1
|
Ceballos-Rasgado M, Brazier AKM, Gupta S, Moran VH, Pierella E, Fekete K, Lowe NM. Methods of Assessment of Zinc Status in Humans: An Updated Review and Meta-analysis. Nutr Rev 2025; 83:e778-e800. [PMID: 38917458 PMCID: PMC11819495 DOI: 10.1093/nutrit/nuae072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/27/2024] Open
Abstract
CONTEXT The assessment of zinc status is difficult but essential for the identification of zinc deficiency and evaluation of interventions to improve zinc status. OBJECTIVE The purpose of this systematic review (SR) and meta-analysis was to update the previously published SR of biomarkers of zinc status, conducted by the European Micronutrient Recommendations Aligned (EURRECA) network in 2009, to answer the question: Which putative measures (biomarkers) of zinc status appropriately reflect a change in zinc intake of at least 2 weeks? DATA SOURCES A structured search strategy was used to identify articles published between January 2007 and September 2022 from MEDLINE (Ovid), Embase (Ovid), Cochrane Database of Systematic Reviews, and Cochrane Central Register of Controlled Trials (CENTRAL). Relevant articles were identified using previously defined eligibility criteria. DATA EXTRACTION Data were extracted and combined with data from the previous SR. DATA ANALYSIS A random-effects model was used to calculate pooled mean differences using STATA (StataCorp). The risk of bias and the certainty of evidence for all outcomes were assessed. Additional data on 7 of the 32 previously reported biomarkers were identified, along with data on an additional 40 putative biomarkers from studies published since 2007. Pooled data analysis confirmed that, in healthy participants, both plasma/serum zinc concentration and urinary zinc excretion responded to changes in zinc intake (plasma/serum: mean effect [95% CI], controlled studies: 2.17 µmol/L [1.73, 2.61]; P < .005, I2 = 97.8; before-and-after studies: 2.87 µmol/L [2.45, 3.30]; P < .005, I2 = 98.1%; urine zinc: 0.39 mmol/mol creatinine [0.17, 0.62]; P < .005, I2 = 81.2; 3.09 µmol/day [0.16, 6.02]; P = .039, I2 = 94.3). CONCLUSION The updated analyses support the conclusion that plasma/serum and urinary zinc respond to changes in zinc intake in studies of healthy participants. Several additional putative biomarkers were identified, but more studies are needed to assess the sensitivity and reliability. SYSTEMATIC REVIEW REGISTRATION PROSPERO no. CRD42020219843.
Collapse
Affiliation(s)
- Marena Ceballos-Rasgado
- Centre for Global Development, University of Central Lancashire, Preston PR1 2HE, United Kingdom
| | - Anna K M Brazier
- Centre for Global Development, University of Central Lancashire, Preston PR1 2HE, United Kingdom
| | - Swarnim Gupta
- Centre for Global Development, University of Central Lancashire, Preston PR1 2HE, United Kingdom
| | - Victoria H Moran
- Centre for Global Development, University of Central Lancashire, Preston PR1 2HE, United Kingdom
| | - Elisa Pierella
- Centre for Global Development, University of Central Lancashire, Preston PR1 2HE, United Kingdom
| | - Katalin Fekete
- Department of Biochemistry and Medical Chemistry, University of Pécs Medical School, Pécs 7624, Hungary
| | - Nicola M Lowe
- Centre for Global Development, University of Central Lancashire, Preston PR1 2HE, United Kingdom
| |
Collapse
|
2
|
Maret W. The Arcana of Zinc. J Nutr 2025; 155:669-675. [PMID: 39788322 PMCID: PMC11934285 DOI: 10.1016/j.tjnut.2025.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 12/17/2024] [Accepted: 01/02/2025] [Indexed: 01/12/2025] Open
Abstract
This perspective discusses the essential micronutrient zinc, which functions in >3000 human proteins (the zinc proteome), and the implications of three aspects to ascertain an adequate zinc status for human health. First, the advent of highly sensitive fluorescent (bio)chemicals revealed cellular pools of zinc ions involved in signaling and secretion from cells for paracrine, autocrine, and possibly endocrine functions. Zinc signaling adds a yet unaccounted number of targeted proteins to the already impressive number of zinc proteins. Second, cellular zinc concentrations are remarkably high in the order of the concentrations of major metabolites and, therefore, at the cellular level zinc is not a trace element. Zinc is also not an antioxidant because zinc ions are redox-inactive in biology. However, zinc can express indirect pro-oxidant or proantioxidant effects depending on how cellular zinc is buffered. Zinc sites in proteins and other biomolecules can become redox-active when zinc is bound to the redox-active sulfur donor atom of cysteine. This interaction links zinc and redox metabolism, confers mobility on tightly bound zinc, and has implications for treating zinc deficiency. Third, the concept of zinc deficiency in blood as the only measure of an inadequate zinc status needs to be extended to zinc dyshomeostasis in cells because overwhelming the mechanisms controlling cellular zinc homeostasis can result in either not enough or too much available zinc. We need additional biomarkers of zinc status that determine cell-specific changes and perturbations of the system regulating cellular zinc, including functional deficits, and address the multiple genetic and environmental factors that can cause a conditioned zinc deficiency or overload. Considering the wider context of altered zinc availability in different organs, cells, and organelles impinges on whether zinc supplementation will be efficacious and adds another dimension to the already high health burden of zinc deficiency and its sequelae worldwide.
Collapse
Affiliation(s)
- Wolfgang Maret
- Department of Nutritional Sciences, School of Life Course and Population Sciences, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom.
| |
Collapse
|
3
|
Shahzad B, Holt RR, Gupta S, Zaman M, Shahzad M, Lowe NM, Hall AG. Effects of Zinc-Biofortified Wheat Intake on Plasma Markers of Fatty Acid Metabolism and Oxidative Stress Among Adolescents. Nutrients 2024; 16:4265. [PMID: 39770887 PMCID: PMC11677776 DOI: 10.3390/nu16244265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 12/06/2024] [Accepted: 12/07/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND/OBJECTIVE Zinc deficiency is common worldwide and has been linked to reduced growth and immune function, increased risk of and slower recovery from infections, and increased risk of non-communicable diseases. To address the issue, zinc biofortification of wheat has been proposed as a sustainable approach to increase dietary zinc intake in countries like Pakistan, where zinc deficiency rates are high and wheat is the primary staple crop. Since plasma zinc concentration (PZC) does not reliably respond to small changes in zinc intake, biomarkers sensitive to small changes in zinc intake achievable though biofortification are needed. Activity indices for zinc-dependent metabolic steps of desaturation and elongation of omega-6 fatty acids (FAs) have been proposed as sensitive zinc biomarkers. Oxylipin metabolites of polyunsaturated FAs may also respond to changes in zinc intake and further mediate metabolic response to oxidative stress. The objective of the current study was to assess the effects of consuming zinc-biofortified wheat flour on plasma markers of fatty acid (FA) metabolism in females aged 10-16 years. METHODS A nested secondary analysis was conducted in samples from a double-blind, cluster-randomized controlled trial conducted in rural Pakistan, whereparticipants (n = 517) consumed either zinc-biofortified wheat flour or control flour for 25 weeks. Total plasma FAs and oxylipins were measured by liquid chromatography tandem mass spectrometry (LC-MS/MS). Activity indices were estimated from the ratios of product to precursor FAs. RESULTS Except for docosahexaenoic acid (DHA, p < 0.05), no significant intervention effect was observed on plasma FAs and FA activity index endpoints. Zinc-biofortified wheat intake reduced pro-inflammatory oxylipins and biomarkers of oxidative stress, 5-HETE (p < 0.05), 9-HETE (p < 0.05), 11-HETE (p < 0.05), and 15-HETE (p < 0.05), compared with the control. However, after adjustment for multiple comparisons, none of the intervention effects remained significant. CONCLUSIONS Further study of the responsiveness and specificity of plasma oxylipins to changes in zinc intake is warranted.
Collapse
Affiliation(s)
- Babar Shahzad
- Institute of Basic Medical Sciences, Khyber Medical University, Peshawar 25100, Pakistan; (B.S.); (M.S.)
| | - Roberta R. Holt
- Department of Nutrition, University of California, Davis, CA 95616, USA;
| | - Swarnim Gupta
- Centre for Global Development, University of Central Lancashire, Preston PR1 2HE, UK; (S.G.); (N.M.L.)
| | - Mukhtiar Zaman
- Department of Pulmonology, Rehman Medical Institute, Peshawar 25000, Pakistan;
| | - Muhammad Shahzad
- Institute of Basic Medical Sciences, Khyber Medical University, Peshawar 25100, Pakistan; (B.S.); (M.S.)
| | - Nicola M. Lowe
- Centre for Global Development, University of Central Lancashire, Preston PR1 2HE, UK; (S.G.); (N.M.L.)
| | - Andrew G. Hall
- Department of Nutrition, University of California, Davis, CA 95616, USA;
| |
Collapse
|
4
|
Bouis H, Foley J, Lividini K, Jumrani J, Reinke R, Van Der Straeten D, Zagado R, Boy E, Brown LR, Mudyahoto B, Alioma R, Hussain M, Pfeiffer WH. Biofortification: Future Challenges for a Newly Emerging Technology to Improve Nutrition Security Sustainably. Curr Dev Nutr 2024; 8:104478. [PMID: 39668944 PMCID: PMC11635736 DOI: 10.1016/j.cdnut.2024.104478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 09/04/2024] [Accepted: 09/21/2024] [Indexed: 12/14/2024] Open
Abstract
Biofortification was coined as a term to define a plant breeding strategy to increase the micronutrient content of staple food crops to reduce the burden of micronutrient deficiencies in low- and middle-income countries. In 2003, the HarvestPlus program, based in the centers comprising the Consultative Group on International Agricultural Research, was initiated to implement the biofortification strategy. This article discusses what has been achieved, what has been learned, and the key challenges to embed biofortification in food systems and to expand its impact. Cost-effectiveness is key to the biofortification strategy. Biofortification piggybacks on the agronomically superior varieties being developed at agricultural research centers. Central plant breeding research discoveries can be spread globally. Farmers have every motivation to adopt the latest high-yielding, high profit crops. High productivity leads to lower food prices. As a consequence, consumers can increase their mineral and vitamin intakes at no additional cost by substituting biofortified staple foods 1-for-1 for nonbiofortified staple foods. After 20 years of investment, biofortified staple food crops are being produced by farmers in over 40 countries and are eaten by hundreds of millions of people. Published nutrition trials have shown nutrient-rich crops to be efficacious. The biofortification strategy is now recognized by the international nutrition community as one effective approach among several interventions needed to reduce micronutrient deficiencies. This is a promising beginning. However, biofortification is still a newly emerging technology. A limitation of biofortification as implemented to date is that densities of single nutrients have been increased in given staple food crops. To reach a higher trajectory, the impacts of biofortification can be multiplied several-fold using genetic engineering and other advanced crop development techniques to combine multiple-nutrient densities with climate-smart traits.
Collapse
Affiliation(s)
- Howarth Bouis
- International Food Policy Research Institute, Washington, DC
| | - Jennifer Foley
- HarvestPlus, International Food Policy Research Institute, Washington, DC
| | | | - Jaya Jumrani
- ICAR - National Institute of Agricultural Economics and Policy Research (NIAP), New Delhi, India
| | - Russell Reinke
- International Rice Research Institute, Los Baños, Laguna, Philippines
| | | | - Ronan Zagado
- Philippine Rice Research Institute, Muñoz, Nueva Ecija, Philippines
| | - Erick Boy
- HarvestPlus, International Food Policy Research Institute, Washington, DC
| | - Lynn R Brown
- HarvestPlus, International Food Policy Research Institute, Washington, DC
| | - Bho Mudyahoto
- HarvestPlus, International Food Policy Research Institute, Washington, DC
| | - Richard Alioma
- HarvestPlus, International Food Policy Research Institute, Washington, DC
| | - Munawar Hussain
- HarvestPlus, International Food Policy Research Institute, Washington, DC
| | - Wolfgang H Pfeiffer
- HarvestPlus, International Food Policy Research Institute, Washington, DC
- Alliance Bioversity & CIAT, Rome, Italy
| |
Collapse
|
5
|
Cheng J, Kolba N, Tako E. The effect of dietary zinc and zinc physiological status on the composition of the gut microbiome in vivo. Crit Rev Food Sci Nutr 2024; 64:6432-6451. [PMID: 36688291 DOI: 10.1080/10408398.2023.2169857] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Zinc serves critical catalytic, regulatory, and structural roles. Hosts and their resident gut microbiota both require zinc, leading to competition, where a balance must be maintained. This systematic review examined evidence on dietary zinc and physiological status (zinc deficiency or high zinc/zinc overload) effects on gut microbiota. This review was conducted according to PRISMA (Preferred Reporting Items for Systematic reviews and Meta-Analyses) guidelines and registered in PROSPERO (CRD42021250566). PubMed, Web of Science, and Scopus databases were searched for in vivo (animal) studies, resulting in eight selected studies. Study quality limitations were evaluated using the SYRCLE risk of bias tool and according to ARRIVE guidelines. The results demonstrated that zinc deficiency led to inconsistent changes in α-diversity and short-chain fatty acid production but led to alterations in bacterial taxa with functions in carbohydrate metabolism, glycan metabolism, and intestinal mucin degradation. High dietary zinc/zinc overload generally resulted in either unchanged or decreased α-diversity, decreased short-chain fatty acid production, and increased bacterial metal resistance and antibiotic resistance genes. Additional studies in human and animal models are needed to further understand zinc physiological status effects on the intestinal microbiome and clarify the applicability of utilizing the gut microbiome as a potential zinc status biomarker.
Collapse
Affiliation(s)
- Jacquelyn Cheng
- Department of Food Science, Cornell University, Ithaca, New York, USA
| | - Nikolai Kolba
- Department of Food Science, Cornell University, Ithaca, New York, USA
| | - Elad Tako
- Department of Food Science, Cornell University, Ithaca, New York, USA
| |
Collapse
|
6
|
Lowe NM, Hall AG, Broadley MR, Foley J, Boy E, Bhutta ZA. Preventing and Controlling Zinc Deficiency Across the Life Course: A Call to Action. Adv Nutr 2024; 15:100181. [PMID: 38280724 PMCID: PMC10882121 DOI: 10.1016/j.advnut.2024.100181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/11/2024] [Accepted: 01/23/2024] [Indexed: 01/29/2024] Open
Abstract
Through diverse roles, zinc determines a greater number of critical life functions than any other single micronutrient. Beyond the well-recognized importance of zinc for child growth and resistance to infections, zinc has numerous specific roles covering the regulation of glucose metabolism, and growing evidence links zinc deficiency with increased risk of diabetes and cardiometabolic disorders. Zinc nutriture is, thus, vitally important to health across the life course. Zinc deficiency is also one of the most common forms of micronutrient malnutrition globally. A clearer estimate of the burden of health disparity attributable to zinc deficiency in adulthood and later life emerges when accounting for its contribution to global elevated fasting blood glucose and related noncommunicable diseases (NCDs). Yet progress attenuating its prevalence has been limited due, in part, to the lack of sensitive and specific methods to assess human zinc status. This narrative review covers recent developments in our understanding of zinc's role in health, the impact of the changing climate and global context on zinc intake, novel functional biomarkers showing promise for monitoring population-level interventions, and solutions for improving population zinc intake. It aims to spur on implementation of evidence-based interventions for preventing and controlling zinc deficiency across the life course. Increasing zinc intake and combating global zinc deficiency requires context-specific strategies and a combination of complementary, evidence-based interventions, including supplementation, food fortification, and food and agricultural solutions such as biofortification, alongside efforts to improve zinc bioavailability. Enhancing dietary zinc content and bioavailability through zinc biofortification is an inclusive nutrition solution that can benefit the most vulnerable individuals and populations affected by inadequate diets to the greatest extent.
Collapse
Affiliation(s)
- Nicola M Lowe
- Center for Global Development, University of Central Lancashire, Preston, United Kingdom.
| | - Andrew G Hall
- Department of Nutrition, University of California, Davis, CA, United States; Department of Nutritional Sciences & Toxicology, University of California, Berkeley, CA, United States
| | - Martin R Broadley
- Rothamsted Research, West Common, Harpenden, United Kingdom; School of Biosciences, University of Nottingham, Loughborough, United Kingdom
| | - Jennifer Foley
- HarvestPlus, International Food Policy Research Institute, Washington, DC, United States
| | - Erick Boy
- HarvestPlus, International Food Policy Research Institute, Washington, DC, United States
| | - Zulfiqar A Bhutta
- Center for Global Child Health, The Hospital for Sick Children, Toronto, ON, Canada; Center of Excellence in Women and Child Health, Aga Khan University, Karachi, Pakistan
| |
Collapse
|
7
|
Knez M, Boy E. Existing knowledge on Zn status biomarkers (1963-2021) with a particular focus on FADS1 and FADS2 diagnostic performance and recommendations for further research. Front Nutr 2023; 9:1057156. [PMID: 36712514 PMCID: PMC9878572 DOI: 10.3389/fnut.2022.1057156] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 12/30/2022] [Indexed: 01/15/2023] Open
Abstract
The role of Zn in human health was discovered 60 years ago, and despite remarkable research efforts, a sufficiently sensitive and specific biomarker of Zn status is still lacking. Plasma/serum Zn, currently the best available and most accepted population Zn status indicator, responds well to severe Zn deficiency, yet, mild to moderate Zn deficiency states usually remain unrecognized. Identifying early-stage Zn deficiency requires additional robust markers of Zn status. This paper discusses the sensitivity, specificity, and responsiveness of plasma Zn concentrations to Zn interventions. It describes the biochemical and dietary basis for the causal association between Zn and fatty acid desaturases activity, FADS1 and FADS2, based on data collected through studies performed in animals and/or humans. The influence of potential confounders and covariates on the observed relationships is considered. Additional potential Zn biomarkers are discussed and suggestions for further research in this area are provided.
Collapse
Affiliation(s)
- Marija Knez
- Center of Research Excellence in Nutrition and Metabolism, Institute for Medical Research, National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Erick Boy
- HarvestPlus, International Food Policy Research Institute, Washington, DC, United States
| |
Collapse
|
8
|
Davis EW, Wong CP, Arnold HK, Kasschau K, Gaulke CA, Sharpton TJ, Ho E. Age and micronutrient effects on the microbiome in a mouse model of zinc depletion and supplementation. PLoS One 2022; 17:e0275352. [PMID: 36534653 PMCID: PMC9762596 DOI: 10.1371/journal.pone.0275352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 12/05/2022] [Indexed: 12/23/2022] Open
Abstract
Older adult populations are at risk for zinc deficiency, which may predispose them to immune dysfunction and age-related chronic inflammation that drives myriad diseases and disorders. Recent work also implicates the gut microbiome in the onset and severity of age-related inflammation, indicating that dietary zinc status and the gut microbiome may interact to impact age-related host immunity. We hypothesize that age-related alterations in the gut microbiome contribute to the demonstrated zinc deficits in host zinc levels and increased inflammation. We tested this hypothesis with a multifactor two-part study design in a C57BL/6 mouse model. The two studies included young (2 month old) and aged (24 month old) mice fed either (1) a zinc adequate or zinc supplemented diet, or (2) a zinc adequate or marginal zinc deficient diet, respectively. Overall microbiome composition did not significantly change with zinc status; beta diversity was driven almost exclusively by age effects. Microbiome differences due to age are evident at all taxonomic levels, with more than half of all taxonomic units significantly different. Furthermore, we found 150 out of 186 genera were significantly different between the two age groups, with Bacteriodes and Parabacteroides being the primary taxa of young and old mice, respectively. These data suggest that modulating individual micronutrient concentrations does not lead to comprehensive microbiome shifts, but rather affects specific components of the gut microbiome. However, a phylogenetic agglomeration technique (ClaaTU) revealed phylogenetic clades that respond to modulation of dietary zinc status and inflammation state in an age-dependent manner. Collectively, these results suggest that a complex interplay exists between host age, gut microbiome composition, and dietary zinc status.
Collapse
Affiliation(s)
- Edward W. Davis
- Center for Quantitative Life Sciences, Oregon State University, Corvallis, Oregon, United States of America
| | - Carmen P. Wong
- Linus Pauling Institute, Oregon State University, Corvallis, Oregon, United States of America
- School of Biological and Population Health Sciences, Oregon State University, Corvallis, Oregon, United States of America
| | - Holly K. Arnold
- Department of Microbiology, Oregon State University, Corvallis, Oregon, United States of America
| | - Kristin Kasschau
- Department of Microbiology, Oregon State University, Corvallis, Oregon, United States of America
| | - Christopher A. Gaulke
- Department of Microbiology, Oregon State University, Corvallis, Oregon, United States of America
| | - Thomas J. Sharpton
- Department of Microbiology, Oregon State University, Corvallis, Oregon, United States of America
- Department of Statistics, Oregon State University, Corvallis, Oregon, United States of America
| | - Emily Ho
- Linus Pauling Institute, Oregon State University, Corvallis, Oregon, United States of America
- School of Biological and Population Health Sciences, Oregon State University, Corvallis, Oregon, United States of America
- * E-mail:
| |
Collapse
|
9
|
Maares M, Hackler J, Haupt A, Heller RA, Bachmann M, Diegmann J, Moghaddam A, Schomburg L, Haase H. Free Zinc as a Predictive Marker for COVID-19 Mortality Risk. Nutrients 2022; 14:nu14071407. [PMID: 35406020 PMCID: PMC9002649 DOI: 10.3390/nu14071407] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/24/2022] [Accepted: 03/25/2022] [Indexed: 12/12/2022] Open
Abstract
Free zinc is considered to be the exchangeable and biological active form of zinc in serum, and is discussed to be a suitable biomarker for alterations in body zinc homeostasis and related diseases. Given that coronavirus disease 2019 (COVID-19) is characterized by a marked decrease in total serum zinc, and clinical data indicate that zinc status impacts the susceptibility and severity of the infection, we hypothesized that free zinc in serum might be altered in response to SARS-CoV-2 infection and may reflect disease severity. To test this hypothesis, free zinc concentrations in serum samples of survivors and nonsurvivors of COVID-19 were analyzed by fluorometric microassay. Similar to the reported total serum zinc deficit measured by total reflection X-ray fluorescence, free serum zinc in COVID-19 patients was considerably lower than that in control subjects, and surviving patients displayed significantly higher levels of free zinc than those of nonsurvivors (mean ± SD; 0.4 ± 0.2 nM vs. 0.2 ± 0.1 nM; p = 0.0004). In contrast to recovering total zinc concentrations (r = 0.706, p < 0.001) or the declining copper−zinc ratio (r = −0.646; p < 0.001), free zinc concentrations remained unaltered with time in COVID-19 nonsurvivors. Free serum zinc concentrations were particularly low in male as compared to female patients (mean ± SD; 0.4 ± 0.2 nM vs. 0.2 ± 0.1 nM; p = 0.0003). This is of particular interest, as the male sex is described as a risk factor for severe COVID-19. Overall, results indicate that depressed free serum zinc levels are associated with increased risk of death in COVID-19, suggesting that free zinc may serve as a novel prognostic marker for the severity and course of COVID-19.
Collapse
Affiliation(s)
- Maria Maares
- Department of Food Chemistry and Toxicology, Technische Universität Berlin, Straße des 17. Juni 135, 10623 Berlin, Germany; (M.M.); (A.H.)
- TraceAge-DFG Research Unit on Interactions of Essential Trace Elements in Healthy and Diseased Elderly, Potsdam-Berlin-Jena, Germany;
| | - Julian Hackler
- TraceAge-DFG Research Unit on Interactions of Essential Trace Elements in Healthy and Diseased Elderly, Potsdam-Berlin-Jena, Germany;
- Institute for Experimental Endocrinology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10115 Berlin, Germany;
| | - Alessia Haupt
- Department of Food Chemistry and Toxicology, Technische Universität Berlin, Straße des 17. Juni 135, 10623 Berlin, Germany; (M.M.); (A.H.)
| | - Raban Arved Heller
- Institute for Experimental Endocrinology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10115 Berlin, Germany;
- Bundeswehr Hospital Berlin, Department of Traumatology and Orthopaedics, Septic and Reconstructive Surgery, 10115 Berlin, Germany
- Department of General Practice and Health Services Research, Heidelberg University Hospital, 69120 Heidelberg, Germany
| | - Manuel Bachmann
- ATORG, Aschaffenburg Trauma and Orthopedic Research Group, Center for Orthopedics, Trauma Surgery and Sports Medicine, Hospital Aschaffenburg-Alzenau, 63739 Aschaffenburg, Germany; (M.B.); (J.D.)
| | - Joachim Diegmann
- ATORG, Aschaffenburg Trauma and Orthopedic Research Group, Center for Orthopedics, Trauma Surgery and Sports Medicine, Hospital Aschaffenburg-Alzenau, 63739 Aschaffenburg, Germany; (M.B.); (J.D.)
| | - Arash Moghaddam
- Orthopedic and Trauma Surgery, Frohsinnstraße 12, 63739 Aschaffenburg, Germany;
| | - Lutz Schomburg
- TraceAge-DFG Research Unit on Interactions of Essential Trace Elements in Healthy and Diseased Elderly, Potsdam-Berlin-Jena, Germany;
- Institute for Experimental Endocrinology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10115 Berlin, Germany;
- Correspondence: (L.S.); (H.H.); Tel.: +49-30-450524289 (L.S.); +49-(0)-30-31472701 (H.H.); Fax: +49-30-4507524289 (L.S.); +49-(0)-30-31472823 (H.H.)
| | - Hajo Haase
- Department of Food Chemistry and Toxicology, Technische Universität Berlin, Straße des 17. Juni 135, 10623 Berlin, Germany; (M.M.); (A.H.)
- TraceAge-DFG Research Unit on Interactions of Essential Trace Elements in Healthy and Diseased Elderly, Potsdam-Berlin-Jena, Germany;
- Correspondence: (L.S.); (H.H.); Tel.: +49-30-450524289 (L.S.); +49-(0)-30-31472701 (H.H.); Fax: +49-30-4507524289 (L.S.); +49-(0)-30-31472823 (H.H.)
| |
Collapse
|
10
|
Vázquez-Lorente H, Molina-López J, Herrera-Quintana L, Gamarra-Morales Y, Quintero-Osso B, López-González B, Planells E. Good antioxidant response of erythrocyte Zn levels after supplementation with Zn in a postmenopausal population. A double-blind randomized trial. Exp Gerontol 2022; 162:111766. [DOI: 10.1016/j.exger.2022.111766] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 02/09/2022] [Accepted: 03/07/2022] [Indexed: 11/04/2022]
|