1
|
Chen N, Jin J, Qiao B, Gao Z, Tian Y, Ping J. JNK kinase promotes inflammatory responses by inducing the expression of the inflammatory amplifier TREM1 during influenza a virus infection. Virus Res 2025; 356:199577. [PMID: 40253010 DOI: 10.1016/j.virusres.2025.199577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 04/13/2025] [Accepted: 04/17/2025] [Indexed: 04/21/2025]
Abstract
Since the twentieth century, four influenza pandemics caused by IAV have killed millions of people worldwide. IAV infection could induce acute lung injury mediated by cytokine storms, which is an essential cause of death in critically ill patients. Consequently, it is crucial to explore the regulators and regulatory mechanisms of cytokine storms, which may provide potential drug targets and expand our understanding of acute lung injury. Previous studies have shown that JNK kinase is essential in promoting inflammatory responses during viral infections. In this study, we demonstrated that JNK kinase could regulate the IAV-induced cytokine storms by affecting the expression of pro-inflammatory and anti-inflammatory factors. Further studies revealed that inhibition of JNK kinase activity significantly downregulated the expression of the inflammatory amplifier TREM1. Besides, TREM1 knockdown could significantly inhibit the expression of pro-inflammatory factors. Furthermore, SP600125 is a specific inhibitor of JNK kinase. The results show that TREM1 overexpression reversed the effect of SP600125 treatment on the expression of pro-inflammatory factors. Together, we found that JNK kinase could activate the inflammatory amplifier TREM1 to promote inflammatory responses during influenza A virus infection. These findings may provide some inspiration for subsequent researchers to explore the regulatory mechanisms of cytokine storms induced by emerging viral infections.
Collapse
Affiliation(s)
- Na Chen
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Engineering Laboratory of Animal Immunity of Jiangsu Province, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China.
| | - Jiayu Jin
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Engineering Laboratory of Animal Immunity of Jiangsu Province, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China.
| | - Bingchen Qiao
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Engineering Laboratory of Animal Immunity of Jiangsu Province, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Zihe Gao
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Engineering Laboratory of Animal Immunity of Jiangsu Province, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Yusen Tian
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Engineering Laboratory of Animal Immunity of Jiangsu Province, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China.
| | - Jihui Ping
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Engineering Laboratory of Animal Immunity of Jiangsu Province, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
2
|
Stene C, Xu J, Fallone de Andrade S, Palmquist I, Molin G, Ahrné S, Thorlacius H, Johnson LB, Jeppsson B. Synbiotics protected radiation-induced tissue damage in rectal cancer patients: A controlled trial. Clin Nutr 2025; 49:33-41. [PMID: 40250086 DOI: 10.1016/j.clnu.2025.03.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 02/09/2025] [Accepted: 03/28/2025] [Indexed: 04/20/2025]
Abstract
BACKGROUND & AIMS Colorectal cancer (CRC), particularly rectal cancer, often requires neoadjuvant radiotherapy (RT) as part of its treatment plan. Although effective, RT can cause significant gastrointestinal side effects. Because the onset of RT-induced tissue injury can be anticipated, there is an opportunity to apply preventive measures before the damage occurs. This study aimed to assess whether prebiotic and synbiotic interventions could mitigate RT-induced gut injury by modulating the mucosa-associated microbiota, reducing inflammation, and enhancing gut barrier function in patients undergoing RT for rectal cancer. METHODS Thirty patients with rectal adenocarcinoma scheduled for preoperative short-term RT (5 × 5 Gy) were divided into three groups: a control group (Ctrl), a prebiotic group (Fiber) receiving oat bran, and a synbiotic group (Synbiotics) receiving oat bran with L. plantarum HEAL19 and blueberry husks. The study products were administered daily for two weeks, starting one week before RT. Blood, faecal, and biopsy samples were collected before and after RT to evaluate inflammatory markers, intestinal permeability, histopathological changes, and mucosa-associated microbiota. RESULTS The Fiber and Synbiotics groups exhibited a significant reduction in white blood cell counts following RT (p = 0.01 for both), whereas the Ctrl group did not demonstrate a significant change. However, there was no significant difference in the magnitude of change in white blood cell counts among the three groups (p = 0.12). Histopathological analysis revealed that the Synbiotics group had reduced inflammation and fibrosis compared to the Fiber and Ctrl groups. Although RT reduced bacterial diversity overall, the Synbiotics group preserved a greater proportion of bacterial species, experiencing only a 25.1 % reduction compared to a 55.4 % reduction in the Fiber group. CONCLUSION Synbiotic interventions may protect rectal mucosa by reducing inflammation and modulating mucosa-associated microbiota. The effects were primarily localized to the tissue, reflecting the short-term duration of treatment. While immediate benefits were observed, longer-term interventions should be explored to reduce systemic inflammation.
Collapse
Affiliation(s)
- Christina Stene
- Department of Surgery, Skåne University Hospital/Malmö, Lund University, Malmö, Sweden.
| | - Jie Xu
- Sapfo Research AB, Bjärred, Sweden.
| | - Sérgio Fallone de Andrade
- CBIOS - Research Center for Biosciences & Health Technologies, Universidade Lusófona School of Health Sciences, Lisbon, Portugal.
| | - Ingrid Palmquist
- Department of Surgery, Skåne University Hospital/Malmö, Lund University, Malmö, Sweden.
| | - Göran Molin
- Department of Process and Life Science Engineering, Lund University, Lund, Sweden.
| | - Siv Ahrné
- Department of Process and Life Science Engineering, Lund University, Lund, Sweden.
| | - Henrik Thorlacius
- Department of Surgery, Skåne University Hospital/Malmö, Lund University, Malmö, Sweden.
| | - Louis B Johnson
- Department of Surgery, Skåne University Hospital/Malmö, Lund University, Malmö, Sweden.
| | - Bengt Jeppsson
- Department of Surgery, Skåne University Hospital/Malmö, Lund University, Malmö, Sweden.
| |
Collapse
|
3
|
Lu L, Li F, Gao Y, Kang S, Li J, Guo J. Microbiome in radiotherapy: an emerging approach to enhance treatment efficacy and reduce tissue injury. Mol Med 2024; 30:105. [PMID: 39030525 PMCID: PMC11264922 DOI: 10.1186/s10020-024-00873-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 07/08/2024] [Indexed: 07/21/2024] Open
Abstract
Radiotherapy is a widely used cancer treatment that utilizes powerful radiation to destroy cancer cells and shrink tumors. While radiation can be beneficial, it can also harm the healthy tissues surrounding the tumor. Recent research indicates that the microbiota, the collection of microorganisms in our body, may play a role in influencing the effectiveness and side effects of radiation therapy. Studies have shown that specific species of bacteria living in the stomach can influence the immune system's response to radiation, potentially increasing the effectiveness of treatment. Additionally, the microbiota may contribute to adverse effects like radiation-induced diarrhea. A potential strategy to enhance radiotherapy outcomes and capitalize on the microbiome involves using probiotics. Probiotics are living microorganisms that offer health benefits when consumed in sufficient quantities. Several studies have indicated that probiotics have the potential to alter the composition of the gut microbiota, resulting in an enhanced immune response to radiation therapy and consequently improving the efficacy of the treatment. It is important to note that radiation can disrupt the natural balance of gut bacteria, resulting in increased intestinal permeability and inflammatory conditions. These disruptions can lead to adverse effects such as diarrhea and damage to the intestinal lining. The emerging field of radiotherapy microbiome research offers a promising avenue for optimizing cancer treatment outcomes. This paper aims to provide an overview of the human microbiome and its role in augmenting radiation effectiveness while minimizing damage.
Collapse
Affiliation(s)
- Lina Lu
- School of Chemical Engineering, Northwest Minzu University, No.1, Northwest New Village, Lanzhou, Gansu, 730030, China.
- Key Laboratory of Environment-Friendly Composite Materials of the State Ethnic Affairs Commission, Lanzhou, Gansu, China.
- Gansu Provincial Biomass Function Composites Engineering Research Center, Lanzhou, Gansu, China.
- Key Laboratory for Utility of Environment-Friendly Composite Materials and Biomass in, University of Gansu Province, Lanzhou, Gansu, China.
| | - Fengxiao Li
- Department of Pharmacy, the Affiliated Hospital of Qingdao University, Qingdao, China
| | | | - Shuhe Kang
- School of Chemical Engineering, Northwest Minzu University, No.1, Northwest New Village, Lanzhou, Gansu, 730030, China
- Key Laboratory of Environment-Friendly Composite Materials of the State Ethnic Affairs Commission, Lanzhou, Gansu, China
- Gansu Provincial Biomass Function Composites Engineering Research Center, Lanzhou, Gansu, China
- Key Laboratory for Utility of Environment-Friendly Composite Materials and Biomass in, University of Gansu Province, Lanzhou, Gansu, China
| | - Jia Li
- School of Chemical Engineering, Northwest Minzu University, No.1, Northwest New Village, Lanzhou, Gansu, 730030, China
- Key Laboratory of Environment-Friendly Composite Materials of the State Ethnic Affairs Commission, Lanzhou, Gansu, China
- Gansu Provincial Biomass Function Composites Engineering Research Center, Lanzhou, Gansu, China
- Key Laboratory for Utility of Environment-Friendly Composite Materials and Biomass in, University of Gansu Province, Lanzhou, Gansu, China
| | - Jinwang Guo
- School of Chemical Engineering, Northwest Minzu University, No.1, Northwest New Village, Lanzhou, Gansu, 730030, China
- Key Laboratory of Environment-Friendly Composite Materials of the State Ethnic Affairs Commission, Lanzhou, Gansu, China
- Gansu Provincial Biomass Function Composites Engineering Research Center, Lanzhou, Gansu, China
- Key Laboratory for Utility of Environment-Friendly Composite Materials and Biomass in, University of Gansu Province, Lanzhou, Gansu, China
| |
Collapse
|
4
|
Toft Morén A, Bull C, Bergmark K. Remarkable effects of infliximab on severe radiation-induced side effects in a patient with uterine cervical cancer: a case report. J Int Med Res 2023; 51:3000605231208596. [PMID: 38082467 PMCID: PMC10718054 DOI: 10.1177/03000605231208596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 09/29/2023] [Indexed: 12/18/2023] Open
Abstract
Pelvic radiotherapy is a powerful treatment for a broad range of cancers, including gynecological, prostate, rectal, and anal cancers. Despite improvements in the delivery of ionizing beams, damage to non-cancerous tissue can cause long-term effects that are potentially severe, affecting quality of life and daily function. There is an urgent need for new strategies to treat and reverse the side effects of pelvic radiotherapy without compromising the antitumor effect. A woman with severe radiation-induced intestinal side effects was treated with the tumor necrosis factor-alpha inhibitor infliximab with a dose of 3 mg/kg every 4 to 6 weeks. With infliximab treatment, a remarkable improvement in her bowel health was observed. The patient's late bowel toxicity was reduced from Grade 2 to Grade 0 (RTOG/EORTC Late Radiation Morbidity Scale). Although it is necessary to proceed cautiously because of the risk of serious side effects from immunosuppressants, our case suggests that infliximab can be used to treat symptoms of chronic bowel dysfunction after radiotherapy.
Collapse
Affiliation(s)
- Amelie Toft Morén
- Division of Clinical Cancer Epidemiology, Department of Oncology, Institute of Clinical Sciences, Sahlgrenska Academy at the University of Gothenburg, Sweden
| | - Cecilia Bull
- Division of Clinical Cancer Epidemiology, Department of Oncology, Institute of Clinical Sciences, Sahlgrenska Academy at the University of Gothenburg, Sweden
| | - Karin Bergmark
- Division of Clinical Cancer Epidemiology, Department of Oncology, Institute of Clinical Sciences, Sahlgrenska Academy at the University of Gothenburg, Sweden
| |
Collapse
|
5
|
Asim F, Clarke L, Donnelly E, Jamal FR, Piccicacchi LM, Qadir M, Raja NT, Samadi C, Then CK, Kiltie AE. How do tumours outside the gastrointestinal tract respond to dietary fibre supplementation? BMJ ONCOLOGY 2023; 2:e000107. [PMID: 39886510 PMCID: PMC11203104 DOI: 10.1136/bmjonc-2023-000107] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 10/19/2023] [Indexed: 02/01/2025]
Abstract
Cancer remains one of the leading causes of death worldwide, despite advances in treatments such as surgery, chemotherapy, radiotherapy and immunotherapy. The role of the gut microbiota in human health and disease, particularly in relation to cancer incidence and treatment response, has gained increasing attention. Emerging evidence suggests that dietary fibre, including prebiotics, can modulate the gut microbiota and influence antitumour effects. In this review, we provide an overview of how dietary fibre impacts the gut-tumour axis through immune and non-immune mechanisms. Preclinical evidence shows that β-glucan or inulin effectively suppress extraintestinal tumour growth via immunomodulation. Other fibres such as resistant starch, modified citrus pectin and rye bran may confer antitumour effects through metabolic regulation, production of metabolites or downregulation of the insulin/insulin-like growth factor 1 axis. Additionally, we highlight the potential for dietary fibre to modify the response to immunotherapy, chemotherapy and radiotherapy, as shown by inulin increasing the abundance of beneficial gut bacteria, such as Bifidobacterium, Akkermansia, Lactobacillus and Faecalibacterium prausnitzii, which have been associated with enhanced immunotherapy outcomes, particularly in melanoma-bearing mice. Furthermore, certain types of dietary fibre, such as psyllium, partially hydrolysed guar gum, hydrolysed rice bran and inulin plus fructooligosaccharide, have been shown to mitigate gastrointestinal toxicities in patients with cancer undergoing pelvic radiotherapy. Despite the proven benefits, it is noteworthy that most adults do not consume enough dietary fibre, underscoring the importance of promoting dietary fibre supplementation in patients with cancer to optimise their treatment responses.
Collapse
Affiliation(s)
- Fatima Asim
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen Medical School, Aberdeen, UK
| | - Lowenna Clarke
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen Medical School, Aberdeen, UK
| | - Elizabeth Donnelly
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen Medical School, Aberdeen, UK
| | - Fouzia Rahana Jamal
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen Medical School, Aberdeen, UK
| | | | - Mahanoor Qadir
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen Medical School, Aberdeen, UK
| | - Nain Tara Raja
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen Medical School, Aberdeen, UK
| | - Cyrus Samadi
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen Medical School, Aberdeen, UK
| | - Chee Kin Then
- Department of General Medicine, Taipei Medical University-Shuang Ho Hospital, Ministry of Health and Welfare, New Taipei City, Taiwan
| | - Anne E Kiltie
- Rowett Institute, University of Aberdeen, Aberdeen, UK
- Aberdeen Cancer Centre, University of Aberdeen, Aberdeen, UK
| |
Collapse
|
6
|
Eaton SE, Kaczmarek J, Mahmood D, McDiarmid AM, Norarfan AN, Scott EG, Then CK, Tsui HY, Kiltie AE. Exploiting dietary fibre and the gut microbiota in pelvic radiotherapy patients. Br J Cancer 2022; 127:2087-2098. [PMID: 36175620 PMCID: PMC9727022 DOI: 10.1038/s41416-022-01980-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 08/29/2022] [Accepted: 09/01/2022] [Indexed: 02/03/2023] Open
Abstract
With an ageing population, there is an urgent need to find alternatives to current standard-of-care chemoradiation schedules in the treatment of pelvic malignancies. The gut microbiota may be exploitable, having shown a valuable role in improving patient outcomes in anticancer immunotherapy. These bacteria feed on dietary fibres, which reach the large intestine intact, resulting in the production of beneficial metabolites, including short-chain fatty acids. The gut microbiota can impact radiotherapy (RT) treatment responses and itself be altered by the radiation. Evidence is emerging that manipulation of the gut microbiota by dietary fibre supplementation can improve tumour responses and reduce normal tissue side effects following RT, although data on tumour response are limited to date. Both may be mediated by immune and non-immune effects of gut microbiota and their metabolites. Alternative approaches include use of probiotics and faecal microbiota transplantation (FMT). Current evidence will be reviewed regarding the use of dietary fibre interventions and gut microbiota modification in improving outcomes for pelvic RT patients. However, data regarding baseline (pre-RT) gut microbiota of RT patients and timing of dietary fibre manipulation (before or during RT) is limited, heterogenous and inconclusive, thus more robust clinical studies are required before these strategies can be applied clinically.
Collapse
Affiliation(s)
- Selina E Eaton
- Medical School, University of Aberdeen, Polwarth Building, Foresterhill, Aberdeen, AB25 2ZD, UK
| | - Justyna Kaczmarek
- Medical School, University of Aberdeen, Polwarth Building, Foresterhill, Aberdeen, AB25 2ZD, UK
| | - Daanish Mahmood
- Medical School, University of Aberdeen, Polwarth Building, Foresterhill, Aberdeen, AB25 2ZD, UK
| | - Anna M McDiarmid
- Medical School, University of Aberdeen, Polwarth Building, Foresterhill, Aberdeen, AB25 2ZD, UK
| | - Alya N Norarfan
- Medical School, University of Aberdeen, Polwarth Building, Foresterhill, Aberdeen, AB25 2ZD, UK
| | - Erin G Scott
- Medical School, University of Aberdeen, Polwarth Building, Foresterhill, Aberdeen, AB25 2ZD, UK
| | - Chee Kin Then
- MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, OX3 7DQ, UK
| | - Hailey Y Tsui
- Medical School, University of Aberdeen, Polwarth Building, Foresterhill, Aberdeen, AB25 2ZD, UK
| | - Anne E Kiltie
- Rowett Institute, University of Aberdeen, Foresterhill, Aberdeen, AB25 2ZD, UK.
| |
Collapse
|
7
|
Bai X, Zhang M, Zhang Y, Zhang Y, Huo R, Guo X. In vitro fermentation of pretreated oat bran by human fecal inoculum and impact on microbiota. J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.105278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
8
|
Dioum EHM, Schneider KL, Vigerust DJ, Cox BD, Chu Y, Zachwieja JJ, Furman D. Oats Lower Age-Related Systemic Chronic Inflammation (iAge) in Adults at Risk for Cardiovascular Disease. Nutrients 2022; 14:nu14214471. [PMID: 36364734 PMCID: PMC9656573 DOI: 10.3390/nu14214471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/19/2022] [Accepted: 10/21/2022] [Indexed: 11/16/2022] Open
Abstract
Despite being largely preventable, cardiovascular disease (CVD) is still the leading cause of death globally. Recent studies suggest that the immune system, particularly a form of systemic chronic inflammation (SCI), is involved in the mechanisms leading to CVD; thus, targeting SCI may help prevent or delay the onset of CVD. In a recent placebo-controlled randomized clinical trial, an oat product providing 3 g of β-Glucan improved cholesterol low-density lipoprotein (LDL) levels and lowered cardiovascular risk in adults with borderline high cholesterol. Here, we conducted a secondary measurement of the serum samples to test whether the oat product has the potential to reduce SCI and improve other clinical outcomes related to healthy aging. We investigated the effects of the oat product on a novel metric for SCI called Inflammatory Age® (iAge®), derived from the Stanford 1000 Immunomes Project. The iAge® predicts multimorbidity, frailty, immune decline, premature cardiovascular aging, and all-cause mortality on a personalized level. A beneficial effect of the oat product was observed in subjects with elevated levels of iAge® at baseline (>49.6 iAge® years) as early as two weeks post-treatment. The rice control group did not show any significant change in iAge®. Interestingly, the effects of the oat product on iAge® were largely driven by a decrease in the Eotaxin-1 protein, an aging-related chemokine, independent of a person’s gender, body mass index, or chronological age. Thus, we describe a novel anti-SCI role for oats that could have a major impact on functional, preventative, and personalized medicine.
Collapse
Affiliation(s)
- El Hadji M Dioum
- Quaker Oats Center of Excellence, PepsiCo Health and Nutrition Sciences, Chicago, IL 60607, USA
| | | | | | - Bryan D Cox
- Edifice Health Inc., San Mateo, CA 94401, USA
| | - YiFang Chu
- Quaker Oats Center of Excellence, PepsiCo Health and Nutrition Sciences, Chicago, IL 60607, USA
| | - Jeffery J Zachwieja
- Quaker Oats Center of Excellence, PepsiCo Health and Nutrition Sciences, Chicago, IL 60607, USA
| | | |
Collapse
|
9
|
Benetou V. Nutrition for Cancer Survivors. Nutrients 2022; 14:nu14194093. [PMID: 36235745 PMCID: PMC9571480 DOI: 10.3390/nu14194093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 09/23/2022] [Accepted: 09/26/2022] [Indexed: 11/09/2022] Open
Affiliation(s)
- Vassiliki Benetou
- Department of Hygiene, Epidemiology and Medical Statistics, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece
| |
Collapse
|
10
|
He X, Wang C, Zhu Y, Jiang X, Qiu Y, Yin F, Xiong W, Liu B, Huang Y. Spirulina compounds show hypoglycemic activity and intestinal flora regulation in type 2 diabetes mellitus mice. ALGAL RES 2022. [DOI: 10.1016/j.algal.2022.102791] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
11
|
Irradiation Induces Tuft Cell Hyperplasia and Myenteric Neuronal Loss in the Absence of Dietary Fiber in a Mouse Model of Pelvic Radiotherapy. GASTROENTEROLOGY INSIGHTS 2022. [DOI: 10.3390/gastroent13010010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Pelvic radiotherapy is associated with chronic intestinal dysfunction. Dietary approaches, such as fiber enrichment during and after pelvic radiotherapy, have been suggested to prevent or reduce dysfunctions. In the present paper, we aimed to investigate whether a diet rich in fermentable fiber could have a positive effect on radiation-induced intestinal damage, especially focusing on tuft cells and enteric neurons. Male C57BL/6 mice were fed either a purified non-fiber diet or the same purified diet with 5% or 15% oat fiber added, starting two weeks prior to sham-irradiation or irradiation with four fractions of 8 Gray. The animals continued on the diets for 1, 6 or 18 weeks, after which the gross morphology of the colorectum was assessed together with the numbers of enteric neurons, tuft cells and crypt-surface units. The results showed that dietary fiber significantly affected the intestinal morphometrics, both in the short and long-term. The presence of dietary fiber stimulated the re-emergence of crypt-surface unit structures after irradiation. At 18 weeks, the animals fed with the non-fiber diet displayed more myenteric neurons than the animals fed with the dietary fibers, but irradiation resulted in a loss of neurons in the non-fiber fed animals. Irradiation, but not diet, affected the tuft cell numbers, and a significant increase in tuft cells was found 6 and 18 weeks after irradiation. In conclusion, dietary fiber intake has the potential to modify neuronal pathogenesis in the colorectum after irradiation. The long-lasting increase in tuft cells induced by irradiation may reflect an as yet unknown role in the mucosal pathophysiology after pelvic irradiation.
Collapse
|
12
|
Tang Y, Li S, Yan J, Peng Y, Weng W, Yao X, Gao A, Cheng J, Ruan J, Xu B. Bioactive Components and Health Functions of Oat. FOOD REVIEWS INTERNATIONAL 2022. [DOI: 10.1080/87559129.2022.2029477] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Yong Tang
- College of Agriculture, Guizhou University, Guizhou, P. R. China
| | - Shijuan Li
- College of Plant Protection, Gansu Agricultural University, Lanzhou, P. R. China
| | - Jun Yan
- Key Laboratory of Coarse Cereal Processing in Ministry of Agriculture and Rural Affairs, School of Food and Biological Engineering, Chengdu University, Chengdu, P. R. China
| | - Yan Peng
- College of Agriculture, Guizhou University, Guizhou, P. R. China
| | - Wenfeng Weng
- College of Agriculture, Guizhou University, Guizhou, P. R. China
| | - Xin Yao
- College of Agriculture, Guizhou University, Guizhou, P. R. China
| | - Anjing Gao
- College of Agriculture, Guizhou University, Guizhou, P. R. China
| | - Jianping Cheng
- College of Agriculture, Guizhou University, Guizhou, P. R. China
| | - Jingjun Ruan
- College of Agriculture, Guizhou University, Guizhou, P. R. China
| | - Bingliang Xu
- College of Plant Protection, Gansu Agricultural University, Lanzhou, P. R. China
| |
Collapse
|
13
|
A Review on the Immunomodulatory Mechanism of Acupuncture in the Treatment of Inflammatory Bowel Disease. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:8528938. [PMID: 35075366 PMCID: PMC8783701 DOI: 10.1155/2022/8528938] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 11/01/2021] [Accepted: 12/28/2021] [Indexed: 12/15/2022]
Abstract
Inflammatory bowel disease (IBD) is a chronic inflammatory disease with a high prevalence and canceration rate. The immune disorder is one of the recognized mechanisms. Acupuncture is widely used to treat patients with IBD. In recent years, an increasing number of studies have proven the effectiveness of acupuncture in the treatment of IBD, and some progress has been made in the mechanism. In this paper, we reviewed the studies related to acupuncture for IBD and focused on the immunomodulatory mechanism. We found that acupuncture could regulate the innate and adaptive immunity of IBD patients in many ways. Acupuncture exerts innate immunomodulatory effects by regulating intestinal epithelial barrier, toll-like receptors, NLRP3 inflammasomes, oxidative stress, and endoplasmic reticulum stress and exerts adaptive immunomodulation by regulating the balance of Th17/Treg and Th1/Th2 cells. In addition, acupuncture can also regulate intestinal flora.
Collapse
|
14
|
Traditional therapies and their moderation. Cancer 2022. [DOI: 10.1016/b978-0-323-91904-3.00015-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
15
|
Malipatlolla DK, Devarakonda S, Patel P, Sjöberg F, Rascón A, Grandér R, Skokic V, Kalm M, Danial J, Mehdin E, Warholm M, Norling H, Stringer A, Johansson MEV, Nyman M, Steineck G, Bull C. A Fiber-Rich Diet and Radiation-Induced Injury in the Murine Intestinal Mucosa. Int J Mol Sci 2021; 23:439. [PMID: 35008864 PMCID: PMC8745769 DOI: 10.3390/ijms23010439] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 12/22/2021] [Accepted: 12/27/2021] [Indexed: 11/16/2022] Open
Abstract
Dietary fiber is considered a strong intestinal protector, but we do not know whether dietary fiber protects against the long-lasting mucosal damage caused by ionizing radiation. To evaluate whether a fiber-rich diet can ameliorate the long-lasting pathophysiological hallmarks of the irradiated mucosa, C57BL/6J mice on a fiber-rich bioprocessed oat bran diet or a fiber-free diet received 32 Gray in four fractions to the distal colorectum using a linear accelerator and continued on the diets for one, six or 18 weeks. We quantified degenerating crypts, crypt fission, cell proliferation, crypt survival, macrophage density and bacterial infiltration. Crypt loss through crypt degeneration only occurred in the irradiated mice. Initially, it was most frequent in the fiber-deprived group but declined to levels similar to the fiber-consuming group by 18 weeks. The fiber-consuming group had a fast response to irradiation, with crypt fission for growth or healing peaking already at one week post-irradiation, while crypt fission in the fiber-deprived group peaked at six weeks. A fiber-rich diet allowed for a more intense crypt cell proliferation, but the recovery of crypts was eventually lost by 18 weeks. Bacterial infiltration was a late phenomenon, evident in the fiber-deprived animals and intensified manyfold after irradiation. Bacterial infiltration also coincided with a specific pro-inflammatory serum cytokine profile. In contrast, mice on a fiber-rich diet were completely protected from irradiation-induced bacterial infiltration and exhibited a similar serum cytokine profile as sham-irradiated mice on a fiber-rich diet. Our findings provide ample evidence that dietary fiber consumption modifies the onset, timing and intensity of radiation-induced pathophysiological processes in the intestinal mucosa. However, we need more knowledge, not least from clinical studies, before this finding can be introduced to a new and refined clinical practice.
Collapse
Affiliation(s)
- Dilip Kumar Malipatlolla
- The Division of Clinical Cancer Epidemiology, Department of Oncology at the Institute of Clinical Sciences, Sahlgrenska Academy at the University of Gothenburg, 413 90 Gothenburg, Sweden; (D.K.M.); (S.D.); (P.P.); (F.S.); (R.G.); (V.S.); (J.D.); (E.M.); (M.W.); (H.N.); (G.S.)
| | - Sravani Devarakonda
- The Division of Clinical Cancer Epidemiology, Department of Oncology at the Institute of Clinical Sciences, Sahlgrenska Academy at the University of Gothenburg, 413 90 Gothenburg, Sweden; (D.K.M.); (S.D.); (P.P.); (F.S.); (R.G.); (V.S.); (J.D.); (E.M.); (M.W.); (H.N.); (G.S.)
| | - Piyush Patel
- The Division of Clinical Cancer Epidemiology, Department of Oncology at the Institute of Clinical Sciences, Sahlgrenska Academy at the University of Gothenburg, 413 90 Gothenburg, Sweden; (D.K.M.); (S.D.); (P.P.); (F.S.); (R.G.); (V.S.); (J.D.); (E.M.); (M.W.); (H.N.); (G.S.)
- Department of Infectious Diseases at the Institute of Biomedicine, Sahlgrenska Academy at the University of Gothenburg, 413 90 Gothenburg, Sweden
| | - Fei Sjöberg
- The Division of Clinical Cancer Epidemiology, Department of Oncology at the Institute of Clinical Sciences, Sahlgrenska Academy at the University of Gothenburg, 413 90 Gothenburg, Sweden; (D.K.M.); (S.D.); (P.P.); (F.S.); (R.G.); (V.S.); (J.D.); (E.M.); (M.W.); (H.N.); (G.S.)
- Department of Infectious Diseases at the Institute of Biomedicine, Sahlgrenska Academy at the University of Gothenburg, 413 90 Gothenburg, Sweden
| | - Ana Rascón
- Department of Food Technology, Engineering and Nutrition, Lund University, 221 00 Lund, Sweden; (A.R.); (M.N.)
| | - Rita Grandér
- The Division of Clinical Cancer Epidemiology, Department of Oncology at the Institute of Clinical Sciences, Sahlgrenska Academy at the University of Gothenburg, 413 90 Gothenburg, Sweden; (D.K.M.); (S.D.); (P.P.); (F.S.); (R.G.); (V.S.); (J.D.); (E.M.); (M.W.); (H.N.); (G.S.)
| | - Viktor Skokic
- The Division of Clinical Cancer Epidemiology, Department of Oncology at the Institute of Clinical Sciences, Sahlgrenska Academy at the University of Gothenburg, 413 90 Gothenburg, Sweden; (D.K.M.); (S.D.); (P.P.); (F.S.); (R.G.); (V.S.); (J.D.); (E.M.); (M.W.); (H.N.); (G.S.)
| | - Marie Kalm
- Department of Pharmacology at the Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, 413 90 Gothenburg, Sweden;
| | - Jolie Danial
- The Division of Clinical Cancer Epidemiology, Department of Oncology at the Institute of Clinical Sciences, Sahlgrenska Academy at the University of Gothenburg, 413 90 Gothenburg, Sweden; (D.K.M.); (S.D.); (P.P.); (F.S.); (R.G.); (V.S.); (J.D.); (E.M.); (M.W.); (H.N.); (G.S.)
| | - Eva Mehdin
- The Division of Clinical Cancer Epidemiology, Department of Oncology at the Institute of Clinical Sciences, Sahlgrenska Academy at the University of Gothenburg, 413 90 Gothenburg, Sweden; (D.K.M.); (S.D.); (P.P.); (F.S.); (R.G.); (V.S.); (J.D.); (E.M.); (M.W.); (H.N.); (G.S.)
| | - Malin Warholm
- The Division of Clinical Cancer Epidemiology, Department of Oncology at the Institute of Clinical Sciences, Sahlgrenska Academy at the University of Gothenburg, 413 90 Gothenburg, Sweden; (D.K.M.); (S.D.); (P.P.); (F.S.); (R.G.); (V.S.); (J.D.); (E.M.); (M.W.); (H.N.); (G.S.)
| | - Henrietta Norling
- The Division of Clinical Cancer Epidemiology, Department of Oncology at the Institute of Clinical Sciences, Sahlgrenska Academy at the University of Gothenburg, 413 90 Gothenburg, Sweden; (D.K.M.); (S.D.); (P.P.); (F.S.); (R.G.); (V.S.); (J.D.); (E.M.); (M.W.); (H.N.); (G.S.)
| | - Andrea Stringer
- School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, SA 5000, Australia;
| | - Malin E. V. Johansson
- Department of Medical Biochemistry and Cell Biology at the Institute of Biomedicine, Sahlgrenska Academy at the University of Gothenburg, 413 90 Gothenburg, Sweden;
| | - Margareta Nyman
- Department of Food Technology, Engineering and Nutrition, Lund University, 221 00 Lund, Sweden; (A.R.); (M.N.)
| | - Gunnar Steineck
- The Division of Clinical Cancer Epidemiology, Department of Oncology at the Institute of Clinical Sciences, Sahlgrenska Academy at the University of Gothenburg, 413 90 Gothenburg, Sweden; (D.K.M.); (S.D.); (P.P.); (F.S.); (R.G.); (V.S.); (J.D.); (E.M.); (M.W.); (H.N.); (G.S.)
| | - Cecilia Bull
- The Division of Clinical Cancer Epidemiology, Department of Oncology at the Institute of Clinical Sciences, Sahlgrenska Academy at the University of Gothenburg, 413 90 Gothenburg, Sweden; (D.K.M.); (S.D.); (P.P.); (F.S.); (R.G.); (V.S.); (J.D.); (E.M.); (M.W.); (H.N.); (G.S.)
| |
Collapse
|
16
|
Bai X, Zhang M, Zhang Y, Zhang J, Wang C, Zhang Y. Effect of steam, microwave, and hot‐air drying on antioxidant capacity and in vitro digestion properties of polyphenols in oat bran. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.16013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Xue Bai
- College of Food Science and Engineering Inner Mongolia Agricultural University Hohhot China
| | - Meili Zhang
- College of Food Science and Engineering Inner Mongolia Agricultural University Hohhot China
| | - Yuanyuan Zhang
- College of Food Science and Engineering Inner Mongolia Agricultural University Hohhot China
| | - Jing Zhang
- College of Food Science and Engineering Inner Mongolia Agricultural University Hohhot China
| | - Chen Wang
- College of Food Science and Engineering Inner Mongolia Agricultural University Hohhot China
| | - Yakun Zhang
- College of Food Science and Engineering Inner Mongolia Agricultural University Hohhot China
| |
Collapse
|
17
|
Devarakonda S, Malipatlolla DK, Patel P, Grandér R, Kuhn HG, Steineck G, Sjöberg F, Rascón A, Nyman M, Eriksson Y, Danial J, Ittner E, Naama Walid R, Prykhodko O, Masuram S, Kalm M, Bull C. Dietary Fiber and the Hippocampal Neurogenic Niche in a Model of Pelvic Radiotherapy. Neuroscience 2021; 475:137-147. [PMID: 34487821 DOI: 10.1016/j.neuroscience.2021.08.030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 08/25/2021] [Accepted: 08/26/2021] [Indexed: 02/07/2023]
Abstract
We sought to determine whether radiation to the colorectum had an impact on parameters of hippocampal neurogenesis and, if so, whether it could be modulated by a fiber-rich diet. Male C57BL/6J mice were fed a diet containing bioprocessed oat bran or a fiber-free diet, starting two weeks before colorectal irradiation with 4 fractions of 8 Gray or sham-irradiation. Diets were then continued for 1, 6 or 18 weeks, whereafter parameters of hippocampal neurogenesis were analyzed and correlated to serum cytokine levels. No statistically significant changes in neuronal markers or cell proliferation were found at one week post-irradiation. Six weeks post-irradiation there was a decreased cell proliferation in the subgranular zone that appeared slightly more pronounced in irradiated animals on a fiber-free diet and increased numbers of immature neurons per mm2 dentate gyrus in the irradiated mice, with a statistically significant increase in mice on a fiber-rich diet. Microglial abundancy was similar between all groups. 18 weeks post-irradiation, a fiber-free diet had reduced the number of immature neurons, whereas irradiation resulted in an increase. Despite this, the population of mature neurons was stable. Analysis of serum cytokines revealed a negative correlation between MIP1-α and the number of immature neurons one week after irradiation, regardless of diet. Our findings show that pelvic radiotherapy has the potential to cause a long-lasting impact on hippocampal neurogenesis, and dietary interventions may modulate this impact. More in-depth studies on the relationship between irradiation-induced intestinal injury and brain health are warranted.
Collapse
Affiliation(s)
- Sravani Devarakonda
- Division of Clinical Cancer Epidemiology, Department of Oncology, Institute of Clinical Sciences, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Dilip Kumar Malipatlolla
- Division of Clinical Cancer Epidemiology, Department of Oncology, Institute of Clinical Sciences, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Piyush Patel
- Division of Clinical Cancer Epidemiology, Department of Oncology, Institute of Clinical Sciences, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; Department of Infectious Diseases, Institute of Biomedicine, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Rita Grandér
- Division of Clinical Cancer Epidemiology, Department of Oncology, Institute of Clinical Sciences, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - H Georg Kuhn
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden
| | - Gunnar Steineck
- Division of Clinical Cancer Epidemiology, Department of Oncology, Institute of Clinical Sciences, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Fei Sjöberg
- Department of Infectious Diseases, Institute of Biomedicine, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Ana Rascón
- Department of Food Technology, Engineering and Nutrition, Lund University, Lund, Sweden
| | - Margareta Nyman
- Department of Food Technology, Engineering and Nutrition, Lund University, Lund, Sweden
| | - Yohanna Eriksson
- Department of Pharmacology, Institute of Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden
| | - Jolie Danial
- Department of Pharmacology, Institute of Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden
| | - Ella Ittner
- Division of Clinical Cancer Epidemiology, Department of Oncology, Institute of Clinical Sciences, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Rukaya Naama Walid
- Division of Clinical Cancer Epidemiology, Department of Oncology, Institute of Clinical Sciences, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Olena Prykhodko
- Department of Food Technology, Engineering and Nutrition, Lund University, Lund, Sweden
| | - Spandana Masuram
- Division of Clinical Cancer Epidemiology, Department of Oncology, Institute of Clinical Sciences, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Marie Kalm
- Department of Pharmacology, Institute of Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden
| | - Cecilia Bull
- Division of Clinical Cancer Epidemiology, Department of Oncology, Institute of Clinical Sciences, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
| |
Collapse
|
18
|
Bull C, Devarakonda S, Ahlin R. Role of dietary fiber in safeguarding intestinal health after pelvic radiotherapy. Curr Opin Support Palliat Care 2021; 15:180-187. [PMID: 34232134 DOI: 10.1097/spc.0000000000000559] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
PURPOSE OF REVIEW Damage to healthy bowel tissue during pelvic radiotherapy can produce devastating and life-long changes in bowel function. The surging interest in microbiota and its importance for our wellbeing has generated a bulk of research highlighting how the food we consume impacts bowel health and disease. Dietary fiber is known to promote bowel health, yet there is a limited number of studies on dietary fiber in connection to pelvic radiotherapy. Here, we review some of the literature on the subject and present the most recent publications in the field. RECENT FINDINGS Advice given concerning dietary fiber intake during and after pelvic radiotherapy are inconsistent, with some clinics suggesting a decrease in intake and others an increase. Recent animal studies provide a solid support for a protective role of dietary fiber with regards to intestinal health after pelvic radiotherapy, mainly through its impact on the microbiota. No clinical study has yet provided unambiguous evidence for a similar function of dietary fiber in humans undergoing pelvic radiotherapy. SUMMARY There is a lack of evidence behind the dietary advice given to cancer survivors suffering from radiation-induced bowel dysfunction, and high-quality and well powered studies with long follow-up times are needed.
Collapse
Affiliation(s)
- Cecilia Bull
- The Division of Clinical Cancer Epidemiology, Department of Oncology at the Institute of Clinical Sciences, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | | | | |
Collapse
|