1
|
Casarcia N, Rogers P, Guld E, Iyer S, Li Y, Burcher JT, DeLiberto LK, Banerjee S, Bishayee A. Phytochemicals for the prevention and treatment of pancreatic cancer: Current progress and future prospects. Br J Pharmacol 2025; 182:2181-2234. [PMID: 37740585 DOI: 10.1111/bph.16249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 09/06/2023] [Accepted: 09/13/2023] [Indexed: 09/24/2023] Open
Abstract
Pancreatic cancer is the third leading cause of cancer-related deaths in the United States, owing to its aggressive nature and suboptimal treatment options, emphasizing the need for novel therapeutic approaches. Emerging studies have exhibited promising results regarding the therapeutic utility of plant-derived compounds (phytochemicals) in pancreatic cancer. The purpose of this review is to evaluate the potential of phytochemicals in the treatment and prevention of pancreatic cancer. The Preferred Reporting Items for Systematic Reviews and Meta-Analyses was applied to collect articles for this review. Scholarly databases, including PubMed, Scopus and ScienceDirect, were queried for relevant studies using the following keywords: phytochemicals, phenolics, terpenoids, alkaloids, sulfur-containing compounds, in vitro, in vivo, clinical studies, pancreatic cancer, tumour, treatment and prevention. Aggregate results pooled from qualified studies indicate phytochemicals can inhibit pancreatic cancer cell growth or decrease tumour size and volume in animal models. These effects have been attributed to various mechanisms, such as increasing proapoptotic factors, decreasing antiapoptotic factors, or inducing cell death and cell cycle arrest. Notable signalling pathways modulated by phytochemicals include the rat sarcoma/mitogen activated protein kinase, wingless-related integration site/β-catenin and phosphoinositide 3-kinase/protein kinase B/mammalian target of rapamycin signal transduction pathways. Clinically, phytochemicals have been found to increase survival while being well-tolerated and safe, though research is scarce. While these promising results have produced great interest in this field, further in-depth studies are required to characterize the anticancer activities of phytochemicals before they can be utilized to prevent or treat pancreatic cancer in clinical practice. LINKED ARTICLES: This article is part of a themed issue Natural Products and Cancer: From Drug Discovery to Prevention and Therapy. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v182.10/issuetoc.
Collapse
Affiliation(s)
- Nicolette Casarcia
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, Florida, USA
| | - Patrick Rogers
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, Florida, USA
| | - Emma Guld
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, Florida, USA
| | - Samvit Iyer
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, Florida, USA
| | - Yutong Li
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, Florida, USA
| | - Jack T Burcher
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, Florida, USA
| | - Lindsay K DeLiberto
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, Florida, USA
| | - Sabyasachi Banerjee
- Department of Pharmaceutical Chemistry, Gupta College of Technological Sciences, Asansol, India
| | - Anupam Bishayee
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, Florida, USA
| |
Collapse
|
2
|
Rîmbu MC, Popescu L, Mihăilă M, Sandulovici RC, Cord D, Mihăilescu CM, Gălățanu ML, Panțuroiu M, Manea CE, Boldeiu A, Brîncoveanu O, Savin M, Grigoroiu A, Ungureanu FD, Amzoiu E, Popescu M, Truță E. Synergistic Effects of Green Nanoparticles on Antitumor Drug Efficacy in Hepatocellular Cancer. Biomedicines 2025; 13:641. [PMID: 40149616 PMCID: PMC11940350 DOI: 10.3390/biomedicines13030641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 02/19/2025] [Accepted: 02/27/2025] [Indexed: 03/29/2025] Open
Abstract
Background/Objectives: Cancer remains one of the leading causes of mortality worldwide. Despite significant advancements in treatment strategies and drug development, survival rates remain low and the adverse effects of conventional therapies severely impact patients' quality of life. This study evaluates the therapeutic potential of plant-derived extracts in hepatocellular carcinoma treatment, with a focus on minimizing side effects while enhancing efficacy. Methods: This research investigates the in vitro synergistic effect of silver bio-nanoparticles synthesized from Clematis vitalba, Melissa officinalis, and Taraxacum officinale extracts (Clematis vitalbae extractum-CVE, Melissae extractum-ME, Taraxaci extractum-TE) in combination with liver cancer drugs, sunitinib (SNTB) and imatinib (IMTB), on HepG2 (human hepatocellular carcinoma) and HUVEC (human umbilical vein endothelial) cell lines. The silver nanoparticles (AgNPs) were characterized using UV-Vis spectroscopy, dynamic light scattering (DLS), zeta potential analysis, and scanning electron microscopy (SEM). The antitumor effects were evaluated through cell viability assays after 24 and 48 h of exposure, with additional cytotoxicity tests on HUVEC cells. Results: Results indicated that Melissa officinalis-derived silver nanoparticles (ME AgNPs) and Clematis vitalba extract with silver nanoparticles (CVE AgNPs) significantly reduced HepG2 cell viability. Their efficacy improved when combined with conventional therapies (SNTB + ME AgNPs 1:1 vs. SNTB: 20.01% vs. 25.73%, p = 0.002; IMTB + ME AgNPs 1:1 vs. IMTB: 17.80% vs. 18.08%, p = 0.036; SNTB + CVE AgNPs 1:1 vs. SNTB: 18.73% vs. 25.73%, p = 0.000; SNTB + CVE AgNPs 1:2 vs. SNTB: 26.62% vs. 41.00%, p = 0.018; IMTB + CVE AgNPs 1:1 vs. IMTB: 12.99% vs. 18.08%, p = 0.001). Taraxacum extract exhibited similar cytotoxicity to its nanoparticle formulation but did not exceed the efficacy of the extract alone at 24 h. Selectivity index assessments confirmed that AgNPs-based formulations significantly improve cytotoxicity and selectivity to HepG2 cells. Among the tested extracts, CVE demonstrated the strongest antitumor effect, enhancing the efficacy of synthetic drugs (CI < 1). SNTB + TE AgNPs (5% EtOH) also demonstrated consistent synergy at high doses, while SNTB + CVE AgNPs provided broad-range synergy, making it suitable for dose-escalation strategies. Conclusions: These findings underscore the potential of nanoparticle-based formulations in combination therapies with targeted kinase inhibitors such as sunitinib and imatinib. Future research should focus on in vivo validation and clinical trials to confirm these findings.
Collapse
Affiliation(s)
- Mirela Claudia Rîmbu
- Medical Doctoral School, Titu Maiorescu University of Bucharest, 040317 Bucharest, Romania; (M.C.R.); (F.D.U.)
| | - Liliana Popescu
- Faculty of Pharmacy, Titu Maiorescu University, Gheorghe Sincai Blv. 16, 040314 Bucharest, Romania; (L.P.); (M.M.); (R.C.S.); (M.L.G.); (M.P.); (C.-E.M.); (M.P.); (E.T.)
| | - Mirela Mihăilă
- Faculty of Pharmacy, Titu Maiorescu University, Gheorghe Sincai Blv. 16, 040314 Bucharest, Romania; (L.P.); (M.M.); (R.C.S.); (M.L.G.); (M.P.); (C.-E.M.); (M.P.); (E.T.)
- Ștefan S. Nicolau Institute of Virology, 285 Mihai Bravu Street, 030304 Bucharest, Romania
| | - Roxana Colette Sandulovici
- Faculty of Pharmacy, Titu Maiorescu University, Gheorghe Sincai Blv. 16, 040314 Bucharest, Romania; (L.P.); (M.M.); (R.C.S.); (M.L.G.); (M.P.); (C.-E.M.); (M.P.); (E.T.)
| | - Daniel Cord
- Medical Doctoral School, Titu Maiorescu University of Bucharest, 040317 Bucharest, Romania; (M.C.R.); (F.D.U.)
| | - Carmen-Marinela Mihăilescu
- Faculty of Pharmacy, Titu Maiorescu University, Gheorghe Sincai Blv. 16, 040314 Bucharest, Romania; (L.P.); (M.M.); (R.C.S.); (M.L.G.); (M.P.); (C.-E.M.); (M.P.); (E.T.)
- National Institute for Research and Development in Microtechnologies (IMT Bucharest), 072996 Bucharest, Romania; (A.B.); (O.B.); (M.S.); (A.G.)
- Faculty of Pharmacy, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania;
| | - Mona Luciana Gălățanu
- Faculty of Pharmacy, Titu Maiorescu University, Gheorghe Sincai Blv. 16, 040314 Bucharest, Romania; (L.P.); (M.M.); (R.C.S.); (M.L.G.); (M.P.); (C.-E.M.); (M.P.); (E.T.)
| | - Mariana Panțuroiu
- Faculty of Pharmacy, Titu Maiorescu University, Gheorghe Sincai Blv. 16, 040314 Bucharest, Romania; (L.P.); (M.M.); (R.C.S.); (M.L.G.); (M.P.); (C.-E.M.); (M.P.); (E.T.)
| | - Carmen-Elisabeta Manea
- Faculty of Pharmacy, Titu Maiorescu University, Gheorghe Sincai Blv. 16, 040314 Bucharest, Romania; (L.P.); (M.M.); (R.C.S.); (M.L.G.); (M.P.); (C.-E.M.); (M.P.); (E.T.)
- Horia Hulubei National Institute for R&D in Physics and Nuclear Engineering (IFIN-HH), 30 Reactorului Street, 077125 Măgurele, Romania
| | - Adina Boldeiu
- National Institute for Research and Development in Microtechnologies (IMT Bucharest), 072996 Bucharest, Romania; (A.B.); (O.B.); (M.S.); (A.G.)
| | - Oana Brîncoveanu
- National Institute for Research and Development in Microtechnologies (IMT Bucharest), 072996 Bucharest, Romania; (A.B.); (O.B.); (M.S.); (A.G.)
| | - Mihaela Savin
- National Institute for Research and Development in Microtechnologies (IMT Bucharest), 072996 Bucharest, Romania; (A.B.); (O.B.); (M.S.); (A.G.)
| | - Alexandru Grigoroiu
- National Institute for Research and Development in Microtechnologies (IMT Bucharest), 072996 Bucharest, Romania; (A.B.); (O.B.); (M.S.); (A.G.)
| | - Florin Dan Ungureanu
- Medical Doctoral School, Titu Maiorescu University of Bucharest, 040317 Bucharest, Romania; (M.C.R.); (F.D.U.)
| | - Emilia Amzoiu
- Faculty of Pharmacy, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania;
| | - Mariana Popescu
- Faculty of Pharmacy, Titu Maiorescu University, Gheorghe Sincai Blv. 16, 040314 Bucharest, Romania; (L.P.); (M.M.); (R.C.S.); (M.L.G.); (M.P.); (C.-E.M.); (M.P.); (E.T.)
| | - Elena Truță
- Faculty of Pharmacy, Titu Maiorescu University, Gheorghe Sincai Blv. 16, 040314 Bucharest, Romania; (L.P.); (M.M.); (R.C.S.); (M.L.G.); (M.P.); (C.-E.M.); (M.P.); (E.T.)
| |
Collapse
|
3
|
Shao Y, Chen Y, Zhu Q, Yi L, Ma Y, Zang X, Yao W. The Pharmacology and Toxicology of Ginkgolic Acids: Secondary Metabolites from Ginkgo biloba. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2025; 53:147-177. [PMID: 39880663 DOI: 10.1142/s0192415x25500077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2025]
Abstract
Ginkgolic acids (GAs) are distinctive secondary metabolites of Ginkgo biloba (G. biloba) primarily found in its leaves and seeds, with the highest concentration located in the exotesta. GAs are classified as long-chain phenolic compounds, and exhibit structural similarities to lignoceric acid. Their structural diversity arises from variations in the length of side chains and their number of double bonds, resulting in six distinct forms within G. biloba extracts (GBE). Of these, GA (C15:1) is the most prevalent. As inhibitors of SUMOylation, GAs demonstrate significant antitumor activity, and can exert antineoplastic effects through multiple pathways, which positions them as potentially promising therapeutic agents for cancer treatment. Additionally, GAs exhibit notable anti-inflammatory, antibacterial, and antiviral properties, highlighting their multifaceted medicinal potential. Although the pharmacological properties of GAs have been extensively investigated, the associated risks of liver and kidney damage must not be overlooked. GAs can induce significant hepatic damage by promoting cellular apoptosis, oxidative stress, and the disruption of various metabolic processes. Furthermore, a limited number of studies have indicated that GAs may exhibit nephrotoxicity, as well as adverse effects on the skin and nervous system. Due to their recognized toxicity, the concentration of GAs is typically regulated to within 5[Formula: see text]ppm in the standardized G. biloba leaf extract EGb 761. Currently, there is no definitive evidence supporting the mutagenic toxicity of GAs. This review primarily synthesizes recent advancements in understanding the pharmacological and toxicological effects of GAs, along with their underlying mechanisms. It is anticipated that this review will stimulate scholarly discourse and elicit valuable insights.
Collapse
Affiliation(s)
- Yuting Shao
- School of Pharmacy, Nantong University, 9 Seyuan Road, Nantong 226019, P. R. China
| | - Yun Chen
- School of Pharmacy, Nantong University, 9 Seyuan Road, Nantong 226019, P. R. China
| | - Qingyu Zhu
- School of Pharmacy, Nantong University, 9 Seyuan Road, Nantong 226019, P. R. China
| | - Lingyan Yi
- School of Pharmacy, Nantong University, 9 Seyuan Road, Nantong 226019, P. R. China
| | - Yifan Ma
- School of Pharmacy, Nantong University, 9 Seyuan Road, Nantong 226019, P. R. China
| | - Xiangxu Zang
- School of Pharmacy, Nantong University, 9 Seyuan Road, Nantong 226019, P. R. China
| | - Wenjuan Yao
- School of Pharmacy, Nantong University, 9 Seyuan Road, Nantong 226019, P. R. China
| |
Collapse
|
4
|
Khalid K, Bashir MUN, Usman Rashid M, Malkani N. Nature's arsenal unleashed: Senegalia modesta derived thymol halts cancer progression by suppressing proangiogenic genes. Nat Prod Res 2024:1-8. [PMID: 39731411 DOI: 10.1080/14786419.2024.2446708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 11/15/2024] [Accepted: 12/18/2024] [Indexed: 12/29/2024]
Abstract
Inhibiting angiogenesis with plant-derived bioactive compounds can inhibit tumour progression. Antiangiogenic potential of Senegalia modesta was analysed by preparing and analysing ethanolic extracts of S.modesta by GC-MS and HPLC to identify bioactive components. In-vivo blood vessel formation assays in mice and chorioallantoic membrane assays (CAM) in eggs were employed to assess the antiangiogenic effects. qPCR was performed to elucidate mRNA expression of proangiogenic genes in MDA-MB-231 cells after exposure to S.modesta and thymol. Molecular docking analysis highlighted the interaction of thymol with VEGF receptors. S.modesta treatment significantly delayed wound healing in mice compared to control group. GC-MS and HPLC analyses thymol as a bioactive compound in S.modesta extract. CAM assay indicated reduced angiogenesis in thymol-treated groups, further confirmed by downregulation of proangiogenic genes. Molecular docking of thymol with VEGFR1/VEGFR2 revealed strong binding affinity, suggesting thymol-mediated receptor blocking. Thymol exhibits antiangiogenic potential and may serve as a promising therapeutic agent against cancer.
Collapse
Affiliation(s)
- Komal Khalid
- Department of Zoology, GC University, Lahore, Pakistan
| | | | - Muhammad Usman Rashid
- Department of Basic Sciences Research, Shaukat Khanum Memorial Cancer Hospital and Research Centre (SKMCH&RC), Lahore, Pakistan
| | - Naila Malkani
- Department of Zoology, GC University, Lahore, Pakistan
| |
Collapse
|
5
|
Wu J, Tang G, Cheng CS, Yeerken R, Chan YT, Fu Z, Zheng YC, Feng Y, Wang N. Traditional Chinese medicine for the treatment of cancers of hepatobiliary system: from clinical evidence to drug discovery. Mol Cancer 2024; 23:218. [PMID: 39354529 PMCID: PMC11443773 DOI: 10.1186/s12943-024-02136-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Accepted: 09/20/2024] [Indexed: 10/03/2024] Open
Abstract
Hepatic, biliary, and pancreatic cancer pose significant challenges in the field of digestive system diseases due to their highly malignant nature. Traditional Chinese medicine (TCM) has gained attention as a potential therapeutic approach with long-standing use in China and well-recognized clinical benefits. In this review, we systematically summarized the clinical applications of TCM that have shown promising results in clinical trials in treating hepatic, biliary, and pancreatic cancer. We highlighted several commonly used TCM therapeutics with validated efficacy through rigorous clinical trials, including Huaier Granule, Huachansu, and Icaritin. The active compounds and their potential targets have been thoroughly elucidated to offer valuable insights into the potential of TCM for anti-cancer drug discovery. We emphasized the importance of further research to bridge the gap between TCM and modern oncology, facilitating the development of evidence-based TCM treatment for these challenging malignancies.
Collapse
Affiliation(s)
- Junyu Wu
- School of Chinese Medicine, the University of Hong Kong, 3, Sasson Road, Pokfulam, Hong Kong
| | - Guoyi Tang
- School of Chinese Medicine, the University of Hong Kong, 3, Sasson Road, Pokfulam, Hong Kong
| | - Chien-Shan Cheng
- Department of Digestive Endoscopy Center & Gastroenterology, Shuguang Hospital Affiliated With Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
- Department of Traditional Chinese Medicine, Shanghai Jiao Tong University School of Medicine Affiliated Ruijin Hospital, Shanghai, China
| | - Ranna Yeerken
- School of Chinese Medicine, the University of Hong Kong, 3, Sasson Road, Pokfulam, Hong Kong
| | - Yau-Tuen Chan
- School of Chinese Medicine, the University of Hong Kong, 3, Sasson Road, Pokfulam, Hong Kong
| | - Zhiwen Fu
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yi-Chao Zheng
- State Key Laboratory of Esophageal Cancer Prevention &, Treatment Institute of Drug Discovery and Development, School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan, 450001, China
| | - Yibin Feng
- School of Chinese Medicine, the University of Hong Kong, 3, Sasson Road, Pokfulam, Hong Kong.
| | - Ning Wang
- School of Chinese Medicine, the University of Hong Kong, 3, Sasson Road, Pokfulam, Hong Kong.
| |
Collapse
|
6
|
Xu C, Pascual-Sabater S, Fillat C, Goel A. The LAMB3-EGFR signaling pathway mediates synergistic Anti-Cancer effects of berberine and emodin in Pancreatic cancer. Biochem Pharmacol 2024; 228:116509. [PMID: 39214450 PMCID: PMC11771243 DOI: 10.1016/j.bcp.2024.116509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 08/23/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a lethal malignancy, primarily due to the intrinsic development of chemoresistance. The most apparent histopathological feature associated with chemoresistance is the alterations in extracellular matrix (ECM) proteins. Natural dietary botanicals such as berberine (BBR) and emodin (EMO) have been shown to possess chemo-preventive potential by regulating ECM in various cancers. Herein, we further investigated the potential synergistic effects of BBR and EMO in enhancing anticancer efficacy by targeting ECM proteins in pancreatic cancer. Genomewide transcriptomic profiling identified that LAMB3 was significantly upregulated in PDAC tissue and highly associated with poor overall survival (OS, hazard ratio [HR], 2.99, 95 % confidence interval [CI], 1.46-6.15; p = 0.003) and progress-free survival (PFS, HR, 2.59; 95 % CI, 1.30-5.18; p = 0.007) in PDAC. A systematic series of functional experiments in BxPC-3 and MIA-PaCa-2 cells revealed that the combination of BBR and EMO exhibited synergistic anti-tumor potential, as demonstrated by cell proliferation, clonogenicity, migration, and invasion assays (p < 0.05-0.001). The combination also altered the expression of key proteins involved in apoptosis, EMT, and EGFR/ERK1,2/AKT signaling. These findings were further supported by patient-derived organoids (PDOs), where the combined treatment resulted in fewer and smaller organoids compared to each compound individually (p < 0.05-0.001). Our results suggest that BBR combined with EMO exerts synergistic anti-cancer effects by modulating the EGFR-signaling pathway through interference with LAMB3 in PDAC.
Collapse
Affiliation(s)
- Caiming Xu
- Department of Molecular Diagnostics and Experimental Therapeutics, Beckman Research Institute of City of Hope, Biomedical Research Center, Monrovia, CA, 91016, USA; Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian 116004, Liaoning, China
| | - Silvia Pascual-Sabater
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
| | - Cristina Fillat
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
| | - Ajay Goel
- Department of Molecular Diagnostics and Experimental Therapeutics, Beckman Research Institute of City of Hope, Biomedical Research Center, Monrovia, CA, 91016, USA; City of Hope Comprehensive Cancer Center, Duarte, CA, 91010, USA.
| |
Collapse
|
7
|
Porwal M, Rastogi V, Chandra P, Sharma KK, Varshney P. Significance of Phytoconstituents in Modulating Cell Signalling Pathways for the Treatment of Pancreatic Cancer. REVISTA BRASILEIRA DE FARMACOGNOSIA 2024. [DOI: 10.1007/s43450-024-00589-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 08/26/2024] [Indexed: 01/03/2025]
|
8
|
Kumar A, BharathwajChetty B, Manickasamy MK, Unnikrishnan J, Alqahtani MS, Abbas M, Almubarak HA, Sethi G, Kunnumakkara AB. Natural compounds targeting YAP/TAZ axis in cancer: Current state of art and challenges. Pharmacol Res 2024; 203:107167. [PMID: 38599470 DOI: 10.1016/j.phrs.2024.107167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 04/01/2024] [Accepted: 04/02/2024] [Indexed: 04/12/2024]
Abstract
Cancer has become a burgeoning global healthcare concern marked by its exponential growth and significant economic ramifications. Though advancements in the treatment modalities have increased the overall survival and quality of life, there are no definite treatments for the advanced stages of this malady. Hence, understanding the diseases etiologies and the underlying molecular complexities, will usher in the development of innovative therapeutics. Recently, YAP/TAZ transcriptional regulation has been of immense interest due to their role in development, tissue homeostasis and oncogenic transformations. YAP/TAZ axis functions as coactivators within the Hippo signaling cascade, exerting pivotal influence on processes such as proliferation, regeneration, development, and tissue renewal. In cancer, YAP is overexpressed in multiple tumor types and is associated with cancer stem cell attributes, chemoresistance, and metastasis. Activation of YAP/TAZ mirrors the cellular "social" behavior, encompassing factors such as cell adhesion and the mechanical signals transmitted to the cell from tissue structure and the surrounding extracellular matrix. Therefore, it presents a significant vulnerability in the clogs of tumors that could provide a wide window of therapeutic effectiveness. Natural compounds have been utilized extensively as successful interventions in the management of diverse chronic illnesses, including cancer. Owing to their capacity to influence multiple genes and pathways, natural compounds exhibit significant potential either as adjuvant therapy or in combination with conventional treatment options. In this review, we delineate the signaling nexus of YAP/TAZ axis, and present natural compounds as an alternate strategy to target cancer.
Collapse
Affiliation(s)
- Aviral Kumar
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, Assam 781039, India
| | - Bandari BharathwajChetty
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, Assam 781039, India
| | - Mukesh Kumar Manickasamy
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, Assam 781039, India
| | - Jyothsna Unnikrishnan
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, Assam 781039, India
| | - Mohammed S Alqahtani
- Radiological Sciences Department, College of Applied Medical Sciences, King Khalid University, Abha 61421, Saudi Arabia; BioImaging Unit, Space Research Centre, Michael Atiyah Building, University of Leicester, Leicester LE1 7RH, United Kingdom
| | - Mohamed Abbas
- Electrical Engineering Department, College of Engineering, King Khalid University, Abha 61421, Saudi Arabia
| | - Hassan Ali Almubarak
- Division of Radiology, Department of Medicine, College of Medicine and Surgery, King Khalid University, Abha 61421, Saudi Arabia
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 16 Medical Drive, Singapore 117600, Singapore; NUS Center for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, 117699, Singapore.
| | - Ajaikumar B Kunnumakkara
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, Assam 781039, India.
| |
Collapse
|
9
|
Manoharan S, Saha S, Murugesan K, Santhakumar A, Perumal E. Natural bioactive compounds and STAT3 against hepatocellular carcinoma: An update. Life Sci 2024; 337:122351. [PMID: 38103726 DOI: 10.1016/j.lfs.2023.122351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 11/23/2023] [Accepted: 12/11/2023] [Indexed: 12/19/2023]
Abstract
Hepatocellular carcinoma (HCC) is a challenging and very fatal liver cancer. The signal transducer and activator of transcription 3 (STAT3) pathway is a crucial regulator of tumor development and are ubiquitously active in HCC. Therefore, targeting STAT3 has emerged as a promising approach for preventing and treating HCC. Various natural bioactive compounds (NBCs) have been proven to target STAT3 and have the potential to prevent and treat HCC as STAT3 inhibitors. Numerous kinds of STAT3 inhibitors have been identified, including small molecule inhibitors, peptide inhibitors, and oligonucleotide inhibitors. Due to the undesirable side effects of the conventional therapeutic drugs against HCC, the focus is shifted to NBCs derived from plants and other natural sources. NBCs can be broadly classified into the categories of terpenes, alkaloids, carotenoids, and phenols. Most of the compounds belong to the family of terpenes, which prevent tumorigenesis by inhibiting STAT3 nuclear translocation. Further, through STAT3 inhibition, terpenes downregulate matrix metalloprotease 2 (MMP2), matrix metalloprotease 9 (MMP9) and vascular endothelial growth factor (VEGF), modulating metastasis. Terpenes also suppress the anti-apoptotic proteins and cell cycle markers. This review provides comprehensive information related to STAT3 abrogation by NBCs in HCC with in vitro and in vivo evidences.
Collapse
Affiliation(s)
- Suryaa Manoharan
- Molecular Toxicology Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore 641 046, India
| | - Shreejit Saha
- Molecular Toxicology Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore 641 046, India
| | - Krishnasanthiya Murugesan
- Molecular Toxicology Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore 641 046, India
| | - Aksayakeerthana Santhakumar
- Molecular Toxicology Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore 641 046, India
| | - Ekambaram Perumal
- Molecular Toxicology Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore 641 046, India.
| |
Collapse
|
10
|
Conforti I, Benzi A, Caffa I, Bruzzone S, Nencioni A, Marra A. New Analogues of the Nicotinamide Phosphoribosyltransferase Inhibitor FK866 as Potential Anti-Pancreatic Cancer Agents. Med Chem 2024; 20:694-708. [PMID: 38333979 DOI: 10.2174/0115734064289584240121142405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 12/05/2023] [Accepted: 01/09/2024] [Indexed: 02/10/2024]
Abstract
BACKGROUND During the past two decades, many nicotinamide phosphoribosyltransferase (NAMPT) inhibitors were prepared and tested because this enzyme is overexpressed in pancreatic cancer. Although FK866 is a well-known, strong NAMPT inhibitor, it suffers severe drawbacks. OBJECTIVE Our work aimed to synthesize efficient NAMPT inhibitors featuring better pharmacokinetic properties than the pyridine-containing FK866. To this aim, the new anticancer agents were based on benzene, pyridazine, or benzothiazole moieties as a cap group instead of the pyridine unit found in FK866 and other NAMPT inhibitors. METHODS The new compounds, prepared exploiting standard heterocycle chemistry and coupling reactions (e.g., formation of amides, ureas, and cyanoguanidines, copper-mediated azide-alkyne cycloaddition), have been fully characterized using NMR and HRMS analyses. Their activity has been evaluated using cytotoxicity and intracellular NAD depletion assays in the human pancreatic cancer cell line MiaPaCa-2. RESULTS Among the 14 products obtained, compound 28, bearing a pyridazine unit as the cap group and a thiophene moiety as the tail group, showed 6.7 nanomolar inhibition activity in the intracellular NAD depletion assay and 43 nanomolar inhibition in the MiaPaCa-2 cells cytotoxicity assay, comparable to that observed for FK866. CONCLUSION The positive results observed for some newly synthesized molecules, particularly those carrying a thiophene unit as a tail group, indicate that they could act as in vivo anti-pancreatic cancer agents.
Collapse
Affiliation(s)
- Irene Conforti
- Institut des Biomolécules Max Mousseron (IBMM, UMR 5247), Université de Montpellier, Pôle Chimie Balard Recherche, 1919 Route de Mende, 34293 Montpellier, France
| | - Andrea Benzi
- Dipartimento di Medicina Sperimentale-DIMES, Scuola di Scienze Mediche e Farmaceutiche, Università degli Studi di Genova, Viale Benedetto XV 1, 16132 Genova, Italy
| | - Irene Caffa
- Dipartimento di Medicina Interna e Specialità Mediche-DIMI, Università degli Studi di Genova, Viale Benedetto XV 6, 16132 Genova, Italy
- IRCCS, Ospedale Policlinico San Martino, 16132 Genova, Italy
| | - Santina Bruzzone
- Dipartimento di Medicina Sperimentale-DIMES, Scuola di Scienze Mediche e Farmaceutiche, Università degli Studi di Genova, Viale Benedetto XV 1, 16132 Genova, Italy
- IRCCS, Ospedale Policlinico San Martino, 16132 Genova, Italy
| | - Alessio Nencioni
- Dipartimento di Medicina Interna e Specialità Mediche-DIMI, Università degli Studi di Genova, Viale Benedetto XV 6, 16132 Genova, Italy
- IRCCS, Ospedale Policlinico San Martino, 16132 Genova, Italy
| | - Alberto Marra
- Institut des Biomolécules Max Mousseron (IBMM, UMR 5247), Université de Montpellier, Pôle Chimie Balard Recherche, 1919 Route de Mende, 34293 Montpellier, France
| |
Collapse
|
11
|
Chebaro Z, Abdallah R, Badran A, Hamade K, Hijazi A, Maresca M, Mesmar JE, Baydoun E. Study of the antioxidant and anti-pancreatic cancer activities of Anchusa strigosa aqueous extracts obtained by maceration and ultrasonic extraction techniques. Front Pharmacol 2023; 14:1201969. [PMID: 37593172 PMCID: PMC10427766 DOI: 10.3389/fphar.2023.1201969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 07/18/2023] [Indexed: 08/19/2023] Open
Abstract
Pancreatic cancer is a highly aggressive malignancy and a leading cause of cancer-related deaths worldwide. Moreover, the incidence and mortality rates for pancreatic cancer are projected to keep increasing. A major challenge in the treatment of pancreatic cancer is the lack of effective screening approaches, which contributes to its poor prognosis, indicating the need for new treatment regimens and alternative therapies, such as herbal medicine. The medicinal plant A. strigosa, which is widely distributed in the Eastern Mediterranean region, is a short prickly plant from the Boraginaceae family that has been widely used in traditional medicine for treating various diseases. Nevertheless, its effect on human pancreatic cancer remains poorly investigated. In the present study, we screened the phytochemical content of Anchusa strigosa aqueous extracts obtained by maceration and ultrasound-assisted methods (ASM and ASU, respectively) and evaluated their antioxidant effects. We also investigated their anticancer effects and possible underlying mechanisms. The results show that both extracts were rich in bioactive molecules, with slight differences in their composition. Both extracts exhibited remarkable antioxidant potential and potent radical-scavenging activity in vitro. Additionally, non-cytotoxic concentrations of both extracts attenuated cell proliferation in a time- and concentration-dependent manner, which was associated with a decrease in the proliferation marker Ki67 and an induction of the intrinsic apoptotic pathway. Furthermore, the extracts increased the aggregation of pancreatic cancer cells and reduced their migratory potential, with a concomitant downregulation of integrin β1. Finally, we showed that the ASM extract caused a significant decrease in the levels of COX-2, an enzyme that has been linked to inflammation, carcinogenesis, tumor progression, and metastasis. Taken together, our findings provide evidence that A. strigosa extracts, particularly the extract obtained using the maceration method, have a potential anticancer effect and may represent a new resource for the design of novel drugs against pancreatic cancer.
Collapse
Affiliation(s)
- Ziad Chebaro
- Platforme de Recherche et D’analyse en Sciences de L’environnement (EDST-PRASE), Beirut, Lebanon
| | - Rola Abdallah
- Department of Biology, American University of Beirut, Beirut, Lebanon
| | - Adnan Badran
- Department of Nutrition, University of Petra, Amman, Jordan
| | - Kamar Hamade
- UMRT INRE 1158 BioEcoAgro, Laboratorie BIOPI, University of Picardie Jules Verne, Amiens, France
| | - Akram Hijazi
- Platforme de Recherche et D’analyse en Sciences de L’environnement (EDST-PRASE), Beirut, Lebanon
| | - Marc Maresca
- Aix-Marseille Univ, CNRS, Centrale Marseille, iSM2, Marseille, France
| | | | - Elias Baydoun
- Department of Biology, American University of Beirut, Beirut, Lebanon
| |
Collapse
|
12
|
Salama RM, Tayel SG. Silymarin attenuates escitalopram (cipralex) induced pancreatic injury in adult male albino rats: a biochemical, histological, and immunohistochemical approach. Anat Cell Biol 2023; 56:122-136. [PMID: 36624692 PMCID: PMC9989791 DOI: 10.5115/acb.22.204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/11/2022] [Accepted: 11/25/2022] [Indexed: 01/11/2023] Open
Abstract
Depression is a prevalent global problem since ages, predominately treated with SSRI. Cipralex, is an antidepressant of the SSRIs class used as a remedy for mood, depression and anxiety. Silymarin (SIL), a natural free radical scavenging, has an antioxidant and anti-inflammatory properties. This hypothesis evaluates, for the first time, the role of cipralex on the structure of the endocrine and exocrine components of the pancreas and assess the beneficial effects of SIL on these changes. Forty-five rats were divided into control, cipralex, and cipralex plus SIL groups. During sacrifice, all rats and pancreases were weighed and the ratio of pancreatic weight (PW) to rat weight (RW) was calculated, blood samples were collected to estimate fasting glucose, insulin and amylase levels, the specimens were prepared for histological, immunohistochemical (inducible nitric oxide synthase [iNOS], tumour necrosis factor-alpha [TNF-α], caspase 3, proliferating cell nuclear antigen [PCNA], and anti-insulin antibody), and morphometrical studies. Cipralex group exhibited marked destruction of the pancreatic architecture of the exocrine and endocrine parts, with a dense collagen fiber deposition. Also, there is highly significant decrease (P<0.001) of PW/RT ratio, insulin, and amylase levels, the number and diameter of islets of Langerhans, the number of PCNA positive immunoreactive cells, and the number of insulin positive β-cells. Furthermore, a highly significant increase of glucose level, iNOS, TNF-α, and caspase-3 positive immunoreactive cells in the islets of Langerhans and acinar cells were observed. SIL improves the pancreatic histological architecture, weight loss, biochemical, and immunohistochemical analyses. Administering SIL is advantageous in managing cipralex induced pancreatic injury via its anti-inflammatory, antioxidant, and anti-apoptotic qualities.
Collapse
Affiliation(s)
- Rasha Mamdouh Salama
- Department of Anatomy and Embryology, Faculty of Medicine, Menoufia University, Menoufia, Egypt
| | - Sara Gamal Tayel
- Department of Anatomy and Embryology, Faculty of Medicine, Menoufia University, Menoufia, Egypt
| |
Collapse
|
13
|
Ng JY, Bhatt HA, Raja M. Complementary and alternative medicine mention and recommendations in pancreatic cancer clinical practice guidelines: A systematic review and quality assessment. Integr Med Res 2023; 12:100921. [PMID: 36684828 PMCID: PMC9852932 DOI: 10.1016/j.imr.2023.100921] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 01/02/2023] [Accepted: 01/03/2023] [Indexed: 01/07/2023] Open
Abstract
Background Pancreatic cancer is the third leading cause of cancer death in the United States, which is attributed to limited treatment options. Complementary and alternative medicine (CAM) therapies have been proposed to provide benefits in treating pancreatic cancer. Despite its importance in treatment, clinicians are not generally well equipped to counsel their patients about CAM therapies. This review identified the quantity and assessed the quality of clinical practice guidelines (CPGs) providing CAM recommendations for the treatment and/or management of pancreatic cancer. Methods A systematic review was conducted to identify pancreatic cancer CPGs. MEDLINE, EMBASE and CINAHL were searched from 2011 to 2022. The Guidelines International Network (GIN) and the National Center for Complementary and Integrative Health (NCCIH) websites were also searched. Eligible CPGs published by non-profit agencies on treatment and/or management of pancreatic cancer for adults were assessed using the Appraisal of Guidelines, Research and Evaluation II (AGREE II) instrument. Results From 31 eligible search results, 7 CPGs mentioned CAM and 3 CPGs made CAM recommendations. The mean scaled domain percentages of the CPGs in this study (overall, CAM-specific) were as follows: scope and purpose (81.3%, 77.8%), stakeholder involvement (63.9%, 42.6%), rigor-of-development (51.0%, 40.3%), clarity-of-presentation (83.3%, 54.6%), applicability (42.3%, 30.5%), and editorial independence (58.3%, 58.3%). Conclusions Evaluation of the CPGs demonstrated that quality varied both within and between CPGs. CPGs that scored well could be used by patients and clinicians as the basis for discussion for the use of CAM therapies. Future research should identify other appropriate CAM therapies for further development of CPGs for pancreatic cancer. Registration The protocol was registered on PROSPERO (registration number: CRD42022334025).
Collapse
Affiliation(s)
- Jeremy Y Ng
- Department of Health Research Methods, Evidence, and Impact, Faculty of Health Sciences, McMaster University, Hamilton, ON, Canada
| | - Hardil Anup Bhatt
- Department of Health Research Methods, Evidence, and Impact, Faculty of Health Sciences, McMaster University, Hamilton, ON, Canada
| | - Maheen Raja
- Department of Health Research Methods, Evidence, and Impact, Faculty of Health Sciences, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
14
|
Mikolaskova I, Crnogorac-Jurcevic T, Smolkova B, Hunakova L. Nutraceuticals as Supportive Therapeutic Agents in Diabetes and Pancreatic Ductal Adenocarcinoma: A Systematic Review. BIOLOGY 2023; 12:158. [PMID: 36829437 PMCID: PMC9953002 DOI: 10.3390/biology12020158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/16/2023] [Accepted: 01/17/2023] [Indexed: 01/22/2023]
Abstract
The correlation between pancreatic ductal adenocarcinoma (PDAC) and diabetes-related mechanisms support the hypothesis that early therapeutic strategies targeting diabetes can contribute to PDAC risk reduction and treatment improvement. A systematic review was conducted, using PubMed, Embase and Cochrane Library databases, to evaluate the current evidence from clinical studies qualitatively examining the efficacy of four natural products: Curcumin-Curcuma longa L.; Thymoquinone-Nigella sativa L.; Genistein-Glycine max L.; Ginkgo biloba L.; and a low-carbohydrate ketogenic diet in type 2 diabetes (T2D) and PDAC treatment. A total of 28 clinical studies were included, showing strong evidence of inter-study heterogeneity. Used as a monotherapy or in combination with chemo-radiotherapy, the studied substances did not significantly improve the treatment response of PDAC patients. However, pronounced therapeutic efficacy was confirmed in T2D. The natural products and low-carbohydrate ketogenic diet, combined with the standard drugs, have the potential to improve T2D treatment and thus potentially reduce the risk of cancer development and improve multiple biological parameters in PDAC patients.
Collapse
Affiliation(s)
- Iveta Mikolaskova
- Institute of Immunology, Faculty of Medicine, Comenius University, Odborarske Namestie 14, 811 08 Bratislava, Slovakia
| | - Tatjana Crnogorac-Jurcevic
- Barts Cancer Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University, Charterhouse Square, London EC1M 6BQ, UK
| | - Bozena Smolkova
- Biomedical Research Center, Slovak Academy of Sciences, Cancer Research Institute, Dubravska Cesta 9, 845 05 Bratislava, Slovakia
| | - Luba Hunakova
- Institute of Immunology, Faculty of Medicine, Comenius University, Odborarske Namestie 14, 811 08 Bratislava, Slovakia
| |
Collapse
|
15
|
Cao C, Zhao W, Chen X, Shen B, Wang T, Wu C, Rong X. Deciphering the action mechanism of paeoniflorin in suppressing pancreatic cancer: A network pharmacology study and experimental validation. Front Pharmacol 2022; 13:1032282. [PMID: 36339551 PMCID: PMC9630940 DOI: 10.3389/fphar.2022.1032282] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 10/03/2022] [Indexed: 11/25/2022] Open
Abstract
Background: Paeoniflorin (PF) is the main active component of Chinese herbaceous peony that has been shown to have an anti-tumor effect. However, there are few studies on the prevention and treatment of pancreatic cancer with PF. Methods: We gathered Microarray data pertaining to paeoniflorin intervention in pancreatic cancer by utilizing the GEO database (GSE97124). Then, the DEGs were filtered by the 33R program. RNA-seq data of pancreatic cancer and normal tissue samples were taken from the TCGA and GTEx databases, respectively, and the WGCNA technique was utilized to examine the pancreatic cancer-specific genes. Paeoniflorin target genes for the treatment of pancreatic cancer were determined based on the overlap between DEGs and WGCNA. GO and KEGG enrichment analyses were then performed on paeoniflorin target genes to discover which biological processes were impacted. Using the 3 hierarchical methods included in the Cytohubba plugin, we re-screened the hub genes in the target genes to find the genes most relevant to paeoniflorin treatment. The overall survival effects of hub genes were confirmed using the TCGA database. Finally, the paeoniflorin targets identified by the network pharmacology analysis were validated using PANC-1 and Capan-2 cells. Results: We identified 148 main potential PF targets, and gene enrichment analysis suggested that the aforementioned targets play a crucial role in the regulation of MAPK, PI3K-AKT, and other pathways. The further screening of the prospective targets resulted in the identification of 39 hub genes. Using the TCGA database, it was determined that around 33.33% of the hub gene’s high expression was linked with a bad prognosis. Finally, we demonstrated that PF inhibits IL-6 and IL-10 expression and p38 phosphorylation in pancreatic cancer cells, thereby reducing inflammation. Conclusion: PF may regulate inflammatory factors mainly through the p38 MAPK signal pathway. These findings provide theoretical and experimental evidence suggesting the PF as a promising natural source of anti-tumor compounds for pancreatic cancer.
Collapse
Affiliation(s)
- Chunhao Cao
- Department of Integrated Traditional Chinese and Western Medicine, The First Affiliate Hospital of Chongqing Medical University, Chongqing, China
| | - Wenting Zhao
- Hubei University of Chinese Medicine, Wuhan, China
| | | | - Bin Shen
- Chongqing Medical University, Chongqing, China
| | - Teng Wang
- Chongqing Medical University, Chongqing, China
| | - Chaoxu Wu
- Department of Integrated Traditional Chinese and Western Medicine, The First Affiliate Hospital of Chongqing Medical University, Chongqing, China
- *Correspondence: Xiaofeng Rong, ; Chaoxu Wu,
| | - Xiaofeng Rong
- Department of Integrated Traditional Chinese and Western Medicine, The First Affiliate Hospital of Chongqing Medical University, Chongqing, China
- *Correspondence: Xiaofeng Rong, ; Chaoxu Wu,
| |
Collapse
|
16
|
Wang J, Wang Q, Zhang P, Zhang R, He J. Efficacy and safety of traditional Chinese medicine for the treatment of pancreatic cancer: An overview of systematic reviews and meta-analyses. Front Pharmacol 2022; 13:896017. [PMID: 36120323 PMCID: PMC9475193 DOI: 10.3389/fphar.2022.896017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 08/02/2022] [Indexed: 12/09/2022] Open
Abstract
Pancreatic cancer is a highly malignant tumor with poor prognosis. Currently available Western medical management strategies are unable to prolong the survival time and reduce the mortality of patients with pancreatic cancer. Traditional Chinese medicine has achieved promising results in many clinical studies. This systematic review and meta-analysis (SR/MA) aimed to explore the benefits and evaluate the quality of evidence of traditional Chinese medicine-based interventions for preventing and treating pancreatic cancer. A systematic search of eight databases for SRs/MAs of randomized controlled trials on traditional Chinese medicine treatment for pancreatic cancer was conducted (from inception to April 2022). The methodological quality of the SRs/MAs was assessed using AMSTAR 2.0, and the quality of evidence was evaluated using the GRADE guide. Nine SRs/MAs, including 145 randomized controlled trials, were considered eligible for this study. The literature were published between 2014 and 2022. The sample size of randomized controlled trials in the MAs ranged from 336 to 1,989. The methodological quality of the nine studies was critically low. Among the 59 outcome indicators of the nine SRs/MAs, seven, 33, and 19 had moderate-, low-, and critically low-quality evidence, respectively, while high-quality evidence was not identified. The results for the long-term indicators, short-term indicators, and adverse reactions in the SRs/MAs displayed consistencies and differences. In conclusion, the methodological and evidence quality of the current evidence is generally low, highlighting the need for additional focus on implementation processes. Some evidence with moderate quality validated that several specific traditional Chinese medicine were optimum for improving the short-term clinical efficacy. However, more objective and high-quality investigations are warranted to verify the efficacy of traditional Chinese medicine for pancreatic cancer.
Collapse
Affiliation(s)
- Jing Wang
- Department of Oncology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Qiuyuan Wang
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
- Department of Orthopaedics, China-Japan Friendship Hospital, Beijing, China
| | - Peitong Zhang
- Department of Oncology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- *Correspondence: Peitong Zhang,
| | - Ruoqi Zhang
- Department of Oncology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Jie He
- Department of Oncology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
17
|
Anticancer effects of herbal medicines in pancreatic ductal adenocarcinoma through modulation of steroid hormone response proteins. Sci Rep 2022; 12:9910. [PMID: 35701649 PMCID: PMC9198029 DOI: 10.1038/s41598-022-14174-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 05/17/2022] [Indexed: 11/20/2022] Open
Abstract
Many individual herbs and herbal formulae have been demonstrated to provide safe and effective treatment for pancreatic ductal adenocarcinoma (PDAC); however, the therapeutic mechanisms underlying their effects have not been fully elucidated. A total of 114 herbal formulae comprising 216 single herbal medicines used to treat PDAC were identified. Cluster analysis revealed a core prescription including four herbs [Glycyrrhizae Radix et Rhizome (Gan Cao), Codonopsis Radix (Dang Shen), Citri Reticulatae Pericarpium (Chen Pi), and Pinelliae Rhizoma (Ban Xia)] in combination to treat PDAC, and 295, 256, 141, and 365 potential targets were screened for each of these four herbs, respectively. PDAC-related proteins (n = 2940) were identified from the DisGeNET database. Finally, 44 overlapping targets of herbs and PDAC were obtained, representing potential targets of the herbal medicines for PDAC treatment. GO enrichment analysis indicated that targets common to herbs and PDAC primarily functioned in response to steroid hormones. KEGG pathway enrichment analysis indicated that the herbs may prevent PDAC by influencing apoptotic, p53, and PI3K/Akt signaling pathways. Further, molecular docking analysis indicated that of identified bioactive compounds, stigmasterol, phaseol, perlolyrine, shinpterocarpin, and licopyranocoumarin have good binding ability with proteins involved in responses to steroid hormones, while stigmasterol, phaseol, perlolyrine, and DIOP have good binding ability with PTGS2(also known as COX-2), ESR1, ESR2, AR, and PGR. The anti-PDAC activity of herbal medicines may be mediated via regulation of proteins with roles in responses to steroid hormones. This study provides further evidence supporting the potential for use of herbal medicines to treat PDAC.
Collapse
|