Perugia, Italy
| | - Linda Zatini
- Department of Pharmaceutical Sciences, University of Perugia, 06126 Perugia, Italy
| | - Anna Migni
- Department of Pharmaceutical Sciences, University of Perugia, 06126 Perugia, Italy
| | - Tiziana Frammartino
- Bios-Therapy, Physiological Systems For Health S.p.A., Loc. Aboca 20, 52037 Sansepolcro, AR, Italy
| | - Angela Guerrini
- Bios-Therapy, Physiological Systems For Health S.p.A., Loc. Aboca 20, 52037 Sansepolcro, AR, Italy
| | - Stefano Garetto
- Bios-Therapy, Physiological Systems For Health S.p.A., Loc. Aboca 20, 52037 Sansepolcro, AR, Italy
| | - Jacopo Lucci
- Bios-Therapy, Physiological Systems For Health S.p.A., Loc. Aboca 20, 52037 Sansepolcro, AR, Italy
| | | | - Giada Marcantonini
- Department of Pharmaceutical Sciences, University of Perugia, 06126 Perugia, Italy
| | - Anna Maria Stabile
- Department of Medicine and Surgery, Section of Human, Clinical and Forensic Anatomy, University of Perugia, Perugia, Italy
| | - Mario Rende
- Department of Medicine and Surgery, Section of Human, Clinical and Forensic Anatomy, University of Perugia, Perugia, Italy
| | - Francesco Galli
- Department of Pharmaceutical Sciences, University of Perugia, 06126 Perugia, Italy.
| |
Collapse
|
5
|
Shi Y, Chen C, Wu X, Han Z, Zhang S, Chen K, Qiu X. Exposure to amitriptyline induces persistent gut damages and dysbiosis of the gut microbiota in zebrafish (Danio rerio). Comp Biochem Physiol C Toxicol Pharmacol 2022; 260:109417. [PMID: 35872240 DOI: 10.1016/j.cbpc.2022.109417] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 06/27/2022] [Accepted: 07/17/2022] [Indexed: 11/30/2022]
Abstract
Amitriptyline (AMI), the most commonly prescribed tricyclic antidepressant, is widely detected in water environments. Exposure to AMI may lead to diverse adverse effects on aquatic organisms, but little is known about the effect of short-term exposure to AMI on the gut microbiota of aquatic organisms and their recovery characteristics. In the present study, adult zebrafish (Danio rerio) were exposed to AMI (0, 2.5, 10, and 40 μg/L) for seven days, and then allowed to recover in AMI-free culture water for 21 days. The exposure caused gut damages in all the AMI treated groups of zebrafish, which became more severe after recovery compared to the control group. AMI exposure also disturbed the microbiota of zebrafish guts and rearing water even after the 21-day recovery period. Furthermore, AMI exposure affected microbes involved in the substance and energy metabolic functions in zebrafish guts and tended to increase the abundance of microbial genera associated with opportunistic pathogens. In addition, the microbial predicted metabolic functions in AMI-exposed guts of zebrafish were significantly altered after the 21-day recovery period, explaining the persistent effects of short-term exposure to AMI. The results of this study suggest that acute exposure to AMI may have persistent impacts on the gut histomorphology and the gut microbiota in aquatic organisms.
Collapse
Affiliation(s)
- Yanhong Shi
- Institute of Environmental Health and Ecological Security, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Chen Chen
- Institute of Environmental Health and Ecological Security, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Xiangyang Wu
- Institute of Environmental Health and Ecological Security, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Ziming Han
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Shanshuo Zhang
- Henan Division GRG Metrology and Test Co., Ltd, Zhengzhou 450001, China
| | - Kun Chen
- Institute of Environmental Health and Ecological Security, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Xuchun Qiu
- Institute of Environmental Health and Ecological Security, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, China.
| |
Collapse
|
6
|
Isolation, molecular characterization, immunological and anticoagulatant activities of polysaccharides from frankincense and its vinegar processed product. Food Chem 2022; 389:133067. [DOI: 10.1016/j.foodchem.2022.133067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 02/03/2022] [Accepted: 04/21/2022] [Indexed: 11/18/2022]
|
7
|
Dietary polysaccharides from guavira pomace, a co-product from the fruit pulp industry, display therapeutic application in gut disorders. Food Res Int 2022; 156:111291. [DOI: 10.1016/j.foodres.2022.111291] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 04/19/2022] [Accepted: 04/21/2022] [Indexed: 12/22/2022]
|
8
|
Lucarini E, Di Pilato V, Parisio C, Micheli L, Toti A, Pacini A, Bartolucci G, Baldi S, Niccolai E, Amedei A, Rossolini GM, Nicoletti C, Cryan JF, O'Mahony SM, Ghelardini C, Di Cesare Mannelli L. Visceral sensitivity modulation by faecal microbiota transplantation: the active role of gut bacteria in pain persistence. Pain 2022; 163:861-877. [PMID: 34393197 PMCID: PMC9009324 DOI: 10.1097/j.pain.0000000000002438] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 07/19/2021] [Accepted: 08/02/2021] [Indexed: 11/25/2022]
Abstract
Recent findings linked gastrointestinal disorders characterized by abdominal pain to gut microbiota composition. The present work aimed to evaluate the power of gut microbiota as a visceral pain modulator and, consequently, the relevance of its manipulation as a therapeutic option in reversing postinflammatory visceral pain persistence. Colitis was induced in mice by intrarectally injecting 2,4-dinitrobenzenesulfonic acid (DNBS). The effect of faecal microbiota transplantation from viscerally hypersensitive DNBS-treated and naive donors was evaluated in control rats after an antibiotic-mediated microbiota depletion. Faecal microbiota transplantation from DNBS donors induced a long-lasting visceral hypersensitivity in control rats. Pain threshold trend correlated with major modifications in the composition of gut microbiota and short chain fatty acids. By contrast, no significant alterations of colon histology, permeability, and monoamines levels were detected. Finally, by manipulating the gut microbiota of DNBS-treated animals, a counteraction of persistent visceral pain was achieved. The present results provide novel insights into the relationship between intestinal microbiota and visceral hypersensitivity, highlighting the therapeutic potential of microbiota-targeted interventions.
Collapse
Affiliation(s)
- Elena Lucarini
- Department of Neuroscience, Psychology, Drug Research and Child Health, Neurofarba, Pharmacology and Toxicology Section, University of Florence, Florence, Italy
| | - Vincenzo Di Pilato
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
- Clinical Microbiology and Virology Unit, Florence Careggi University Hospital, Florence, Italy
- Department of Surgical Sciences and Integrated Diagnostics, University of Genoa, Genoa, Italy
| | - Carmen Parisio
- Department of Neuroscience, Psychology, Drug Research and Child Health, Neurofarba, Pharmacology and Toxicology Section, University of Florence, Florence, Italy
| | - Laura Micheli
- Department of Neuroscience, Psychology, Drug Research and Child Health, Neurofarba, Pharmacology and Toxicology Section, University of Florence, Florence, Italy
| | - Alessandra Toti
- Department of Neuroscience, Psychology, Drug Research and Child Health, Neurofarba, Pharmacology and Toxicology Section, University of Florence, Florence, Italy
| | - Alessandra Pacini
- Department of Experimental and Clinical Medicine, Anatomy and Histology Section, University of Florence, Florence, Italy
| | - Gianluca Bartolucci
- Department of Neurosciences, Psychology, Drug Research and Child Health Section of Pharmaceutical and Nutraceutical Sciences University of Florence, Florence, Italy
| | - Simone Baldi
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Elena Niccolai
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Amedeo Amedei
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Gian Maria Rossolini
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
- Clinical Microbiology and Virology Unit, Florence Careggi University Hospital, Florence, Italy
| | - Claudio Nicoletti
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - John F. Cryan
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | - Siobhain M. O'Mahony
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | - Carla Ghelardini
- Department of Neuroscience, Psychology, Drug Research and Child Health, Neurofarba, Pharmacology and Toxicology Section, University of Florence, Florence, Italy
| | - Lorenzo Di Cesare Mannelli
- Department of Neuroscience, Psychology, Drug Research and Child Health, Neurofarba, Pharmacology and Toxicology Section, University of Florence, Florence, Italy
| |
Collapse
|
9
|
Lucarini E, Nocentini A, Bonardi A, Chiaramonte N, Parisio C, Micheli L, Toti A, Ferrara V, Carrino D, Pacini A, Romanelli MN, Supuran CT, Ghelardini C, Di Cesare Mannelli L. Carbonic Anhydrase IV Selective Inhibitors Counteract the Development of Colitis-Associated Visceral Pain in Rats. Cells 2021; 10:2540. [PMID: 34685520 PMCID: PMC8533707 DOI: 10.3390/cells10102540] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 09/19/2021] [Accepted: 09/20/2021] [Indexed: 01/16/2023] Open
Abstract
Persistent pain affecting patients with inflammatory bowel diseases (IBDs) is still very difficult to treat. Carbonic anhydrase (CA) represents an intriguing pharmacological target considering the anti-hyperalgesic efficacy displayed by CA inhibitors in both inflammatory and neuropathic pain models. The aim of this work was to evaluate the effect of inhibiting CA IV, particularly when expressed in the gut, on visceral pain associated with colitis induced by 2,4-di-nitrobenzene sulfonic acid (DNBS) in rats. Visceral sensitivity was assessed by measuring animals' abdominal responses to colorectal distension. Repeated treatment with the selective CA IV inhibitors AB-118 and NIK-67 effectively counteracted the development of visceral pain induced by DNBS. In addition to pain relief, AB-118 showed a protective effect against colon damage. By contrast, the anti-hyperalgesic activity of NIK-67 was independent of colon healing, suggesting a direct protective effect of NIK-67 on visceral sensitivity. The enzymatic activity and the expression of CA IV resulted significantly increased after DNBS injection. NIK-67 normalised CA IV activity in DNBS animals, while AB-118 was partially effective. None of these compounds influenced CA IV expression through the colon. Although further investigations are needed to study the underlying mechanisms, CA IV inhibitors are promising candidates in the search for therapies to relieve visceral pain in IBDs.
Collapse
Affiliation(s)
- Elena Lucarini
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Pharmacology and Toxicology Section, University of Florence, Viale Gaetano Pieraccini 6, 50139 Florence, Italy; (E.L.); (C.P.); (L.M.); (A.T.); (V.F.); (C.G.)
| | - Alessio Nocentini
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Pharmaceutical and Nutraceutical Sciences Section, University of Florence, Via Ugo Schiff 6, 50019 Florence, Italy; (A.N.); (A.B.); (N.C.); (M.N.R.); (C.T.S.)
| | - Alessandro Bonardi
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Pharmaceutical and Nutraceutical Sciences Section, University of Florence, Via Ugo Schiff 6, 50019 Florence, Italy; (A.N.); (A.B.); (N.C.); (M.N.R.); (C.T.S.)
| | - Niccolò Chiaramonte
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Pharmaceutical and Nutraceutical Sciences Section, University of Florence, Via Ugo Schiff 6, 50019 Florence, Italy; (A.N.); (A.B.); (N.C.); (M.N.R.); (C.T.S.)
| | - Carmen Parisio
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Pharmacology and Toxicology Section, University of Florence, Viale Gaetano Pieraccini 6, 50139 Florence, Italy; (E.L.); (C.P.); (L.M.); (A.T.); (V.F.); (C.G.)
| | - Laura Micheli
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Pharmacology and Toxicology Section, University of Florence, Viale Gaetano Pieraccini 6, 50139 Florence, Italy; (E.L.); (C.P.); (L.M.); (A.T.); (V.F.); (C.G.)
| | - Alessandra Toti
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Pharmacology and Toxicology Section, University of Florence, Viale Gaetano Pieraccini 6, 50139 Florence, Italy; (E.L.); (C.P.); (L.M.); (A.T.); (V.F.); (C.G.)
| | - Valentina Ferrara
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Pharmacology and Toxicology Section, University of Florence, Viale Gaetano Pieraccini 6, 50139 Florence, Italy; (E.L.); (C.P.); (L.M.); (A.T.); (V.F.); (C.G.)
| | - Donatello Carrino
- Department of Experimental and Clinical Medicine, Anatomy and Histology Section, University of Florence, Largo Brambilla 3, 50134 Florence, Italy; (D.C.); (A.P.)
| | - Alessandra Pacini
- Department of Experimental and Clinical Medicine, Anatomy and Histology Section, University of Florence, Largo Brambilla 3, 50134 Florence, Italy; (D.C.); (A.P.)
| | - Maria Novella Romanelli
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Pharmaceutical and Nutraceutical Sciences Section, University of Florence, Via Ugo Schiff 6, 50019 Florence, Italy; (A.N.); (A.B.); (N.C.); (M.N.R.); (C.T.S.)
| | - Claudiu T. Supuran
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Pharmaceutical and Nutraceutical Sciences Section, University of Florence, Via Ugo Schiff 6, 50019 Florence, Italy; (A.N.); (A.B.); (N.C.); (M.N.R.); (C.T.S.)
| | - Carla Ghelardini
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Pharmacology and Toxicology Section, University of Florence, Viale Gaetano Pieraccini 6, 50139 Florence, Italy; (E.L.); (C.P.); (L.M.); (A.T.); (V.F.); (C.G.)
| | - Lorenzo Di Cesare Mannelli
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Pharmacology and Toxicology Section, University of Florence, Viale Gaetano Pieraccini 6, 50139 Florence, Italy; (E.L.); (C.P.); (L.M.); (A.T.); (V.F.); (C.G.)
| |
Collapse
|
10
|
Acute visceral pain relief mediated by A3AR agonists in rats: involvement of N-type voltage-gated calcium channels. Pain 2021; 161:2179-2190. [PMID: 32379223 DOI: 10.1097/j.pain.0000000000001905] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 04/14/2020] [Indexed: 02/07/2023]
Abstract
ABSTRACT Pharmacological tools for chronic visceral pain management are still limited and inadequate. A3 adenosine receptor (A3AR) agonists are effective in different models of persistent pain. Recently, their activity has been related to the block of N-type voltage-gated Ca2+ channels (Cav2.2) in dorsal root ganglia (DRG) neurons. The present work aimed to evaluate the efficacy of A3AR agonists in reducing postinflammatory visceral hypersensitivity in both male and female rats. Colitis was induced by the intracolonic instillation of 2,4-dinitrobenzenesulfonic acid (DNBS; 30 mg in 0.25 mL 50% EtOH). Visceral hypersensitivity was assessed by measuring the visceromotor response and the abdominal withdrawal reflex to colorectal distension. The effects of A3AR agonists (MRS5980 and Cl-IB-MECA) were evaluated over time after DNBS injection and compared to that of the selective Cav2.2 blocker PD173212, and the clinically used drug linaclotide. A3AR agonists significantly reduced DNBS-evoked visceral pain both in the postinflammatory (14 and 21 days after DNBS injection) and persistence (28 and 35 days after DNBS) phases. Efficacy was comparable to effects induced by linaclotide. PD173212 fully reduced abdominal hypersensitivity to control values, highlighting the role of Cav2.2. The effects of MRS5980 and Cl-IB-MECA were completely abolished by the selective A3AR antagonist MRS1523. Furthermore, patch-clamp recordings showed that A3AR agonists inhibited Cav2.2 in dorsal root ganglia neurons isolated from either control or DNBS-treated rats. The effect on Ca2+ current was PD173212-sensitive and prevented by MRS1523. A3AR agonists are effective in relieving visceral hypersensitivity induced by DNBS, suggesting a potential therapeutic role against abdominal pain.
Collapse
|
11
|
Buxeraud J, Faure S, Guerriaud M, Eskenazy D, Sergheraert L, Bruley Des Varannes S. Un nouveau règlement pour les dispositifs médicaux à base de substances. ACTUALITES PHARMACEUTIQUES 2021. [DOI: 10.1016/j.actpha.2020.11.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
12
|
Parisio C, Lucarini E, Micheli L, Toti A, Bellumori M, Cecchi L, Calosi L, Bani D, Di Cesare Mannelli L, Mulinacci N, Ghelardini C. Extra virgin olive oil and related by-products (Olea europaea L.) as natural sources of phenolic compounds for abdominal pain relief in gastrointestinal disorders in rats. Food Funct 2020; 11:10423-10435. [PMID: 33237043 DOI: 10.1039/d0fo02293d] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Management of abdominal pain, a common symptom of IBDs and IBS, is still a clinical problem. Extra virgin olive oil (EVOO), a main component of the Mediterranean diet, shows positive effects on chronic inflammation in IBDs. In this study, the effect of the oral administration of EVOO (3 mL) and two olive milling by-products, DPA (300 mg kg-1) and DRF (300 mg kg-1), on preventing the development of abdominal pain in a DNBS-induced colitis model in rats was evaluated. The doses were chosen with the aim of simulating a plausible daily intake in humans. DPA and EVOO treatments significantly reduced the abdominal viscero-motor response to colon-rectal distension at 2 and 3 mL of balloon distension volume, both 7 and 14 days after the DNBS-injection. DRF showed efficacy in the reduction of visceral hypersensitivity only with 3 mL balloon inflation. In awake animals, DPA and DRF reduced pain perception (evaluated as abdominal withdrawal reflex) with all balloon distension volumes, while EVOO was effective only with higher distension volumes. Fourteen days after the DNBS-injection, all samples reduced the macroscopic intestinal damage (quantified as the macroscopic damage score) also showing, at the microscopic level, a reduction of the inflammatory infiltrate (quantified by hematoxylin and eosin analysis), fibrosis (highlighted by picrosirius red staining), the increase in mast cells and their degranulation (analyzed by triptase immunohistochemistry). This is the first report on the promotion of abdominal pain relief in a rat model obtained administering EVOO and two derived by-products. Our results suggest a protective role of phenol-rich EVOO and milling by-products, which may be proposed as food ingredients for novel functional foods.
Collapse
Affiliation(s)
- Carmen Parisio
- Department of Neuroscience, Psychology, Drug Research and Child Health - NEUROFARBA - Pharmacology and Toxicology Section, University of Florence, Viale Pieraccini 6, 50139, Florence, Italy.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Lucarini E, Parisio C, Branca JJV, Segnani C, Ippolito C, Pellegrini C, Antonioli L, Fornai M, Micheli L, Pacini A, Bernardini N, Blandizzi C, Ghelardini C, Di Cesare Mannelli L. Deepening the Mechanisms of Visceral Pain Persistence: An Evaluation of the Gut-Spinal Cord Relationship. Cells 2020; 9:cells9081772. [PMID: 32722246 PMCID: PMC7464824 DOI: 10.3390/cells9081772] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 07/11/2020] [Accepted: 07/20/2020] [Indexed: 12/11/2022] Open
Abstract
The management of visceral pain is a major clinical problem in patients affected by gastrointestinal disorders. The poor knowledge about pain chronicization mechanisms prompted us to study the functional and morphological alterations of the gut and nervous system in the animal model of persistent visceral pain caused by 2,4-dinitrobenzenesulfonic acid (DNBS). This agent, injected intrarectally, induced a colonic inflammation peaking on day 3 and remitting progressively from day 7. In concomitance with bowel inflammation, the animals developed visceral hypersensitivity, which persisted after colitis remission for up to three months. On day 14, the administration of pain-relieving drugs (injected intraperitoneally and intrathecally) revealed a mixed nociceptive, inflammatory and neuropathic pain originating from both the peripheral and central nervous system. At this time point, the colonic histological analysis highlighted a partial restitution of the tunica mucosa, transmural collagen deposition, infiltration of mast cells and eosinophils, and upregulation of substance P (SP)-positive nerve fibers, which were surrounded by eosinophils and MHC-II-positive macrophages. A significant activation of microglia and astrocytes was observed in the dorsal and ventral horns of spinal cord. These results suggest that the persistence of visceral pain induced by colitis results from maladaptive plasticity of the enteric, peripheral and central nervous systems.
Collapse
Affiliation(s)
- Elena Lucarini
- Department of Neuroscience, Psychology, Drug Research and Child Health, Neurofarba, Pharmacology and Toxicology Section, University of Florence, Viale Pieraccini 6, 50139 Florence, Italy; (E.L.); (C.P.); (L.M.); (C.G.)
| | - Carmen Parisio
- Department of Neuroscience, Psychology, Drug Research and Child Health, Neurofarba, Pharmacology and Toxicology Section, University of Florence, Viale Pieraccini 6, 50139 Florence, Italy; (E.L.); (C.P.); (L.M.); (C.G.)
| | - Jacopo J. V. Branca
- Department of Experimental and Clinical Medicine—DMSC, Anatomy and Histology Section, University of Florence, L. go Brambilla 3, 50134 Florence, Italy; (J.J.V.B.); (A.P.)
| | - Cristina Segnani
- Department of Clinical and Experimental Medicine, Unit of Histology, University of Pisa, 56126 Pisa, Italy; (C.S.); (C.I.); (N.B.)
| | - Chiara Ippolito
- Department of Clinical and Experimental Medicine, Unit of Histology, University of Pisa, 56126 Pisa, Italy; (C.S.); (C.I.); (N.B.)
| | - Carolina Pellegrini
- Department of Pharmacy, Unit of Pharmacology, University of Pisa, 56126 Pisa, Italy;
| | - Luca Antonioli
- Department of Clinical and Experimental Medicine, Unit of Pharmacology and Pharmacovigilance, University of Pisa, 56126 Pisa, Italy; (L.A.); (M.F.); (C.B.)
| | - Matteo Fornai
- Department of Clinical and Experimental Medicine, Unit of Pharmacology and Pharmacovigilance, University of Pisa, 56126 Pisa, Italy; (L.A.); (M.F.); (C.B.)
| | - Laura Micheli
- Department of Neuroscience, Psychology, Drug Research and Child Health, Neurofarba, Pharmacology and Toxicology Section, University of Florence, Viale Pieraccini 6, 50139 Florence, Italy; (E.L.); (C.P.); (L.M.); (C.G.)
| | - Alessandra Pacini
- Department of Experimental and Clinical Medicine—DMSC, Anatomy and Histology Section, University of Florence, L. go Brambilla 3, 50134 Florence, Italy; (J.J.V.B.); (A.P.)
| | - Nunzia Bernardini
- Department of Clinical and Experimental Medicine, Unit of Histology, University of Pisa, 56126 Pisa, Italy; (C.S.); (C.I.); (N.B.)
- Interdepartmental Research Center “Nutraceuticals and Food for Health”, University of Pisa, 56126 Pisa, Italy
| | - Corrado Blandizzi
- Department of Clinical and Experimental Medicine, Unit of Pharmacology and Pharmacovigilance, University of Pisa, 56126 Pisa, Italy; (L.A.); (M.F.); (C.B.)
| | - Carla Ghelardini
- Department of Neuroscience, Psychology, Drug Research and Child Health, Neurofarba, Pharmacology and Toxicology Section, University of Florence, Viale Pieraccini 6, 50139 Florence, Italy; (E.L.); (C.P.); (L.M.); (C.G.)
| | - Lorenzo Di Cesare Mannelli
- Department of Neuroscience, Psychology, Drug Research and Child Health, Neurofarba, Pharmacology and Toxicology Section, University of Florence, Viale Pieraccini 6, 50139 Florence, Italy; (E.L.); (C.P.); (L.M.); (C.G.)
- Correspondence:
| |
Collapse
|
14
|
Antonioli L, Lucarini E, Lambertucci C, Fornai M, Pellegrini C, Benvenuti L, Di Cesare Mannelli L, Spinaci A, Marucci G, Blandizzi C, Ghelardini C, Volpini R, Dal Ben D. The Anti-Inflammatory and Pain-Relieving Effects of AR170, an Adenosine A 3 Receptor Agonist, in a Rat Model of Colitis. Cells 2020; 9:cells9061509. [PMID: 32575844 PMCID: PMC7348903 DOI: 10.3390/cells9061509] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 06/18/2020] [Accepted: 06/19/2020] [Indexed: 02/07/2023] Open
Abstract
The pharmacological activation of A3 receptors has shown potential usefulness in the management of bowel inflammation. However, the role of these receptors in the control of visceral hypersensitivity in the presence of intestinal inflammation has not been investigated. The effects of AR170, a potent and selective A3 receptor agonist, and dexamethasone (DEX) were tested in rats with 2,4-dinitrobenzene sulfonic acid (DNBS)-induced colitis to assess their tissue inflammatory parameters. The animals received AR170, DEX, or a vehicle intraperitoneally for 6 days, starting 1 day before the induction of colitis. Visceral pain was assessed by recording the abdominal responses to colorectal distension in animals with colitis. Colitis was associated with a decrease in body weight and an increase in spleen weight. The macroscopic damage score and tissue tumor necrosis factor (TNF), interleukin 1β (IL-1β), and myeloperoxidase (MPO) levels were also enhanced. AR170, but not DEX, improved body weight. Both drugs counteracted the increase in spleen weight, ameliorated macroscopic colonic damage, and decreased TNF, IL-1β, and MPO tissue levels. The enhanced visceromotor response (VMR) in rats with colitis was decreased via AR170 administration. In rats with colitis, AR170 counteracted colonic inflammatory cell infiltration and decreased pro-inflammatory cytokine levels, thereby relieving visceral hypersensitivity.
Collapse
Affiliation(s)
- Luca Antonioli
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy; (L.A.); (M.F.); (L.B.); (C.B.)
| | - Elena Lucarini
- Department of Neurosciences, Psychology, Drug Research and Child Health–Neurofarba–Section of Pharmacology and Toxicology, University of Florence, 50139 Florence, Italy; (E.L.); (L.D.C.M.); (C.G.)
| | - Catia Lambertucci
- School of Pharmacy, Medicinal Chemistry Unit, University of Camerino, 62032 Camerino (MC), Italy; (C.L.); (A.S.); (G.M.); (D.D.B.)
| | - Matteo Fornai
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy; (L.A.); (M.F.); (L.B.); (C.B.)
| | | | - Laura Benvenuti
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy; (L.A.); (M.F.); (L.B.); (C.B.)
| | - Lorenzo Di Cesare Mannelli
- Department of Neurosciences, Psychology, Drug Research and Child Health–Neurofarba–Section of Pharmacology and Toxicology, University of Florence, 50139 Florence, Italy; (E.L.); (L.D.C.M.); (C.G.)
| | - Andrea Spinaci
- School of Pharmacy, Medicinal Chemistry Unit, University of Camerino, 62032 Camerino (MC), Italy; (C.L.); (A.S.); (G.M.); (D.D.B.)
| | - Gabriella Marucci
- School of Pharmacy, Medicinal Chemistry Unit, University of Camerino, 62032 Camerino (MC), Italy; (C.L.); (A.S.); (G.M.); (D.D.B.)
| | - Corrado Blandizzi
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy; (L.A.); (M.F.); (L.B.); (C.B.)
| | - Carla Ghelardini
- Department of Neurosciences, Psychology, Drug Research and Child Health–Neurofarba–Section of Pharmacology and Toxicology, University of Florence, 50139 Florence, Italy; (E.L.); (L.D.C.M.); (C.G.)
| | - Rosaria Volpini
- School of Pharmacy, Medicinal Chemistry Unit, University of Camerino, 62032 Camerino (MC), Italy; (C.L.); (A.S.); (G.M.); (D.D.B.)
- Correspondence:
| | - Diego Dal Ben
- School of Pharmacy, Medicinal Chemistry Unit, University of Camerino, 62032 Camerino (MC), Italy; (C.L.); (A.S.); (G.M.); (D.D.B.)
| |
Collapse
|
15
|
Parisio C, Lucarini E, Micheli L, Toti A, Khatib M, Mulinacci N, Calosi L, Bani D, Di Cesare Mannelli L, Ghelardini C. Pomegranate Mesocarp against Colitis-Induced Visceral Pain in Rats: Effects of a Decoction and Its Fractions. Int J Mol Sci 2020; 21:E4304. [PMID: 32560291 PMCID: PMC7353021 DOI: 10.3390/ijms21124304] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 06/15/2020] [Accepted: 06/15/2020] [Indexed: 12/12/2022] Open
Abstract
The management of chronic visceral pain related to Inflammatory Bowel Diseases or Irritable Bowel Syndrome is still a clinical problem and new therapeutic strategies continue to be investigated. In the present study, the efficacy of a pomegranate decoction and of its polysaccharide and ellagitannin components in preventing the development of colitis-induced abdominal pain in rats was evaluated. After colitis induction by 2,4-dinitrobenzenesulfonic acid (DNBS), the pomegranate decoction (300 mg kg-1), polysaccharides (300 mg kg-1), and ellagitannins (45 mg kg-1) were orally administered for 14 days. Repeated treatment with decoction reduced visceral hypersensitivity in the colitic animals both at 7 and 14 days. Similar efficacy was shown by polysaccharides, but with lower potency. Ellagitannins administered at dose equivalent to decoction content showed higher efficacy in reducing the development of visceral pain. Macroscopic and microscopic evaluations performed on the colon 14 days after the damage showed that all three preparations reduced the overall amount of mast cells, the number of degranulated mast cells, and the density of collagen fibers in the mucosal stroma. Although ellagitannins seem to be responsible for most of the beneficial effects of pomegranate on DNBS-induced colitis, the polysaccharides support and enhance its effect. Therefore, pomegranate mesocarp preparations could represent a complementary approach to conventional therapies for promoting abdominal pain relief.
Collapse
Affiliation(s)
- Carmen Parisio
- Department of Neuroscience, Psychology, Drug Research and Child Health-NEUROFARBA-Pharmacology and Toxicology Section, University of Florence, Viale Pieraccini 6, 50139 Florence, Italy; (C.P.); (E.L.); (L.M.); (A.T.); (C.G.)
| | - Elena Lucarini
- Department of Neuroscience, Psychology, Drug Research and Child Health-NEUROFARBA-Pharmacology and Toxicology Section, University of Florence, Viale Pieraccini 6, 50139 Florence, Italy; (C.P.); (E.L.); (L.M.); (A.T.); (C.G.)
| | - Laura Micheli
- Department of Neuroscience, Psychology, Drug Research and Child Health-NEUROFARBA-Pharmacology and Toxicology Section, University of Florence, Viale Pieraccini 6, 50139 Florence, Italy; (C.P.); (E.L.); (L.M.); (A.T.); (C.G.)
| | - Alessandra Toti
- Department of Neuroscience, Psychology, Drug Research and Child Health-NEUROFARBA-Pharmacology and Toxicology Section, University of Florence, Viale Pieraccini 6, 50139 Florence, Italy; (C.P.); (E.L.); (L.M.); (A.T.); (C.G.)
| | - Mohamad Khatib
- Department of Neuroscience, Psychology, Drug Research and Child Health-NEUROFARBA-Pharmaceutical and Nutraceutical Division, University of Florence, Via Ugo Schiff 6, 50019 Florence, Italy; (M.K.); (N.M.)
| | - Nadia Mulinacci
- Department of Neuroscience, Psychology, Drug Research and Child Health-NEUROFARBA-Pharmaceutical and Nutraceutical Division, University of Florence, Via Ugo Schiff 6, 50019 Florence, Italy; (M.K.); (N.M.)
| | - Laura Calosi
- Department of Experimental & Clinical Medicine, Section of Anatomy & Histology & Research Unit of Histology & Embryology, University of Florence, Viale Pieraccini 6, 50139 Florence, Italy; (L.C.); (D.B.)
| | - Daniele Bani
- Department of Experimental & Clinical Medicine, Section of Anatomy & Histology & Research Unit of Histology & Embryology, University of Florence, Viale Pieraccini 6, 50139 Florence, Italy; (L.C.); (D.B.)
| | - Lorenzo Di Cesare Mannelli
- Department of Neuroscience, Psychology, Drug Research and Child Health-NEUROFARBA-Pharmacology and Toxicology Section, University of Florence, Viale Pieraccini 6, 50139 Florence, Italy; (C.P.); (E.L.); (L.M.); (A.T.); (C.G.)
| | - Carla Ghelardini
- Department of Neuroscience, Psychology, Drug Research and Child Health-NEUROFARBA-Pharmacology and Toxicology Section, University of Florence, Viale Pieraccini 6, 50139 Florence, Italy; (C.P.); (E.L.); (L.M.); (A.T.); (C.G.)
| |
Collapse
|
16
|
Intra-Articular Route for the System of Molecules 14G1862 from Centella Asiatica: Pain Relieving and Protective Effects in a Rat Model of Osteoarthritis. Nutrients 2020; 12:nu12061618. [PMID: 32486519 PMCID: PMC7352185 DOI: 10.3390/nu12061618] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 05/15/2020] [Accepted: 05/27/2020] [Indexed: 12/20/2022] Open
Abstract
Current pharmacological therapies for the management of chronic articular diseases are far from being satisfactory, so new strategies need to be investigated. We tested the intra-articular pain relieving properties of a system of molecules from a characterized Centella asiatica extract (14G1862) in a rat model of osteoarthritis induced by monoiodoacetate (MIA). 14G1862 (0.2–2 mg mL−1) was intra-articularly (i.a.) injected 7 days after MIA, behavioural and histological evaluations were performed 14, 30 and 60 days after treatments. Moreover, the effect of 14G1862 on nitrate production and iNOS expression in RAW 264.7 macrophages stimulated with LPS was assessed. In vitro, 14G1862 treatment attenuated LPS-induced NO production and iNOS expression in a comparable manner to celecoxib. In vivo, 14G1862 significantly reduced mechanical allodynia and hyperalgesia, spontaneous pain and motor alterations starting on day 14 up to day 60. The efficacy was higher or comparable to that evoked by triamcinolone acetonide (100 μg i.a.) used as reference drug. Histological evaluation highlighted the improvement of several morphological parameters in MIA + 14G1862-treated animals with particularly benefic effects on joint space and fibrin deposition. In conclusion, i.a. treatment with Centella asiatica is a candidate to be a novel effective approach for osteoarthritis therapy.
Collapse
|
17
|
New Regulations on Medical Devices in Europe: Are They an Opportunity for Growth? ADMINISTRATIVE SCIENCES 2020. [DOI: 10.3390/admsci10010016] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Increasing demand for modern treatments and significant profit margins are strong incentives for investors and producers. However, the production and use of medical devices is subject to a number of laws, regulations, strict standards, and certification processes. Therefore, the aim of this paper is to analyze patent activity based on the example of the selected country (Czech Republic), compare it with selected foreign countries, and discuss the development of this industry in the context of new medical device regulation (MDR) implementation. The paper is based on the theoretical concept of the relationship between regulation and innovation. The main challenge in the implementation of the new medical device regulations lies in the area of innovation. This is because most innovative research in the medical device sector is undertaken by small to medium enterprises (SMEs) rather than by large companies. SMEs are more vulnerable than big companies when it comes to development because the accompanying administrative costs can be so high that it may force the company to leave the market. Given that the main reason for the existence of economic regulations are various forms of market failure, which occurs when market mechanisms do not lead to results that benefit society, any attempts to redress this situation should naturally lead to greater benefits for society and hence benefits for the given industry as well.
Collapse
|