1
|
Avitzur Y, Jimenez L, Martincevic I, Acra S, Courtney-Martin G, Gray M, Hope K, Muise A, Prieto Jimenez PM, Taylor N, Thiagarajah JR, Martín MG. Diet management in congenital diarrheas and enteropathies - general concepts and disease-specific approach, a narrative review. Am J Clin Nutr 2024; 120:17-33. [PMID: 38734141 PMCID: PMC11251218 DOI: 10.1016/j.ajcnut.2024.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 04/27/2024] [Accepted: 05/06/2024] [Indexed: 05/13/2024] Open
Abstract
Congenital diarrheas and enteropathies (CODE) are a group of rare, heterogenous, monogenic disorders that lead to chronic diarrhea in infancy. Definitive treatment is rarely available, and supportive treatment is the mainstay. Nutritional management in the form of either specialized formulas, restrictive diet, or parenteral nutrition support in CODE with poor enteral tolerance is the cornerstone of CODE treatment and long-term growth. The evidence to support the use of specific diet regimens and nutritional approaches in most CODE disorders is limited due to the rarity of these diseases and the scant published clinical experience. The goal of this review was to create a comprehensive guide for nutritional management in CODE, based on the currently available literature, disease mechanism, and the PediCODE group experience. Enteral diet management in CODE can be divided into 3 distinct conceptual frameworks: nutrient elimination, nutrient supplementation, and generalized nutrient restriction. Response to nutrient elimination or supplementation can lead to resolution or significant improvement in the chronic diarrhea of CODE and resumption of normal growth. This pattern can be seen in CODE due to carbohydrate malabsorption, defects in fat absorption, and occasionally in electrolyte transport defects. In contrast, general diet restriction is mainly supportive. However, occasionally it allows parenteral nutrition weaning or reduction over time, mainly in enteroendocrine defects and rarely in epithelial trafficking and polarity defects. Further research is required to better elucidate the role of diet in the treatment of CODE and the appropriate diet management for each disease.
Collapse
Affiliation(s)
- Yaron Avitzur
- Group for Improvement of Intestinal Function and Treatment (GIFT), Transplant and Regenerative Centre, SickKids Hospital, Toronto, ON, Canada; Division of Gastroenterology, Hepatology and Nutrition, SickKids Hospital, University of Toronto, Toronto, ON, Canada.
| | - Lissette Jimenez
- Division of Gastroenterology, Hepatology and Nutrition, Boston Children's Hospital, Harvard Medical School, Boston, MA, United States; Congenital Enteropathy Program, Boston Children's Hospital, Boston, MA, United States;; Harvard Digestive Disease Center, Boston MA, United States
| | - Inez Martincevic
- Division of Gastroenterology, Hepatology and Nutrition, SickKids Hospital, University of Toronto, Toronto, ON, Canada
| | - Sari Acra
- Division of Pediatric Gastroenterology, Hepatology and Nutrition, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Glenda Courtney-Martin
- Group for Improvement of Intestinal Function and Treatment (GIFT), Transplant and Regenerative Centre, SickKids Hospital, Toronto, ON, Canada; Department of Nutritional Sciences, University of Toronto, Toronto, ON, Canada
| | - Megan Gray
- Division of Gastroenterology, Hepatology and Nutrition, Boston Children's Hospital, Harvard Medical School, Boston, MA, United States
| | - Kayla Hope
- Division of Gastroenterology, Hepatology and Nutrition, Boston Children's Hospital, Harvard Medical School, Boston, MA, United States
| | - Aleixo Muise
- Division of Gastroenterology, Hepatology and Nutrition, SickKids Hospital, University of Toronto, Toronto, ON, Canada
| | - Paula M Prieto Jimenez
- Division of Gastroenterology and Nutrition, Department of Pediatrics, Mattel Children's Hospital and the David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, United States
| | - Nancy Taylor
- Division of Pediatric Gastroenterology, Hepatology and Nutrition, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Jay R Thiagarajah
- Division of Gastroenterology, Hepatology and Nutrition, Boston Children's Hospital, Harvard Medical School, Boston, MA, United States; Congenital Enteropathy Program, Boston Children's Hospital, Boston, MA, United States;; Harvard Digestive Disease Center, Boston MA, United States
| | - Martín G Martín
- Division of Gastroenterology and Nutrition, Department of Pediatrics, Mattel Children's Hospital and the David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, United States.
| |
Collapse
|
2
|
McClements DJ. Ultraprocessed plant-based foods: Designing the next generation of healthy and sustainable alternatives to animal-based foods. Compr Rev Food Sci Food Saf 2023; 22:3531-3559. [PMID: 37350040 DOI: 10.1111/1541-4337.13204] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 05/29/2023] [Accepted: 06/05/2023] [Indexed: 06/24/2023]
Abstract
Numerous examples of next-generation plant-based foods, such as meat, seafood, egg, and dairy analogs, are commercially available. These products are usually designed to have physicochemical properties, sensory attributes, and functional behaviors that match those of the animal-sourced products they are designed to replace. However, there has been concern about the potential negative impacts of these foods on human nutrition and health. In particular, many of these products have been criticized for being ultraprocessed foods that contain numerous ingredients and are manufactured using harsh processing operations. In this article, the concept of ultraprocessed foods is introduced and its relevance to describe the properties of next-generation plant-based foods is discussed. Most commercial plant-based meat, seafood, egg, and dairy analogs currently available do fall into this category, and so can be classified as ultraprocessed plant-based (UPB) foods. The nutrient content, digestibility, bioavailability, and gut microbiome effects of UPB foods are compared to those of animal-based foods, and the potential consequences of any differences on human health are discussed. Some commercial UPB foods would not be considered healthy based on their nutrient profiles, especially those plant-based cheeses that contain low levels of protein and high levels of fat, starch, and salt. However, it is argued that UPB foods can be designed to have good nutritional profiles and beneficial health effects. Finally, areas where further research are still needed to create a more healthy and sustainable food supply are discussed.
Collapse
Affiliation(s)
- David Julian McClements
- Department of Food Science & Bioengineering, Zhejiang Gongshang University, Hangzhou, China
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts, USA
| |
Collapse
|
3
|
Validation of Knock-Out Caco-2 TC7 Cells as Models of Enterocytes of Patients with Familial Genetic Hypobetalipoproteinemias. Nutrients 2023; 15:nu15030505. [PMID: 36771214 PMCID: PMC9921550 DOI: 10.3390/nu15030505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/12/2023] [Accepted: 01/14/2023] [Indexed: 01/21/2023] Open
Abstract
Abetalipoproteinemia (FHBL-SD1) and chylomicron retention disease (FHBL-SD3) are rare recessive disorders of lipoprotein metabolism due to mutations in MTTP and SAR1B genes, respectively, which lead to defective chylomicron formation and secretion. This results in lipid and fat-soluble vitamin malabsorption, which induces severe neuro-ophthalmic complications. Currently, treatment combines a low-fat diet with high-dose vitamin A and E supplementation but still fails in normalizing serum vitamin E levels and providing complete ophthalmic protection. To explore these persistent complications, we developed two knock-out cell models of FHBL-SD1 and FHBL-SD3 using the CRISPR/Cas9 technique in Caco-2/TC7 cells. DNA sequencing, RNA quantification and Western blotting confirmed the introduction of mutations with protein knock-out in four clones associated with i) impaired lipid droplet formation and ii) defective triglyceride (-57.0 ± 2.6% to -83.9 ± 1.6%) and cholesterol (-35.3 ± 4.4% to -60.6 ± 3.5%) secretion. A significant decrease in α-tocopherol secretion was also observed in these clones (-41.5 ± 3.7% to -97.2 ± 2.8%), even with the pharmaceutical forms of vitamin E: tocopherol-acetate and tocofersolan (α-tocopheryl polyethylene glycol succinate 1000). MTTP silencing led to a more severe phenotype than SAR1B silencing, which is consistent with clinical observations. Our cellular models thus provide an efficient tool to experiment with therapeutic strategies and will allow progress in understanding the mechanisms involved in lipid metabolism.
Collapse
|
4
|
Souza CS, Daood H, Duah SA, Vinogradov S, Palotás G, Neményi A, Helyes L, Pék Z. Stability of carotenoids, carotenoid esters, tocopherols and capsaicinoids in new chili pepper hybrids during natural and thermal drying. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|