1
|
Yuan H, Huang H, Du Y, Zhao J, Yu S, Lin Y, Chen Y, Shan C, Zhao Y, Belwal T, Fu X. Sea buckthorn polyphenols on gastrointestinal health and the interactions with gut microbiota. Food Chem 2025; 469:142591. [PMID: 39721439 DOI: 10.1016/j.foodchem.2024.142591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 11/27/2024] [Accepted: 12/19/2024] [Indexed: 12/28/2024]
Abstract
The potential health benefits of sea buckthorn polyphenols (SBP) have been extensively studied, attracting increasing attention from researchers. This paper reviews the composition of SBP, the effects of processing on SBP, its interactions with nutrients, and its protective role in the gastrointestinal tract. Polyphenols influence nutrient absorption and metabolism by regulating the intestinal flora, thereby enhancing bioavailability, protecting the gastrointestinal tract, and altering nutrient structures. Additionally, polyphenols exhibit anti-inflammatory and immunomodulatory effects, promoting intestinal health. The interaction between polyphenols and intestinal flora plays a significant role in gastrointestinal health, supporting the composition and diversity of the gut microbiota. However, further research is needed to emphasize the importance of human trials and to explore the intricate relationship between SBP and gut microbiota, as these insights are crucial for understanding the mechanisms underlying SBP's benefits for the gastrointestinal tract (GIT).
Collapse
Affiliation(s)
- Hexi Yuan
- Key Laboratory of Characteristics Agricultural Product Processing and Quality Control (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang, 832000, China; Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang, 832000, China; Engineering Research Center of Storage and Processing of Xinjiang Characteristic Fruits and Vegetables, Ministry of Education, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang, 832000, China
| | - Hao Huang
- College of Ecology, Lishui University, Lishui 323000, China
| | - Yinglin Du
- Key Laboratory of Characteristics Agricultural Product Processing and Quality Control (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang, 832000, China; Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang, 832000, China; Engineering Research Center of Storage and Processing of Xinjiang Characteristic Fruits and Vegetables, Ministry of Education, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang, 832000, China.
| | - Jiaqi Zhao
- Key Laboratory of Characteristics Agricultural Product Processing and Quality Control (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang, 832000, China; Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang, 832000, China; Engineering Research Center of Storage and Processing of Xinjiang Characteristic Fruits and Vegetables, Ministry of Education, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang, 832000, China
| | - Shiyang Yu
- Key Laboratory of Characteristics Agricultural Product Processing and Quality Control (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang, 832000, China; Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang, 832000, China; Engineering Research Center of Storage and Processing of Xinjiang Characteristic Fruits and Vegetables, Ministry of Education, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang, 832000, China
| | - Yanhong Lin
- Key Laboratory of Characteristics Agricultural Product Processing and Quality Control (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang, 832000, China; Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang, 832000, China; Engineering Research Center of Storage and Processing of Xinjiang Characteristic Fruits and Vegetables, Ministry of Education, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang, 832000, China
| | - Yan Chen
- GOBI Memory Brand Management Co. Ltd, Ninth Division 170 Regiment Sea buckthorn Picking-garden, Tacheng 834700, China
| | - Chunhui Shan
- Key Laboratory of Characteristics Agricultural Product Processing and Quality Control (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang, 832000, China; Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang, 832000, China; Engineering Research Center of Storage and Processing of Xinjiang Characteristic Fruits and Vegetables, Ministry of Education, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang, 832000, China
| | - Yue Zhao
- Key Laboratory of Characteristics Agricultural Product Processing and Quality Control (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang, 832000, China; Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang, 832000, China; Engineering Research Center of Storage and Processing of Xinjiang Characteristic Fruits and Vegetables, Ministry of Education, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang, 832000, China
| | | | - Xizhe Fu
- Key Laboratory of Characteristics Agricultural Product Processing and Quality Control (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang, 832000, China; Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang, 832000, China; Engineering Research Center of Storage and Processing of Xinjiang Characteristic Fruits and Vegetables, Ministry of Education, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang, 832000, China.
| |
Collapse
|
2
|
Mulinari Turin de Oliveira N, Schiebel CS, Sauruk da Silva K, de Mello Braga LLV, Bach C, Maria-Ferreira D. Efficacy of Dietary Supplementation in the Relief of Inflammatory Bowel Disease: A Systematic Review of Animal Studies. Nutr Rev 2025:nuae224. [PMID: 39992299 DOI: 10.1093/nutrit/nuae224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2025] Open
Abstract
CONTEXT Supplementation with dietary components is a promising approach for the treatment of inflammatory bowel disease (IBD). OBJECTIVE The aim was to examine the effects of dietary supplements on experimental animal models of IBD. DATA SOURCES Articles were selected from 2016 to 2021 and from specific databases (PubMed, Embase, and Scopus). DATA EXTRACTION Forty-nine studies were analyzed. DATA ANALYSIS Of the 49 studies, 8 investigated supplementation with oils/polyunsaturated fatty acids, 5 with flavones, 5 with prebiotics and probiotics, 6 with amino acids, 4 with fruits, 4 with vegetables, 2 with minerals, 2 with vitamins, 3 with plants, 2 with polyphenols, and 8 from various sources. Polyunsaturated fatty acids, flavones, prebiotics, and probiotics are among the most extensively studied compounds. Protection is associated with reducing inflammation and oxidative stress, protecting the epithelial barrier and altering the microbiota; however, more rigorous protocols are needed to definitively confirm their protective effects and enable translational research. Fruits, vegetables, plant compounds, minerals, vitamins, and polyphenols, on the other hand, should be studied further and deserve more attention in research. CONCLUSION The results included here support further research into the beneficial effects of supplementation in IBD. Some studies are more advanced and have presented more elaborate protocols, while others still require an increase in knowledge. The identification of dietary supplements that can improve the course of IBD could have an important and lasting impact on the treatment of IBD. SYSTEMATIC REVIEW REGISTRATION PROSPERO registration no. CRD42022295260.
Collapse
Affiliation(s)
- Natalia Mulinari Turin de Oliveira
- Faculdades Pequeno Príncipe, Instituto de Pesquisa Pelé Pequeno Príncipe, Curitiba, PR 80250-060, Brazil
- Faculdades Pequeno Príncipe, Programa de Pós-graduação em Biotecnologia Aplicada à Saúde da Criança e do Adolescente, Curitiba, PR 80250-060, Brazil
| | - Carolina Silva Schiebel
- Faculdades Pequeno Príncipe, Instituto de Pesquisa Pelé Pequeno Príncipe, Curitiba, PR 80250-060, Brazil
- Faculdades Pequeno Príncipe, Programa de Pós-graduação em Biotecnologia Aplicada à Saúde da Criança e do Adolescente, Curitiba, PR 80250-060, Brazil
| | - Karien Sauruk da Silva
- Faculdades Pequeno Príncipe, Instituto de Pesquisa Pelé Pequeno Príncipe, Curitiba, PR 80250-060, Brazil
- Faculdades Pequeno Príncipe, Programa de Pós-graduação em Biotecnologia Aplicada à Saúde da Criança e do Adolescente, Curitiba, PR 80250-060, Brazil
| | - Lara Luisa Valerio de Mello Braga
- Faculdades Pequeno Príncipe, Instituto de Pesquisa Pelé Pequeno Príncipe, Curitiba, PR 80250-060, Brazil
- Faculdades Pequeno Príncipe, Programa de Pós-graduação em Biotecnologia Aplicada à Saúde da Criança e do Adolescente, Curitiba, PR 80250-060, Brazil
| | - Camila Bach
- Faculdades Pequeno Príncipe, Instituto de Pesquisa Pelé Pequeno Príncipe, Curitiba, PR 80250-060, Brazil
- Faculdades Pequeno Príncipe, Programa de Pós-graduação em Biotecnologia Aplicada à Saúde da Criança e do Adolescente, Curitiba, PR 80250-060, Brazil
| | - Daniele Maria-Ferreira
- Faculdades Pequeno Príncipe, Instituto de Pesquisa Pelé Pequeno Príncipe, Curitiba, PR 80250-060, Brazil
- Faculdades Pequeno Príncipe, Programa de Pós-graduação em Biotecnologia Aplicada à Saúde da Criança e do Adolescente, Curitiba, PR 80250-060, Brazil
| |
Collapse
|
3
|
Haro-Reyes J, Raghupathi JK, Reddivari L. Composition of Human-Associated Gut Microbiota Determines 3-DF and 3-HF Anti-Colitic Activity in IL-10 -/- Mice. Nutrients 2024; 16:4232. [PMID: 39683625 DOI: 10.3390/nu16234232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 12/03/2024] [Accepted: 12/03/2024] [Indexed: 12/18/2024] Open
Abstract
BACKGROUND Gut bacterial dysbiosis along with intestinal mucosal disruption plays a critical role in inflammatory disorders like ulcerative colitis. Flavonoids and other food bioactives have been studied in mice models as alternative treatments with minimal side effects. However, most of the research has been carried out with mice-native microbiota, which limits the comprehension of the interaction between flavonoids and human-associated bacteria. Hence, the objective of our study was to determine the effect of healthy human-associated microbiota on the anti-colitic activity of diets rich in anthocyanins (3-HF) and phlobaphenes (3-DF). METHODS In this regard, the interleukin (IL)-10 -/- mice model was utilized. Mice were divided into three groups for inoculation with human gut bacteria from three different healthy donors and assigned to four diets. A purified diet (Diet P) and three diets containing 25% near-isogenic lines (NILs) of corn were evaluated. Diets were substituted with NILs expressing only 3-DFs (diet B), only 3-HFs (diet C), and both 3-DF and 3-HF (diet D). RESULTS In an overall analysis, flavonoid-rich diets did not affect inflammatory markers, microbiota diversity, or gut metabolites, but diets containing anthocyanins improved barrier function parameters. However, when data was segmented by the recipient's microbiota from different human donors, the diet effects became significant. Furthermore, 3-HFs showed more beneficial effects than 3-DFs across the recipient's microbiota. CONCLUSIONS Our study suggests that the anti-colitic activity of 3-DF and 3-HF and their gut metabolites depends on the donor's microbial composition.
Collapse
Affiliation(s)
- Jose Haro-Reyes
- Department of Food Science, Purdue University, West Lafayette, IN 47907, USA
| | - Jayaprakash Kanijam Raghupathi
- Department of Food Science, Purdue University, West Lafayette, IN 47907, USA
- Department of Chemistry, Acharya Nagarjuna University, Guntur 522510, Andhra Pradesh, India
| | - Lavanya Reddivari
- Department of Food Science, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
4
|
Liu H, Guo X, Jiang K, Shi B, Liu L, Hou R, Chen G, Farag MA, Yan N, Liu L. Dietary polyphenols regulate appetite mechanism via gut-brain axis and gut homeostasis. Food Chem 2024; 446:138739. [PMID: 38412807 DOI: 10.1016/j.foodchem.2024.138739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 02/04/2024] [Accepted: 02/10/2024] [Indexed: 02/29/2024]
Abstract
Nowadays, due to the rise of fast-food consumption, the metabolic diseases are increasing as a result of high-sugar and high-fat diets. Therefore, there is an urgent need for natural, healthy and side-effect-free diets in daily life. Whole grain supplementation can enhance satiety and regulate energy metabolism, effects that have been attributed to polyphenol content. Dietary polyphenols interact with gut microbiota to produce intermediate metabolites that can regulate appetite while also enhancing prebiotic effects. This review considers how interactions between gut metabolites and dietary polyphenols might regulate appetite by acting on the gut-brain axis. In addition, further advances in the study of dietary polyphenols and gut microbial metabolites on energy metabolism and gut homeostasis are summarized. This review contributes to a better understanding of how dietary polyphenols regulate appetite via the gut-brain axis, thereby providing nutritional references for citizens' dietary preferences.
Collapse
Affiliation(s)
- Hongyan Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, School of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, China
| | - Xue Guo
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, School of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, China
| | - Kexin Jiang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, School of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, China
| | - Boshan Shi
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, School of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, China
| | - Lingyi Liu
- Department of Food Science and Technology, University of Nebraska-Lincoln, NE, USA
| | - Ruyan Hou
- State Key Laboratory of Tea Plant Biology and Utilization, Key Laboratory of Food Nutrition and Safety, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, China
| | - Guijie Chen
- State Key Laboratory of Tea Plant Biology and Utilization, Key Laboratory of Food Nutrition and Safety, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, China
| | - Mohamed A Farag
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| | - Ning Yan
- Plant Functional Component Research Center, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, No. 11 Forth Longitudinal Keyuan Rd, Laoshan District, Qingdao 266101, China
| | - Lianliang Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, School of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, China.
| |
Collapse
|
5
|
Wei X, Wang J, Wang Y, Zhao Y, Long Y, Tan B, Li QX, Dong Z, Wan X. Dietary fiber and polyphenols from whole grains: effects on the gut and health improvements. Food Funct 2024; 15:4682-4702. [PMID: 38590246 DOI: 10.1039/d4fo00715h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2024]
Abstract
Cereals are the main source of energy in the human diet. Compared to refined grains, whole grains retain more beneficial components, including dietary fiber, polyphenols, proteins, vitamins, and minerals. Dietary fiber and bound polyphenols (biounavailable) in cereals are important active substances that can be metabolized by the gut microorganisms and affect the intestinal environment. There is a close relationship between the gut microbiota structures and various disease phenotypes, although the consistency of this link is affected by many factors, and the specific mechanisms are still unclear. Remodeling unfavorable microbiota is widely recognized as an important way to target the gut and improve diseases. This paper mainly reviews the interaction between the gut microbiota and cereal-derived dietary fiber and polyphenols, and also summarizes the changes to the gut microbiota and possible molecular mechanisms of related glycolipid metabolism. The exploration of single active ingredients in cereals and their synergistic health mechanisms will contribute to a better understanding of the health benefits of whole grains. It will further help promote healthier whole grain foods by cultivating new varieties with more potential and optimizing processing methods.
Collapse
Affiliation(s)
- Xun Wei
- Research Institute of Biology and Agriculture, University of Science and Technology Beijing, Beijing 100024, China.
- Environmental Economics and Natural Resources Group, Wageningen University & Research, Wageningen 6706 KN, The Netherlands
| | - Jianhui Wang
- Research Institute of Biology and Agriculture, University of Science and Technology Beijing, Beijing 100024, China.
| | - Yaxuan Wang
- Research Institute of Biology and Agriculture, University of Science and Technology Beijing, Beijing 100024, China.
| | - Yilin Zhao
- Research Institute of Biology and Agriculture, University of Science and Technology Beijing, Beijing 100024, China.
| | - Yan Long
- Research Institute of Biology and Agriculture, University of Science and Technology Beijing, Beijing 100024, China.
| | - Bin Tan
- Academy of National Food and Strategic Reserves Administration, Beijing 100037, China
| | - Qing X Li
- Department of Molecular Biosciences and Bioengineering, University of Hawaii at Manoa, Honolulu, Hawaii 96822, USA
| | - Zhenying Dong
- Research Institute of Biology and Agriculture, University of Science and Technology Beijing, Beijing 100024, China.
| | - Xiangyuan Wan
- Research Institute of Biology and Agriculture, University of Science and Technology Beijing, Beijing 100024, China.
| |
Collapse
|
6
|
Tahiri M, Johnsrud C, Steffensen IL. Evidence and hypotheses on adverse effects of the food additives carrageenan (E 407)/processed Eucheuma seaweed (E 407a) and carboxymethylcellulose (E 466) on the intestines: a scoping review. Crit Rev Toxicol 2023; 53:521-571. [PMID: 38032203 DOI: 10.1080/10408444.2023.2270574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 10/02/2023] [Accepted: 10/02/2023] [Indexed: 12/01/2023]
Abstract
This scoping review provides an overview of publications reporting adverse effects on the intestines of the food additives carrageenan (CGN) (E 407)/processed Eucheuma seaweed (PES) (E 407a) and carboxymethylcellulose (CMC) (E 466). It includes evidence from human, experimental mammal and in vitro research publications, and other evidence. The databases Medline, Embase, Scopus, Web of Science Core Collection, Cochrane Database of Systematic Reviews and Epistemonikos were searched without time limits, in addition to grey literature. The publications retrieved were screened against predefined criteria. From two literature searches, 2572 records were screened, of which 224 records were included, as well as 38 records from grey literature, making a total of 262 included publications, 196 on CGN and 101 on CMC. These publications were coded and analyzed in Eppi-Reviewer and data gaps presented in interactive maps. For CGN, five, 69 and 33 research publications on humans, experimental mammals and in vitro experiments were found, further separated as degraded or native (non-degraded) CGN. For CMC, three human, 20 animal and 14 in vitro research publications were obtained. The most studied adverse effects on the intestines were for both additives inflammation, the gut microbiome, including fermentation, intestinal permeability, and cancer and metabolic effects, and immune effects for CGN. Further studies should focus on native CGN, in the form and molecular weight used as food additive. For both additives, randomized controlled trials of sufficient power and with realistic dietary exposure levels of single additives, performed in persons of all ages, including potentially vulnerable groups, are needed.
Collapse
Affiliation(s)
- Mirlinda Tahiri
- Department of Food Safety, Division of Climate and Environmental Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Celine Johnsrud
- Department of Food Safety, Division of Climate and Environmental Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Inger-Lise Steffensen
- Department of Food Safety, Division of Climate and Environmental Health, Norwegian Institute of Public Health, Oslo, Norway
| |
Collapse
|
7
|
Herrera-Rocha KM, Manjarrez-Juanes MM, Larrosa M, Barrios-Payán JA, Rocha-Guzmán NE, Macías-Salas A, Gallegos-Infante JA, Álvarez SA, González-Laredo RF, Moreno-Jiménez MR. The Synergistic Effect of Quince Fruit and Probiotics ( Lactobacillus and Bifidobacterium) on Reducing Oxidative Stress and Inflammation at the Intestinal Level and Improving Athletic Performance during Endurance Exercise. Nutrients 2023; 15:4764. [PMID: 38004161 PMCID: PMC10675360 DOI: 10.3390/nu15224764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 11/04/2023] [Accepted: 11/08/2023] [Indexed: 11/26/2023] Open
Abstract
Endurance exercise promotes damage at the intestinal level and generates a variety of symptoms related to oxidative stress processes, inflammatory processes, microbiota dysbiosis, and intestinal barrier damage. This study evaluated the effects of quince (Cydonia oblonga Mill.) and probiotics of the genera Lactobacillus and Bifidobacterium on intestinal protection and exercise endurance in an animal swimming model. Phytochemical characterization of the quince fruit demonstrated a total dietary fiber concentration of 0.820 ± 0.70 g/100 g and a fiber-bound phenolic content of 30,218 ± 104 µg/g in the freeze-dried fruit. UPLC-PDA-ESI-QqQ analyses identified a high content of polyphenol, mainly flavanols, hydroxycinnamic acids, hydroxybenzoic acids, flavonols, and, to a lesser extent, dihydrochalcones. The animal model of swimming was performed using C57BL/6 mice. The histological results determined that the consumption of the synbiotic generated intestinal protection and increased antioxidant (catalase and glutathione peroxidase enzymes) and anti-inflammatory (TNF-α and IL-6 and increasing IL-10) activities. An immunohistochemical analysis indicated mitochondrial biogenesis (Tom2) at the muscular level related to the increased swimming performance. These effects correlated mainly with the polyphenol content of the fruit and the effect of the probiotics. Therefore, this combination of quince and probiotics could be an alternative for the generation of a synbiotic product that improves exercise endurance and reduces the effects generated by the practice of high performance sports.
Collapse
Affiliation(s)
- Karen Marlenne Herrera-Rocha
- Research Group on Functional Foods and Nutraceuticals, Department of Chemical and Biochemical Engineering, TecNM/Instituto Tecnológico de Durango, Felipe Pescador 1830 Ote., Durango 34080, Mexico
| | - María Magdalena Manjarrez-Juanes
- Research Group on Functional Foods and Nutraceuticals, Department of Chemical and Biochemical Engineering, TecNM/Instituto Tecnológico de Durango, Felipe Pescador 1830 Ote., Durango 34080, Mexico
| | - Mar Larrosa
- Department of Nutrition and Food Science, Facultad de Farmacia, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Jorge Alberto Barrios-Payán
- Laboratory of Experimental Pathology, National Institute of Medical Sciences and Nutrition Salvador Zubirán (INCMNSZ), Vasco de Quiroga #15, Tlalpan, Ciudad de México 14080, Mexico
| | - Nuria Elizabeth Rocha-Guzmán
- Research Group on Functional Foods and Nutraceuticals, Department of Chemical and Biochemical Engineering, TecNM/Instituto Tecnológico de Durango, Felipe Pescador 1830 Ote., Durango 34080, Mexico
| | - Alejo Macías-Salas
- Hospital Santiago Ramón y Cajal, Departamento de Patología, Instituto de Seguridad y Servicios Sociales de los Trabajadores del Estado, Durango 34079, Mexico
| | - José Alberto Gallegos-Infante
- Research Group on Functional Foods and Nutraceuticals, Department of Chemical and Biochemical Engineering, TecNM/Instituto Tecnológico de Durango, Felipe Pescador 1830 Ote., Durango 34080, Mexico
| | - Saul Alberto Álvarez
- Research Group on Functional Foods and Nutraceuticals, Department of Chemical and Biochemical Engineering, TecNM/Instituto Tecnológico de Durango, Felipe Pescador 1830 Ote., Durango 34080, Mexico
| | - Rubén Francisco González-Laredo
- Research Group on Functional Foods and Nutraceuticals, Department of Chemical and Biochemical Engineering, TecNM/Instituto Tecnológico de Durango, Felipe Pescador 1830 Ote., Durango 34080, Mexico
| | - Martha Rocío Moreno-Jiménez
- Research Group on Functional Foods and Nutraceuticals, Department of Chemical and Biochemical Engineering, TecNM/Instituto Tecnológico de Durango, Felipe Pescador 1830 Ote., Durango 34080, Mexico
| |
Collapse
|
8
|
Wu B, Cox AD, Chang H, Kennett M, Rosa C, Chopra S, Li S, Reddivari L. Maize near-isogenic lines with enhanced flavonoids alleviated dextran sodium sulfate-induced murine colitis via modulation of the gut microbiota. Food Funct 2023; 14:9606-9616. [PMID: 37814601 DOI: 10.1039/d3fo02953k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/11/2023]
Abstract
The rising incidence of inflammatory bowel disease (IBD) has necessitated the search for safe and effective novel therapeutic strategies. Dietary flavonoids exhibited antioxidant, antiproliferative, and anticarcinogenic activities in several model systems with proven abilities to reduce inflammation and oxidative stress, thus they could be promising therapeutic agents for IBD prevention/treatment. However, understanding the role of a specific class of compounds in foods that promote health is difficult because of the chemically complex food matrices. This study aimed to utilize four maize near-isogenic lines to determine the anti-colitis effects of specific classes of flavonoids, anthocyanins and/or phlobaphenes, in a whole-food matrix. Results showed that the intake of anthocyanin and phlobaphene-enriched maize diets effectively alleviated dextran sodium sulfate (DSS)-induced colitis in mice via reducing the intestinal permeability and restoring the barrier function. Anthocyanin diets were more effective in maintaining the crypt structure and muc2 protein levels and reducing inflammation. Bacterial communities of mice consuming diets enriched with anthocyanins and phlobaphenes were more similar to the healthy control compared to the DSS control group, suggesting the role of flavonoids in modulating the gut microbiota to retrieve intestinal homeostasis. Microbiota depletion rendered these compounds ineffective against colitis. Lower serum concentrations of several phenolic acids were detected in the microbiota-depleted mice, indicating that gut microbiota plays a role in flavonoid metabolism and bioavailability.
Collapse
Affiliation(s)
- Binning Wu
- Department of Food Science, Purdue University, West Lafayette, Indiana, USA.
- Department of Plant Science, The Pennsylvania State University, University Park, Pennsylvania, USA
- Interdisciplinary Graduate Program in Plant Biology, The Pennsylvania State University, University Park, PA, USA
| | - Abigail D Cox
- Department of Comparative Pathobiology, Purdue University, West Lafayette, Indiana, USA
| | - Haotian Chang
- Department of Food Science, Purdue University, West Lafayette, Indiana, USA.
| | - Mary Kennett
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Cristina Rosa
- Interdisciplinary Graduate Program in Plant Biology, The Pennsylvania State University, University Park, PA, USA
- Department of Plant Pathology and Environmental Microbiology, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Surinder Chopra
- Department of Plant Science, The Pennsylvania State University, University Park, Pennsylvania, USA
- Interdisciplinary Graduate Program in Plant Biology, The Pennsylvania State University, University Park, PA, USA
| | - Shiyu Li
- Department of Food Science, Purdue University, West Lafayette, Indiana, USA.
| | - Lavanya Reddivari
- Department of Food Science, Purdue University, West Lafayette, Indiana, USA.
| |
Collapse
|
9
|
do Nascimento RDP, da Rocha Alves M, Noguera NH, Lima DC, Marostica Junior MR. Cereal grains and vegetables. NATURAL PLANT PRODUCTS IN INFLAMMATORY BOWEL DISEASES 2023:103-172. [DOI: 10.1016/b978-0-323-99111-7.00014-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
10
|
Weikart DK, Indukuri VV, Racine KC, Coleman KM, Kovac J, Cockburn DW, Hopfer H, Neilson AP, Lambert JD. Effect of processing on the anti-inflammatory efficacy of cocoa in a high fat diet-induced mouse model of obesity. J Nutr Biochem 2022; 109:109117. [DOI: 10.1016/j.jnutbio.2022.109117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 05/16/2022] [Accepted: 06/24/2022] [Indexed: 10/31/2022]
|
11
|
Inclusion of high-flavonoid corn in the diet of broiler chickens as a potential approach for the control of necrotic enteritis. Poult Sci 2022; 101:101796. [PMID: 35364456 PMCID: PMC8968645 DOI: 10.1016/j.psj.2022.101796] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 02/10/2022] [Accepted: 02/13/2022] [Indexed: 10/25/2022] Open
|
12
|
Li S, Wang T, Fu W, Kennett M, Cox AD, Lee D, Vanamala JKP, Reddivari L. Role of Gut Microbiota in the Anti-Colitic Effects of Anthocyanin-Containing Potatoes. Mol Nutr Food Res 2021; 65:e2100152. [PMID: 34633750 DOI: 10.1002/mnfr.202100152] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 06/29/2021] [Indexed: 11/07/2022]
Abstract
SCOPE Anthocyanin-containing potatoes exert anti-inflammatory activity in colitic mice. Gut bacterial dysbiosis plays a critical role in ulcerative colitis. This study examined the extent to which the anti-colitic activity of anthocyanin-containing red/purple-fleshed potatoes depends on the gut bacteria using a chemically-induced rodent model of colitis with the intact and antibiotic-ablated microbiome. METHODS AND RESULTS Four-week-old male mice (C57BL6) are randomly assigned to the control diet or 20% purple-/red-fleshed potatoes supplemented diet group. The microbiota-ablated group received an antibiotic cocktail in drinking water. At week nine, colitis is induced by 2% dextran sulfate sodium (DSS) in drinking water for five days. Administration of antibiotics resulted in a 95% reduction in gut bacterial load and fecal SCFAs. DSS-induced elevated gut permeability and body weight loss are more pronounced in antibiotic mice compared to non-antibiotic mice. Purple- or red-fleshed potato supplementation (20% w/w) ameliorated DSS-induced reduction in colon length and mucin 2 expression levels, and increase in permeability, spleen weight, myeloperoxidase (MPO) activity, and inflammatory cytokines (IL-6, IL-17, and IL1-β) expression levels in non-antibiotic mice, but not in gut microbiota ablated mice. CONCLUSIONS Anthocyanin-containing potatoes are potent in alleviating colitis, and the gut microbiome is critical for the anti-colitic activity of anthocyanin-containing potatoes.
Collapse
Affiliation(s)
- Shiyu Li
- Department of Food Science, Purdue University, 745 Agriculture Mall Drive, West Lafayette, IN, 47907, USA
| | - Tianmin Wang
- Department of Plant Science, Penn State University, University Park, PA, 16802, USA
| | - Wenyi Fu
- Department of Food Science, Purdue University, 745 Agriculture Mall Drive, West Lafayette, IN, 47907, USA
| | - Mary Kennett
- Department of Veterinary and Biomedical Sciences, Penn State University, University Park, PA, 16802, USA
| | - Abigail D Cox
- College of Veterinary Medicine, Purdue University, 625 Harrison Street, West Lafayette, IN, 47907, USA
| | - Dale Lee
- Seattle Children's Hospital, University of Washington, Seattle, WA, 98105, USA
| | - Jairam K P Vanamala
- Department of Food Science, Penn State University, University Park, PA, 16802, USA
| | - Lavanya Reddivari
- Department of Food Science, Purdue University, 745 Agriculture Mall Drive, West Lafayette, IN, 47907, USA
| |
Collapse
|
13
|
Ed Nignpense B, Francis N, Blanchard C, Santhakumar AB. Bioaccessibility and Bioactivity of Cereal Polyphenols: A Review. Foods 2021; 10:foods10071595. [PMID: 34359469 PMCID: PMC8307242 DOI: 10.3390/foods10071595] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/05/2021] [Accepted: 07/07/2021] [Indexed: 12/12/2022] Open
Abstract
Cereal bioactive compounds, especially polyphenols, are known to possess a wide range of disease preventive properties that are attributed to their antioxidant and anti-inflammatory activity. However, due to their low plasma concentrations after oral intake, there is controversy regarding their therapeutic benefits in vivo. Within the gastrointestinal tract, some cereal polyphenols are absorbed in the small intestine, with the majority accumulating and metabolised by the colonic microbiota. Chemical and enzymatic processes occurring during gastrointestinal digestion modulate the bioactivity and bioaccessibility of phenolic compounds. The interactions between the cereal polyphenols and the intestinal epithelium allow the modulation of intestinal barrier function through antioxidant, anti-inflammatory activity and mucin production thereby improving intestinal health. The intestinal microbiota is believed to have a reciprocal interaction with polyphenols, wherein the microbiome produces bioactive and bioaccessible phenolic metabolites and the phenolic compound, in turn, modifies the microbiome composition favourably. Thus, the microbiome presents a key link between polyphenol consumption and the health benefits observed in metabolic conditions in numerous studies. This review will explore the therapeutic value of cereal polyphenols in conjunction with their bioaccessibility, impact on intestinal barrier function and interaction with the microbiome coupled with plasma anti-inflammatory effects.
Collapse
Affiliation(s)
- Borkwei Ed Nignpense
- School of Biomedical Sciences, Charles Sturt University, Locked Bag 588, Wagga Wagga, NSW 2678, Australia; (B.E.N.); (N.F.); (C.B.)
| | - Nidhish Francis
- School of Biomedical Sciences, Charles Sturt University, Locked Bag 588, Wagga Wagga, NSW 2678, Australia; (B.E.N.); (N.F.); (C.B.)
- School of Animal and Veterinary Sciences, Charles Sturt University, Wagga Wagga, NSW 2650, Australia
| | - Christopher Blanchard
- School of Biomedical Sciences, Charles Sturt University, Locked Bag 588, Wagga Wagga, NSW 2678, Australia; (B.E.N.); (N.F.); (C.B.)
- Australian Research Council (ARC), Industrial Transformation Training Centre (ITTC) for Functional Grains, Graham Centre for Agricultural Innovation, Charles Sturt University, Wagga Wagga, NSW 2650, Australia
| | - Abishek Bommannan Santhakumar
- School of Biomedical Sciences, Charles Sturt University, Locked Bag 588, Wagga Wagga, NSW 2678, Australia; (B.E.N.); (N.F.); (C.B.)
- Australian Research Council (ARC), Industrial Transformation Training Centre (ITTC) for Functional Grains, Graham Centre for Agricultural Innovation, Charles Sturt University, Wagga Wagga, NSW 2650, Australia
- Correspondence: ; Tel.: +61-2-6933-2678
| |
Collapse
|
14
|
Wu B, Chang H, Marini R, Chopra S, Reddivari L. Characterization of Maize Near-Isogenic Lines With Enhanced Flavonoid Expression to Be Used as Tools in Diet-Health Complexity. FRONTIERS IN PLANT SCIENCE 2021; 11:619598. [PMID: 33584759 PMCID: PMC7874058 DOI: 10.3389/fpls.2020.619598] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 12/21/2020] [Indexed: 06/12/2023]
Abstract
Increasing incidence of chronic diseases in the 21st century has emphasized the importance of developing crops with enhanced nutritional value. Plant-based diets are associated with reduced incidence of many chronic diseases. The growing population and increased food demand have prioritized the development of high-yielding commercial crop varieties at the expense of natural flavors as well as health-benefiting compounds including polyphenols. Flavonoids are a large subfamily of polyphenols abundant in the plant kingdom with known health-promoting effects, making them a promising trait to be re-introduced into elite lines. Given the vast array of flavonoids and the complexity of plant food metabolome interactions, it is difficult to identify with certainty the specific class(es) of flavonoids in the food matrix that are anti-inflammatory. To address this, we have developed four maize near-isogenic lines (NILs); a line that lacked both anthocyanins and phlobaphenes, a second NIL containing phlobaphenes, a third line had anthocyanins, and a fourth line that contained both anthocyanins and phlobaphenes. The phytochemical profiles and the antioxidant potential of the NILs were characterized. The accumulation of anthocyanins and phlobaphenes contributed significantly to antioxidant capacity compared to maize lines that lacked one or both of the compounds (p < 0.05). Pilot study showed that intake of flavonoid-rich maize diets were able to alleviate experimental colitis in mice. These NILs offer novel materials combining anthocyanins and phlobaphenes and can be used as powerful tools to investigate the disease-preventive effects of specific flavonoid compound in diet/feeding experiments.
Collapse
Affiliation(s)
- Binning Wu
- Department of Plant Science, The Pennsylvania State University, State College, PA, United States
- Interdisciplinary Graduate Program in Plant Biology, The Pennsylvania State University, State College, PA, United States
- Department of Food Science, Purdue University, West Lafayette, IN, United States
| | - Haotian Chang
- Department of Food Science, Purdue University, West Lafayette, IN, United States
| | - Rich Marini
- Department of Plant Science, The Pennsylvania State University, State College, PA, United States
| | - Surinder Chopra
- Department of Plant Science, The Pennsylvania State University, State College, PA, United States
- Interdisciplinary Graduate Program in Plant Biology, The Pennsylvania State University, State College, PA, United States
| | - Lavanya Reddivari
- Department of Food Science, Purdue University, West Lafayette, IN, United States
| |
Collapse
|
15
|
Dey P. Targeting gut barrier dysfunction with phytotherapies: Effective strategy against chronic diseases. Pharmacol Res 2020; 161:105135. [PMID: 32814166 DOI: 10.1016/j.phrs.2020.105135] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 08/06/2020] [Accepted: 08/07/2020] [Indexed: 02/08/2023]
Abstract
The intestinal epithelial layer serves as a physical and functional barrier between the microbe-rich lumen and immunologically active submucosa; it prevents systemic translocation of microbial pyrogenic products (e.g. endotoxin) that elicits immune activation upon translocation to the systemic circulation. Loss of barrier function has been associated with chronic 'low-grade' systemic inflammation which underlies pathogenesis of numerous no-communicable chronic inflammatory disease. Thus, targeting gut barrier dysfunction is an effective strategy for the prevention and/or treatment of chronic disease. This review intends to emphasize on the beneficial effects of herbal formulations, phytochemicals and traditional phytomedicines in attenuating intestinal barrier dysfunction. It also aims to provide a comprehensive understanding of intestinal-level events leading to a 'leaky-gut' and systemic complications mediated by endotoxemia. Additionally, a variety of detectable markers and diagnostic criteria utilized to evaluate barrier improving capacities of experimental therapeutics has been discussed. Collectively, this review provides rationale for targeting gut barrier dysfunction by phytotherapies for treating chronic diseases that are associated with endotoxemia-induced systemic inflammation.
Collapse
Affiliation(s)
- Priyankar Dey
- Department of Biotechnology, Thapar Institute of Engineering and Technology, Patiala, Punjab, India.
| |
Collapse
|