1
|
Zhao A, Li J, Peterson M, Black M, Gaulke CA, Jeffery EH, Miller MJ. Cooked Broccoli Alters Cecal Microbiota and Impacts Microbial Metabolism of Glucoraphanin in Lean and Obese Mice. Mol Nutr Food Res 2025; 69:e202400813. [PMID: 39962804 PMCID: PMC11924887 DOI: 10.1002/mnfr.202400813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 12/29/2024] [Accepted: 01/21/2025] [Indexed: 03/21/2025]
Abstract
SCOPE Brassica vegetables contain unique compounds known as glucosinolates (GSLs), which, when hydrolyzed by plant or microbial myrosinase, form bioactive isothiocyanates (ITCs) that offer health benefits to the host. The present study evaluated the impact of cooked broccoli (broccoli myrosinase inactivated) consumption on cecal microbial metabolism of glucoraphanin (GRP) in lean and obese mice and characterized the changes in cecal microbiota following broccoli-containing diets. METHODS AND RESULTS Twenty lean and 20 diet-induced obese (DIO) mice were randomized to consume control or cooked broccoli supplemented diets for 7 days. Cooked broccoli consumption increased ex vivo microbial GRP hydrolysis by cecal contents collected from lean and obese mice, led to increased production of sulforaphane (SF), sulforaphane-cysteine (SF-CYS), total ITC, and colonic NAD(P)H: Quinone Oxidoreductase (NQO1) activity. Further investigation revealed increased abundance of health-promoting gut microbiota, including Lachnospiraceae NK4A136 group and Dubosiella newyorkensis, following broccoli-containing diets. The Peptococcaseae family, the Blautia genus, and an amplicon sequence variation (ASV) from the Oscillospiraceae family exhibited negative correlation with total ITC production. CONCLUSION These finding suggest that cooked broccoli consumption enhances microbial GRP hydrolysis to produce more bioactive ITCs and inform future strategies toward altering microbial GSL metabolism to promote gut health in both lean and obese individuals.
Collapse
Affiliation(s)
- Anqi Zhao
- Division of Nutritional Sciences, University of Illinois, Urbana, Illinois, USA
| | - Jiaxuan Li
- Department of Food Science and Human Nutrition, University of Illinois, Urbana, Illinois, USA
| | - Mark Peterson
- College of Veterinary Medicine, University of Illinois, Urbana, Illinois, USA
| | - Molly Black
- Department of Food Science and Human Nutrition, University of Illinois, Urbana, Illinois, USA
| | | | - Elizabeth H Jeffery
- Division of Nutritional Sciences, University of Illinois, Urbana, Illinois, USA
- Department of Food Science and Human Nutrition, University of Illinois, Urbana, Illinois, USA
| | - Michael J Miller
- Division of Nutritional Sciences, University of Illinois, Urbana, Illinois, USA
- Department of Food Science and Human Nutrition, University of Illinois, Urbana, Illinois, USA
| |
Collapse
|
2
|
Li X, Wang F, Ta N, Huang J. The compositions, characteristics, health benefits and applications of anthocyanins in Brassica crops. FRONTIERS IN PLANT SCIENCE 2025; 16:1544099. [PMID: 40034154 PMCID: PMC11872724 DOI: 10.3389/fpls.2025.1544099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Accepted: 01/20/2025] [Indexed: 03/05/2025]
Abstract
Brassica crops, well known for their nutritional and medicinal value, encompass a diverse range of species and varieties, many of which are rich in anthocyanins. These flavonoid pigments not only contribute to the vibrant colors of Brassica plants but also possess significant antioxidant, anti-inflammatory, and neuroprotective properties. This review provides an in-depth analysis of the distribution, composition, and health benefits of anthocyanins in Brassica crops, highlighting their potential applications in the food industry and medicine. We discuss the accumulation patterns of anthocyanins in various Brassica tissues, the influence of genetic and environmental factors on their concentration, and the impact of acylation on their stability and biological activities. This review also explores the antioxidant capacity and cardioprotective effects of Brassica anthocyanins, as well as their roles in protecting against hepatic and renal injury and promoting neuroprotection. Furthermore, we examine the use of anthocyanins as natural food colorants and their integration into intelligent packaging for the real-time monitoring of food freshness. Our findings underscore the multifaceted benefits of Brassica anthocyanins, positioning them as key components in the development of functional foods and sustainable food systems.
Collapse
Affiliation(s)
- Xinjie Li
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Fan Wang
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Na Ta
- School of Modern Agriculture and Biotechnology, Ankang University, Ankang, China
| | - Jinyong Huang
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
3
|
Abbiati F, Orlandi I, Pagliari S, Campone L, Vai M. Glucosinolates from Seed-Press Cake of Camelina sativa (L.) Crantz Extend Yeast Chronological Lifespan by Modulating Carbon Metabolism and Respiration. Antioxidants (Basel) 2025; 14:80. [PMID: 39857414 PMCID: PMC11759863 DOI: 10.3390/antiox14010080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 01/08/2025] [Accepted: 01/09/2025] [Indexed: 01/27/2025] Open
Abstract
Glucosinolates (GSLs) are nitrogen/sulfur-containing glycosides widely present in the order of Brassicales, particularly in the Brassicaceae family. Camelina (Camelina sativa (L.) Crantz) is an oilseed plant belonging to this family. Its seeds, in addition to a distinctive fatty acid composition, contain three aliphatic GSLs: glucoarabin, glucocamelinin, and homoglucocamelinin. Our study explored the impact of these GSLs purified from Camelina press cake, a by-product of Camelina oil production, on yeast chronological aging, which is the established model for simulating the aging of post-mitotic quiescent mammalian cells. Supplementing yeast cells with GSLs extends the chronological lifespan (CLS) in a dose-dependent manner. This enhancement relies on an improved mitochondrial respiration efficiency, resulting in a drastic decrease of superoxide anion levels and an increase in ATP production. Furthermore, GSL supplementation affects carbon metabolism. In particular, GSLs support the pro-longevity preservation of TCA cycle enzymatic activities and enhanced glycerol catabolism. These changes contribute positively to the phosphorylating respiration and to an increase in trehalose storage: both of which are longevity-promoting prerequisites.
Collapse
Affiliation(s)
- Francesco Abbiati
- Dipartimento di Biotecnologie e Bioscienze, Università di Milano-Bicocca, Piazza della Scienza 2, 20126 Milano, Italy; (F.A.); (I.O.); (S.P.); (L.C.)
| | - Ivan Orlandi
- Dipartimento di Biotecnologie e Bioscienze, Università di Milano-Bicocca, Piazza della Scienza 2, 20126 Milano, Italy; (F.A.); (I.O.); (S.P.); (L.C.)
- SYSBIO Centre of Systems Biology, 20126 Milano, Italy
| | - Stefania Pagliari
- Dipartimento di Biotecnologie e Bioscienze, Università di Milano-Bicocca, Piazza della Scienza 2, 20126 Milano, Italy; (F.A.); (I.O.); (S.P.); (L.C.)
| | - Luca Campone
- Dipartimento di Biotecnologie e Bioscienze, Università di Milano-Bicocca, Piazza della Scienza 2, 20126 Milano, Italy; (F.A.); (I.O.); (S.P.); (L.C.)
| | - Marina Vai
- Dipartimento di Biotecnologie e Bioscienze, Università di Milano-Bicocca, Piazza della Scienza 2, 20126 Milano, Italy; (F.A.); (I.O.); (S.P.); (L.C.)
- SYSBIO Centre of Systems Biology, 20126 Milano, Italy
| |
Collapse
|
4
|
Diyapaththugama S, Mulaw GF, Ajaz M, Colson Shilton N, Singh I, Jani R. Miracle Fruit, a Potential Taste-modifier to Improve Food Preferences: A Review. Curr Nutr Rep 2024; 13:867-883. [PMID: 39358649 PMCID: PMC11489218 DOI: 10.1007/s13668-024-00583-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/13/2024] [Indexed: 10/04/2024]
Abstract
PURPOSE OF REVIEW The miracle fruit contains the glycoprotein miraculin which can modify the taste perception of food and beverages at low pH conditions, altering the consumers' food preferences. This review aims to critically evaluate all available evidence on miracle fruit/ miraculin and taste modification and its potential role in improving food preferences. RECENT FINDINGS Miracle fruit suppresses sourness and induces sweetness in acidic food/ beverages. At low pH conditions, miracle fruit enhances the sweet taste and decreases the perceived intensities of salty and bitter tastes in solutions. However, the role of miracle fruit in sweet, salty, and bitter food is not adequately studied. The above effects alter the food-liking scores in individual foods and mixed diets. Miracle fruit is a pH-dependent taste modifier with the potential to be used in food applications to improve consumer food preferences. Future research on the changes in food preferences with the optimum miraculin dose, food type, and intrapersonal variations in taste sensitivity is warranted.
Collapse
Affiliation(s)
- Shashya Diyapaththugama
- School of Pharmacy and Medical Sciences, Griffith University, Gold Coast, QLD, 4222, Australia.
| | - Getahun Fentaw Mulaw
- School of Pharmacy and Medical Sciences, Griffith University, Gold Coast, QLD, 4222, Australia
| | - Madiha Ajaz
- School of Pharmacy and Medical Sciences, Griffith University, Gold Coast, QLD, 4222, Australia
| | - Natalie Colson Shilton
- School of Pharmacy and Medical Sciences, Griffith University, Gold Coast, QLD, 4222, Australia
| | - Indu Singh
- School of Pharmacy and Medical Sciences, Griffith University, Gold Coast, QLD, 4222, Australia
| | - Rati Jani
- School of Health Sciences and Social Work, Griffith Health, Griffith University, Gold Coast, QLD, 4222, Australia
| |
Collapse
|
5
|
Maycotte P, Illanes M, Moreno DA. Glucosinolates, isothiocyanates, and their role in the regulation of autophagy and cellular function. PHYTOCHEMISTRY REVIEWS 2024. [DOI: 10.1007/s11101-024-09944-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 02/27/2024] [Indexed: 01/04/2025]
|
6
|
Ma S, Lu S. Bitter taste sensitivity, cruciferous vegetable intake, obesity, and diabetes in American adults: a cross-sectional study of NHANES 2013-2014. Food Funct 2023; 14:9243-9252. [PMID: 37743833 DOI: 10.1039/d3fo02175k] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
Objective: To examine the associations between bitter taste sensitivity, cruciferous vegetable consumption, and likelihood of obesity and diabetes among American adults. Research design and method: Cross-section observation of 2129 adults aged 40-80 years of the National Health and Nutrition Examination Survey (NHANES) 2013-2014. Bitter taste sensitivity was estimated by the generalized labeled magnitude scale (gLMS) rating for bitterness (non-tasters: the lowest 25%, the others were tasters). Consumption of cruciferous vegetables was recorded by the 2 day 24 hours dietary records. Obesity was defined as body mass index (BMI) ≥30 kg m-2. Diabetes was defined as self-reported physician-diagnosed diabetes, or who reported taking diabetes medication or individuals with a fasting plasma glucose (FPG) ≥ 126 mg dL-1 or Hemoglobin A1c ≥ 6.5%. Results: The proportion of participants who ate cruciferous vegetables over the two days was 29.5% among bitter tasters, significantly lower than that (35.7%) among non-tasters (P = 0.04) after adjustment of age, gender, race/ethnicity, dietary energy intake, physical activity, education, smoking and income levels. Among participants who ate cruciferous vegetables, bitter tasters on average consumed 15.5 g (±7.0) grams less cruciferous vegetables per day compared to non-tasters. The multi-variates adjusted odds ratio of obesity was 1.29 (95% confident interval (CI): 0.76-2.17), 1.40 (95% CI: 0.90-2.18) and 1.68 (95% CI: 1.05-2.67) among bitter tasters who ate cruciferous vegetables, among non-tasters who did not ate cruciferous vegetables, and among bitter tasters who did not eat cruciferous vegetables, respectively, as compared with non-tasters who ate cruciferous vegetables. The prevalence of diabetes was 17.3% and 13.0% among bitter tasters and non-tasters, respectively, with a multi-adjusted odds ratio of 1.32 (95% CI: 1.02-1.69, P = 0.033) for diabetes comparing bitter tasters with non-tasters, which was attenuated to 1.26 (95% CI: 0.95-1.67, P = 0.108) by further adjustment of cruciferous vegetables consumption and obesity, with a mediation effect of 17.8% (95% CI: 2.9%-60.9%; P = 0.069). Conclusion: Bitter taste sensitivity was associated with less consumption of cruciferous vegetables and a high likelihood of obesity, which may mediate its association with diabetes.
Collapse
Affiliation(s)
- Shirun Ma
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Sophia Lu
- Department of Biostatistics, School of Public Health, Boston University, Boston, MA 02118, USA.
| |
Collapse
|
7
|
Descamps-Solà M, Vilalta A, Jalsevac F, Blay MT, Rodríguez-Gallego E, Pinent M, Beltrán-Debón R, Terra X, Ardévol A. Bitter taste receptors along the gastrointestinal tract: comparison between humans and rodents. Front Nutr 2023; 10:1215889. [PMID: 37712001 PMCID: PMC10498470 DOI: 10.3389/fnut.2023.1215889] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 08/07/2023] [Indexed: 09/16/2023] Open
Abstract
For decades bitter taste receptors (TAS2R) were thought to be located only in the mouth and to serve as sensors for nutrients and harmful substances. However, in recent years Tas2r have also been reported in extraoral tissues such as the skin, the lungs, and the intestine, where their function is still uncertain. To better understand the physiological role of these receptors, in this paper we focused on the intestine, an organ in which their activation may be similar to the receptors found in the mouth. We compare the relative presence of these receptors along the gastrointestinal tract in three main species of biomedical research (mice, rats and humans) using sequence homology. Current data from studies of rodents are scarce and while more data are available in humans, they are still deficient. Our results indicate, unexpectedly, that the reported expression profiles do not always coincide between species even if the receptors are orthologs. This may be due not only to evolutionary divergence of the species but also to their adaptation to different dietary patterns. Further studies are needed in order to develop an integrated vision of these receptors and their physiological functionality along the gastrointestinal tract.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Raúl Beltrán-Debón
- Departament de Bioquímica i Biotecnologia, Universitat Rovira i Virgili, MoBioFood Research Group, Tarragona, Spain
| | - Ximena Terra
- Departament de Bioquímica i Biotecnologia, Universitat Rovira i Virgili, MoBioFood Research Group, Tarragona, Spain
| | | |
Collapse
|