1
|
Zheng TS, Gao XR, Xu RP, Zhao YF, Yang ZT, Wang DH. Sleep deprivation stimulates adaptive thermogenesis by activating AMPK pathway in mice. J Comp Physiol B 2025; 195:141-153. [PMID: 39477902 DOI: 10.1007/s00360-024-01590-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 10/03/2024] [Accepted: 10/08/2024] [Indexed: 02/20/2025]
Abstract
Sleep deprivation (SD) can affect the adaptive thermogenesis in laboratory rodents, but the molecular mechanism and the crosstalk with other organs remain largely unknown. In order to investigate the effects and mechanisms of SD on thermoregulation and energy metabolism, here we measured the changes of body weight, body fat mass, body temperature, resting metabolic rate (RMR), and thermogenic gene expression in brown adipose tissue (BAT), white adipose tissue (WAT), skeleton muscle and liver in C57BL/6J mice during 7-day SD with rotating rod sleep deprivation device. Results showed that compared with the control group, the body weight and body fat mass of SD mice were decreased and RMR of SD mice increased. The gene expression of Ampk, Pgc1α and Ucp1 which related to thermogenesis in BAT and WAT were significantly increased, and the expression of Ampk, Serca1, Serca2 and Ucp3 which related to thermogenesis in skeletal muscle were significantly increased in SD mice. Taken together, these data demonstrated that 7-day SD enhanced the adaptive thermogenesis in mice by activating AMPK, including the upregulation of the AMPK - PGC1α - UCP1 pathway in BAT, and the AMPK - UCP3 and SLN - SERCA pathway in skeleton muscle. Our data provide the molecular evidence for SD-stimulated adaptive thermogenesis and energy metabolism in small mammals.
Collapse
Affiliation(s)
- Tian-Shu Zheng
- School of Life Sciences, Shandong University, No. 72 Binhai Road, Jimo District, Qingdao, Shandong Province, 266237, China
| | - Xin-Ran Gao
- School of Life Sciences, Shandong University, No. 72 Binhai Road, Jimo District, Qingdao, Shandong Province, 266237, China
| | - Rui-Ping Xu
- School of Life Sciences, Shandong University, No. 72 Binhai Road, Jimo District, Qingdao, Shandong Province, 266237, China
| | - Yi-Fei Zhao
- School of Life Sciences, Shandong University, No. 72 Binhai Road, Jimo District, Qingdao, Shandong Province, 266237, China
| | - Zhi-Teng Yang
- School of Life Sciences, Shandong University, No. 72 Binhai Road, Jimo District, Qingdao, Shandong Province, 266237, China
| | - De-Hua Wang
- School of Life Sciences, Shandong University, No. 72 Binhai Road, Jimo District, Qingdao, Shandong Province, 266237, China.
| |
Collapse
|
2
|
Li C, Wang F, Mao Y, Ma Y, Guo Y. Multi-omics reveals the mechanism of Trimethylamine N-oxide derived from gut microbiota inducing liver fatty of dairy cows. BMC Genomics 2025; 26:10. [PMID: 39762777 PMCID: PMC11702196 DOI: 10.1186/s12864-024-11067-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 11/19/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND Trimethylamine N-oxide (TMAO) is a metabolite produced by gut microbiota, and its potential impact on lipid metabolism in mammals has garnered widespread attention in the scientific community. Bovine fatty liver disease, a metabolic disorder that severely affects the health and productivity of dairy cows, poses a significant economic burden on the global dairy industry. However, the specific role and pathogenesis of TMAO in bovine fatty liver disease remain unclear, limiting our understanding and treatment of the condition. This study aims to construct a bovine fatty liver cell model using an integrated approach that combines transcriptomic, proteomic, and metabolomic data. The objective is to investigate the impact of TMAO on lipid metabolism at the molecular level and explore its potential regulatory mechanisms. RESULTS We established an in vitro bovine fatty liver cell model and conducted a comprehensive analysis of cells treated with TMAO using high-throughput omics sequencing technologies. Bioinformatics methods were employed to delve into the regulatory effects on lipid metabolism, and several key genes were validated through RT-qPCR. Treatment with TMAO significantly affected 4790 genes, 397 proteins, and 137 metabolites. KEGG enrichment analysis revealed that the significantly altered molecules were primarily involved in pathways related to the pathology of fatty liver disease, such as metabolic pathways, insulin resistance, hepatitis B, and the AMPK signaling pathway. Moreover, through joint analysis, we further uncovered that the interaction between TMAO-mediated AMPK signaling and oxidative phosphorylation pathways might be a key mechanism promoting lipid accumulation in the liver. CONCLUSIONS Our study provides new insights into the role of TMAO in the pathogenesis of bovine fatty liver disease and offers a scientific basis for developing more effective treatment strategies.
Collapse
Affiliation(s)
- Chenlei Li
- College of Animal Science and Technology, Ningxia University, Yinchuan, 750021, China
- Key Laboratory of Ruminant Molecular and Cellular Breeding of Ningxia Hui Autonomous Region, College of Animal Science and Technology, Ningxia University, Yinchuan, 750021, China
| | - Feifei Wang
- College of Animal Science and Technology, Ningxia University, Yinchuan, 750021, China
- Key Laboratory of Ruminant Molecular and Cellular Breeding of Ningxia Hui Autonomous Region, College of Animal Science and Technology, Ningxia University, Yinchuan, 750021, China
| | - Yongxia Mao
- College of Animal Science and Technology, Ningxia University, Yinchuan, 750021, China
- Key Laboratory of Ruminant Molecular and Cellular Breeding of Ningxia Hui Autonomous Region, College of Animal Science and Technology, Ningxia University, Yinchuan, 750021, China
| | - Yanfen Ma
- College of Animal Science and Technology, Ningxia University, Yinchuan, 750021, China
- Key Laboratory of Ruminant Molecular and Cellular Breeding of Ningxia Hui Autonomous Region, College of Animal Science and Technology, Ningxia University, Yinchuan, 750021, China
| | - Yansheng Guo
- College of Animal Science and Technology, Ningxia University, Yinchuan, 750021, China.
- Key Laboratory of Ruminant Molecular and Cellular Breeding of Ningxia Hui Autonomous Region, College of Animal Science and Technology, Ningxia University, Yinchuan, 750021, China.
| |
Collapse
|
3
|
Li H, Bai X, Zeng J, Zhang J, Liu X, Wang S, Chen X, Wu J. Fabrication and characterization of potato short amylose, zein, and pectin ternary composite particles stabilized pickering emulsions and their application on nuciferine delivery. Food Res Int 2024; 197:115187. [PMID: 39593397 DOI: 10.1016/j.foodres.2024.115187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 09/28/2024] [Accepted: 10/01/2024] [Indexed: 11/28/2024]
Abstract
Nuciferine exhibits properties such as reducing blood sugar and fat, however, it is hindered by its poor water solubility and low bioavailability. Pickering emulsions can efficiently encapsulate, protect and deliver active ingredients. In recent years, the use of biologically derived natural materials as emulsifiers to construct Pickering emulsions has become a research hotspot. This research utilized an enzymatic hydrolysis technique to produce short amylose. Subsequently, a ternary composite of short amylose (DBS), zein, and pectin (PEC) was formulated to stabilize Pickering emulsion, with the incorporation of nuciferine aiming to enhance the performance of lotus leaves in terms of both stability and bioavailability. The study revealed that varying amounts of DBS addition had a significant impact on the micromorphological structure and functional properties of DBS-Zein-PEC ternary composite particles. Specifically, the addition of 0.4 g of DBS led to a notable reduction in particle size to 735.2 nm and Zeta potential to -29.6 mV, creating a three-dimensional network with a closely packed lamellar structure. Optimal process conditions for preparing Pickering emulsion included a 3-minute homogenization time, rotation speed of 15000 rpm, and 5 % ternary composite particle addition. Under these conditions, O/W Pickering emulsion was successfully prepared, achieving a 90.5 % encapsulation rate for nuciferine. The resulting emulsion exhibited a minimum particle size of 4.09 μm, displayed good storage stability, resistance to salt ions and pH variations, viscous fluid characteristics, tolerance to oral and gastric environments, and slow release of nuciferine in the small intestine, thereby enhancing its bioavailability. These findings offer insights into the loading and delivery of nuciferine and serve as a technical guide for developing highly stable emulsion gel systems.
Collapse
Affiliation(s)
- Hua Li
- Department of Food Science and Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Xue Bai
- Department of Food Science and Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Jihao Zeng
- Department of Food Science and Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Jiaying Zhang
- Department of Food Science and Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Xiaodan Liu
- School of Food and Tourism, Shanghai Urban Construction Vocational College, Shanghai 201415, PR China
| | - Shaoyun Wang
- College of Biological Science and Technology, Fuzhou University, Fuzhou, Fujian 350108, PR China
| | - Xu Chen
- College of Biological Science and Technology, Fuzhou University, Fuzhou, Fujian 350108, PR China
| | - Jinhong Wu
- Department of Food Science and Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, PR China.
| |
Collapse
|
4
|
Gong M, Yuan Y, Shi X, Huang H, Liu J, Zhao J, Xu Q. Compound oolong tea ameliorates lipid accumulation through AMPK-PPAR pathway of hepatic lipid metabolism and modulates gut microbiota in HFD induced mice. Food Res Int 2024; 196:115041. [PMID: 39614556 DOI: 10.1016/j.foodres.2024.115041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 08/24/2024] [Accepted: 09/01/2024] [Indexed: 12/01/2024]
Abstract
Based on the modified traditional Chinese formula, Compound Oolong tea (WLT) is composed of six herbal medicines which have beneficial effects. The present study aimed to assess the effects of WLT on lipid metabolism and gut microbiota in the mouse obesity model.Totally 32 mice were randomized into 4 groups including normal control (NC), high-fat diet model (HFD), positive control (PC) receiving atorvastatin 10 mg/kg/d, and WLT group with WLT water extra 300 mg/kg/d. The HFD, PC, WLT groups were fed a High-fat Diet. The results show that body weight, Lee's index, liver index and fat index were reduced in WLT. Moreover, the accumulation of TC, TG, and LDL-C were lower, and the level of serum HDL-C in WLT was higher than HFD. The activities of ALT and AST were reduced, and the glucose tolerance was improved in WLT. Furthermore, the relative gene expression of hepatic such as Pparγ, Lxr, Srebp-1c, Srebp-2, Scd-1, Acc-1, Fas were upregulated, and Hmgcr was downregulated in WLT compared to HFD. The relative protein expression of PPARγ, SREBP-1, FAS, and SCD-1 were decreased, and p-AMPK/AMPK and p-ACC-1/ACC-1 were increased in WLT compared with HFD. In addition, the diversity of gut microbiota was increased in mice, with an increase in Bacteroidota and a decrease in Firmicutes and Desulfovibrionales were decreased in WLT, compared with HFD. Briefly, WLT improves hepatic lipid metabolism through the AMPK-PPAR pathway and regulates the gut microbiome. These findings suggest that WLT could potentially be used as a functional food ingredients for preventing obesity.
Collapse
Affiliation(s)
- Mingxiu Gong
- Institute of Food Nutrition and Quality Safety, College of Life Sciences, China Jiliang University, Hangzhou 310018, China; Pharmacy Department, Lanxi people's Hospital, Jinhua 321000, China
| | - Yiwei Yuan
- Institute of Food Nutrition and Quality Safety, College of Life Sciences, China Jiliang University, Hangzhou 310018, China; Key Laboratory of Pecialty Agri-product Quality and Hazard Controlling Technology of Zhejiang Province, Hangzhou 310018, China
| | - Xiaolei Shi
- Institute of Food Nutrition and Quality Safety, College of Life Sciences, China Jiliang University, Hangzhou 310018, China; Key Laboratory of Pecialty Agri-product Quality and Hazard Controlling Technology of Zhejiang Province, Hangzhou 310018, China
| | - Hao Huang
- Doctor Innovation Workstation of Zhejiang Yifutang Tea Industry Co., Ltd., Hangzhou 311500, China
| | - Jun Liu
- Hangzhou Niubei Biotechnology Co., Ltd., Hangzhou 310018, China
| | - Jin Zhao
- Institute of Food Nutrition and Quality Safety, College of Life Sciences, China Jiliang University, Hangzhou 310018, China; Key Laboratory of Pecialty Agri-product Quality and Hazard Controlling Technology of Zhejiang Province, Hangzhou 310018, China.
| | - Qianqian Xu
- Institute of Food Nutrition and Quality Safety, College of Life Sciences, China Jiliang University, Hangzhou 310018, China; Key Laboratory of Pecialty Agri-product Quality and Hazard Controlling Technology of Zhejiang Province, Hangzhou 310018, China.
| |
Collapse
|
5
|
Song Y, Ke Y, Lin L, Zhao M. Comparison of in vivo glycolipid metabolism regulation pathway of lotus leaf polysaccharide and its combination with flavonoids and alkaloids: Effectiveness of high-pressure homogenization-assisted dual enzyme extraction. FOOD BIOSCI 2024; 61:104618. [DOI: 10.1016/j.fbio.2024.104618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
6
|
Lyu X, Yan K, Hu W, Xu H, Guo X, Zhou Z, Zhu H, Pan H, Wang L, Yang H, Gong F. Safflower yellow and its main component hydroxysafflor yellow A alleviate hyperleptinemia in diet-induced obesity mice through a dual inhibition of the GIP-GIPR signaling axis. Phytother Res 2024; 38:4940-4956. [PMID: 36943416 DOI: 10.1002/ptr.7788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 02/04/2023] [Accepted: 02/09/2023] [Indexed: 03/23/2023]
Abstract
Glucose-dependent insulinotropic polypeptide (GIP) is a gastrointestinal hormone secreted by K cells in the small intestine and is considered an obesity-promoting factor. In this study, we systematically investigated the anti-obesity effects of intragastric safflower yellow (SY)/hydroxysafflor yellow A (HSYA) and the underlying mechanism for the first time. Our results showed that intragastric SY/HSYA, rather than an intraperitoneal injection, notably decreased serum GIP levels and GIP staining in the small intestine in diet-induced obese (DIO) mice. Moreover, intragastric SY/HSYA was also first found to significantly suppress GIP receptor (GIPR) signaling in both the hypothalamus and subcutaneous White adipose tissue. Our study is the first to show that intragastric SY/HSYA obviously reduced food intake and body weight gain in leptin sensitivity experiments and decreased serum leptin levels in DIO mice. Further experiments demonstrated that SY treatment also significantly reduced leptin levels, whereas the inhibitory effect of SY on leptin levels was reversed by activating GIPR in 3 T3-L1 adipocytes. In addition, intragastric SY/HSYA had already significantly reduced serum GIP levels and GIPR expression before the serum leptin levels were notably changed in high-fat-diet-fed mice. These findings suggested that intragastric SY/HSYA may alleviate diet-induced obesity in mice by ameliorating hyperleptinemia via dual inhibition of the GIP-GIPR axis.
Collapse
Affiliation(s)
- Xiaorui Lyu
- Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Kemin Yan
- Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - WenJing Hu
- Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Hanyuan Xu
- Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Xiaonan Guo
- Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Zhibo Zhou
- Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Huijuan Zhu
- Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Hui Pan
- Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Linjie Wang
- Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Hongbo Yang
- Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Fengying Gong
- Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| |
Collapse
|
7
|
Yu S, Yu H, Wang J, Liu H, Guo J, Wang S, Mei C, Zan L. LEP inhibits intramuscular adipogenesis through the AMPK signaling pathway in vitro. FASEB J 2024; 38:e23836. [PMID: 39044640 DOI: 10.1096/fj.202400590rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 07/08/2024] [Accepted: 07/10/2024] [Indexed: 07/25/2024]
Abstract
Leptin can indirectly regulate fatty-acid metabolism and synthesis in muscle in vivo and directly in incubated muscle ex vivo. In addition, non-synonymous mutations in the bovine leptin gene (LEP) are associated with carcass intramuscular fat (IMF) content. However, the effects of LEP on lipid synthesis of adipocytes have not been clearly studied at the cellular level. Therefore, this study focused on bovine primary intramuscular preadipocytes to investigate the effects of LEP on the proliferation and differentiation of intramuscular preadipocytes, as well as its regulatory mechanism in lipid synthesis. The results showed that both the LEP and leptin receptor gene (LEPR) were highly expressed in IMF tissues, and their mRNA expression levels were positively correlated at different developmental stages of intramuscular preadipocytes. The overexpression of LEP inhibited the proliferation and differentiation of intramuscular preadipocytes, while interference with LEP had the opposite effect. Additionally, LEP significantly promoted the phosphorylation level of AMPKα by promoting the protein expression of CAMKK2. Meanwhile, rescue experiments showed that the increasing effect of AMPK inhibitors on the number of intramuscular preadipocytes was significantly weakened by the overexpression of LEP. Furthermore, the overexpression of LEP could weaken the promoting effect of AMPK inhibitor on triglyceride content and droplet accumulation, and prevent the upregulation of adipogenic protein expression (SREBF1, FABP4, FASN, and ACCα) caused by AMPK inhibitor. Taken together, LEP acted on the AMPK signaling pathway by regulating the protein expression of CAMKK2, thereby downregulating the expression of proliferation-related and adipogenic-related genes and proteins, ultimately reducing intramuscular adipogenesis.
Collapse
Affiliation(s)
- Shengchen Yu
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Hengwei Yu
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Jianfang Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Haibing Liu
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Juntao Guo
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Sihu Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Chugang Mei
- College of Grassland Agriculture, Northwest A&F University, Yangling, China
- National Beef Cattle Improvement Center, Yangling, China
| | - Linsen Zan
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
- National Beef Cattle Improvement Center, Yangling, China
| |
Collapse
|
8
|
Su F, Koeberle A. Regulation and targeting of SREBP-1 in hepatocellular carcinoma. Cancer Metastasis Rev 2024; 43:673-708. [PMID: 38036934 PMCID: PMC11156753 DOI: 10.1007/s10555-023-10156-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 11/10/2023] [Indexed: 12/02/2023]
Abstract
Hepatocellular carcinoma (HCC) is an increasing burden on global public health and is associated with enhanced lipogenesis, fatty acid uptake, and lipid metabolic reprogramming. De novo lipogenesis is under the control of the transcription factor sterol regulatory element-binding protein 1 (SREBP-1) and essentially contributes to HCC progression. Here, we summarize the current knowledge on the regulation of SREBP-1 isoforms in HCC based on cellular, animal, and clinical data. Specifically, we (i) address the overarching mechanisms for regulating SREBP-1 transcription, proteolytic processing, nuclear stability, and transactivation and (ii) critically discuss their impact on HCC, taking into account (iii) insights from pharmacological approaches. Emphasis is placed on cross-talk with the phosphatidylinositol-3-kinase (PI3K)-protein kinase B (Akt)-mechanistic target of rapamycin (mTOR) axis, AMP-activated protein kinase (AMPK), protein kinase A (PKA), and other kinases that directly phosphorylate SREBP-1; transcription factors, such as liver X receptor (LXR), peroxisome proliferator-activated receptors (PPARs), proliferator-activated receptor γ co-activator 1 (PGC-1), signal transducers and activators of transcription (STATs), and Myc; epigenetic mechanisms; post-translational modifications of SREBP-1; and SREBP-1-regulatory metabolites such as oxysterols and polyunsaturated fatty acids. By carefully scrutinizing the role of SREBP-1 in HCC development, progression, metastasis, and therapy resistance, we shed light on the potential of SREBP-1-targeting strategies in HCC prevention and treatment.
Collapse
Affiliation(s)
- Fengting Su
- Michael Popp Institute and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, 6020, Innsbruck, Austria
| | - Andreas Koeberle
- Michael Popp Institute and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, 6020, Innsbruck, Austria.
| |
Collapse
|
9
|
Sun M, Li Y, Su S, Gao J, Yu L, Qi X, Liang H, Li X, Qi X, Liang Y, Zhou L, Zhang G, Li Y. Tussilagone ameliorates high-fat diet-induced hepatic steatosis by enhancing energy metabolism and antioxidant activity. Phytother Res 2024; 38:2099-2113. [PMID: 37010930 DOI: 10.1002/ptr.7818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 02/16/2023] [Accepted: 03/20/2023] [Indexed: 04/04/2023]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a major health problem. However, no effective treatments are currently available. Thus, there is a critical need to develop novel drugs that can prevent and treat NAFLD with few side effects. In this study, Tussilagone (TUS), a natural sesquiterpene isolated from Tussilago farfara L, was explored in vitro and in vivo for its potential to treat NAFLD. Our results showed that in vitro TUS reduced oleic acid palmitate acid-induced triglyceride and cholesterol synthesis in HepG2cells, reduced intracellular lipid droplet accumulation, improved glucose metabolism disorders and increased energy metabolism and reduced oxidative stress levels. In vivo, TUS significantly reduced fat accumulation and improved liver injury in high-fat diet (HFD)-induced mice. TUS treatment significantly increased liver mitochondrial counts and antioxidant levels compared to the HFD group of mice. In addition, TUS was found to reduce the expression of genes involved in lipid synthesis sterol regulatory element binding protein-1 (SREBP1), fatty acid synthase (FASN), and stearoy-CoA desaturase 1 (SCD1) in vitro and in vivo. Our results suggest that TUS may be helpful in the treatment of NAFLD, suggesting that TUS is a promising compound for the treatment of NAFLD. Our findings provided novel insights into the application of TUS in regulating lipid metabolism.
Collapse
Affiliation(s)
- Mingjie Sun
- College of Animal Science and Technology, Guangxi University, Nanning, 530004, China
| | - Yu Li
- College of Animal Science and Technology, Guangxi University, Nanning, 530004, China
| | - Songtao Su
- College of Animal Science and Technology, Guangxi University, Nanning, 530004, China
| | - Jiayi Gao
- College of Animal Science and Technology, Guangxi University, Nanning, 530004, China
| | - Lin Yu
- Guangxi Academy of Medical Sciences, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, 530021, China
| | - Xinyi Qi
- College of Animal Science and Technology, Guangxi University, Nanning, 530004, China
| | - Huanjie Liang
- College of Animal Science and Technology, Guangxi University, Nanning, 530004, China
| | - Xiangling Li
- College of Animal Science and Technology, Guangxi University, Nanning, 530004, China
| | - Xinyu Qi
- College of Animal Science and Technology, Guangxi University, Nanning, 530004, China
| | - Yunxiao Liang
- Guangxi Academy of Medical Sciences, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, 530021, China
| | - Lei Zhou
- Guangxi Academy of Medical Sciences, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, 530021, China
| | - Guo Zhang
- Guangxi Academy of Medical Sciences, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, 530021, China
| | - Yixing Li
- College of Animal Science and Technology, Guangxi University, Nanning, 530004, China
| |
Collapse
|
10
|
Guo L, Lei J, Li P, Wang Y, Wang J, Song T, Zhu B, Jia J, Miao J, Cui H. Hedan tablet ameliorated non-alcoholic steatohepatitis by moderating NF-κB and lipid metabolism-related pathways via regulating hepatic metabolites. J Cell Mol Med 2024; 28:e18194. [PMID: 38506086 PMCID: PMC11967700 DOI: 10.1111/jcmm.18194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 12/20/2023] [Accepted: 01/09/2024] [Indexed: 03/21/2024] Open
Abstract
Non-alcoholic steatohepatitis (NASH) is a severe form of fatty liver disease. If not treated, it can lead to liver damage, cirrhosis and even liver cancer. However, advances in treatment have remained relatively slow, and there is thus an urgent need to develop appropriate treatments. Hedan tablet (HDP) is used to treat metabolic syndrome. However, scientific understanding of the therapeutic effect of HDP on NASH remains limited. We used HDP to treat a methionine/choline-deficient diet-induced model of NASH in rats to elucidate the therapeutic effects of HDP on liver injury. In addition, we used untargeted metabolomics to investigate the effects of HDP on metabolites in liver of NASH rats, and further validated its effects on inflammation and lipid metabolism following screening for potential target pathways. HDP had considerable therapeutic, anti-oxidant, and anti-inflammatory effects on NASH. HDP could also alter the hepatic metabolites changed by NASH. Moreover, HDP considerable moderated NF-κB and lipid metabolism-related pathways. The present study found that HDP had remarkable therapeutic effects in NASH rats. The therapeutic efficacy of HDP in NASH mainly associated with regulation of NF-κB and lipid metabolism-related pathways via arachidonic acid metabolism, glycine-serine-threonine metabolism, as well as steroid hormone biosynthesis.
Collapse
Affiliation(s)
- Liying Guo
- Department of Chinese MedicineTianjin Second People's HospitalTianjinChina
| | - Jinyan Lei
- Department of Chinese MedicineTianjin Second People's HospitalTianjinChina
| | - Peng Li
- Department of Chinese MedicineTianjin Second People's HospitalTianjinChina
| | - Yuming Wang
- Graduate SchoolTianjin University of Traditional Chinese MedicineTianjinChina
| | - Jing Wang
- Department of Chinese MedicineTianjin Second People's HospitalTianjinChina
| | - Taotao Song
- Department of Chinese MedicineTianjin Second People's HospitalTianjinChina
| | - Bo Zhu
- Department of Chinese MedicineTianjin Second People's HospitalTianjinChina
| | - Jianwei Jia
- Department of Chinese MedicineTianjin Second People's HospitalTianjinChina
| | - Jing Miao
- Department of Chinese MedicineTianjin Second People's HospitalTianjinChina
| | - Huantian Cui
- First School of Clinical MedicineYunnan University of Chinese MedicineKunmingChina
| |
Collapse
|
11
|
Hou L, Ye M, Wang X, Zhu Y, Sun X, Gu R, Chen L, Fang B. Synergism with Shikimic Acid Restores β-Lactam Antibiotic Activity against Methicillin-Resistant Staphylococcus aureus. Molecules 2024; 29:1528. [PMID: 38611807 PMCID: PMC11013880 DOI: 10.3390/molecules29071528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 03/15/2024] [Accepted: 03/21/2024] [Indexed: 04/14/2024] Open
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) has evolved into a dangerous pathogen resistant to beta-lactam antibiotics (BLAs) and has become a worrisome superbug. In this study, a strategy in which shikimic acid (SA), which has anti-inflammatory and antibacterial activity, is combined with BLAs to restart BLA activity was proposed for MRSA treatment. The synergistic effects of oxacillin combined with SA against oxacillin resistance in vitro and in vivo were investigated. The excellent synergistic effect of the oxacillin and SA combination was confirmed by performing the checkerboard assay, time-killing assay, live/dead bacterial cell viability assay, and assessing protein leakage. SEM showed that the cells in the control group had a regular, smooth, and intact surface. In contrast, oxacillin and SA or the combination treatment group exhibited different degrees of surface collapse. q-PCR indicated that the combination treatment group significantly inhibited the expression of the mecA gene. In vivo, we showed that the combination treatment increased the survival rate and decreased the bacterial load in mice. These results suggest that the combination of oxacillin with SA is considered an effective treatment option for MRSA, and the combination of SA with oxacillin in the treatment of MRSA is a novel strategy.
Collapse
Affiliation(s)
- Limin Hou
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Minqi Ye
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Xiaoyu Wang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Yifan Zhu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Xueyan Sun
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Ruiheng Gu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Liangzhu Chen
- Guangdong Wenshi Dahuanong Biotechnology Co., Ltd., Yunfu 510610, China
| | - Binghu Fang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
12
|
Sun L, Wen L, Li Q, Chen R, Wen S, Lai X, Lai Z, Cao J, Zhang Z, Hao M, Cao F, Sun S. Microbial Fermentation Enhances the Effect of Black Tea on Hyperlipidemia by Mediating Bile Acid Metabolism and Remodeling Intestinal Microbes. Nutrients 2024; 16:998. [PMID: 38613030 PMCID: PMC11013065 DOI: 10.3390/nu16070998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 03/22/2024] [Accepted: 03/26/2024] [Indexed: 04/14/2024] Open
Abstract
Black tea (BT), the most consumed tea worldwide, can alleviate hyperlipidemia which is a serious threat to human health. However, the quality of summer BT is poor. It was improved by microbial fermentation in a previous study, but whether it affects hypolipidemic activity is unknown. Therefore, we compared the hypolipidemic activity of BT and microbially fermented black tea (EFT). The results demonstrated that BT inhibited weight gain and improved lipid and total bile acid (TBA) levels, and microbial fermentation reinforced this activity. Mechanistically, both BT and EFT mediate bile acid circulation to relieve hyperlipidemia. In addition, BT and EFT improve dyslipidemia by modifying the gut microbiota. Specifically, the increase in Lactobacillus johnsonii by BT, and the increase in Mucispirillum and Colidextribacter by EFT may also be potential causes for alleviation of hyperlipidemia. In summary, we demonstrated that microbial fermentation strengthened the hypolipidemic activity of BT and increased the added value of BT.
Collapse
Affiliation(s)
- Lingli Sun
- Tea Research Institute, Guangdong Provincial Key Laboratory of Tea Plant Resources Innovation and Utilization, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (L.S.); (Q.L.); (R.C.); (S.W.); (X.L.); (Z.L.); (J.C.); (Z.Z.); (M.H.)
| | - Lianghua Wen
- College of Horticulture, South China Agricultural University, Guangzhou 510000, China; (L.W.); (F.C.)
| | - Qiuhua Li
- Tea Research Institute, Guangdong Provincial Key Laboratory of Tea Plant Resources Innovation and Utilization, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (L.S.); (Q.L.); (R.C.); (S.W.); (X.L.); (Z.L.); (J.C.); (Z.Z.); (M.H.)
| | - Ruohong Chen
- Tea Research Institute, Guangdong Provincial Key Laboratory of Tea Plant Resources Innovation and Utilization, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (L.S.); (Q.L.); (R.C.); (S.W.); (X.L.); (Z.L.); (J.C.); (Z.Z.); (M.H.)
| | - Shuai Wen
- Tea Research Institute, Guangdong Provincial Key Laboratory of Tea Plant Resources Innovation and Utilization, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (L.S.); (Q.L.); (R.C.); (S.W.); (X.L.); (Z.L.); (J.C.); (Z.Z.); (M.H.)
| | - Xingfei Lai
- Tea Research Institute, Guangdong Provincial Key Laboratory of Tea Plant Resources Innovation and Utilization, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (L.S.); (Q.L.); (R.C.); (S.W.); (X.L.); (Z.L.); (J.C.); (Z.Z.); (M.H.)
| | - Zhaoxiang Lai
- Tea Research Institute, Guangdong Provincial Key Laboratory of Tea Plant Resources Innovation and Utilization, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (L.S.); (Q.L.); (R.C.); (S.W.); (X.L.); (Z.L.); (J.C.); (Z.Z.); (M.H.)
| | - Junxi Cao
- Tea Research Institute, Guangdong Provincial Key Laboratory of Tea Plant Resources Innovation and Utilization, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (L.S.); (Q.L.); (R.C.); (S.W.); (X.L.); (Z.L.); (J.C.); (Z.Z.); (M.H.)
| | - Zhenbiao Zhang
- Tea Research Institute, Guangdong Provincial Key Laboratory of Tea Plant Resources Innovation and Utilization, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (L.S.); (Q.L.); (R.C.); (S.W.); (X.L.); (Z.L.); (J.C.); (Z.Z.); (M.H.)
| | - Mengjiao Hao
- Tea Research Institute, Guangdong Provincial Key Laboratory of Tea Plant Resources Innovation and Utilization, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (L.S.); (Q.L.); (R.C.); (S.W.); (X.L.); (Z.L.); (J.C.); (Z.Z.); (M.H.)
| | - Fanrong Cao
- College of Horticulture, South China Agricultural University, Guangzhou 510000, China; (L.W.); (F.C.)
| | - Shili Sun
- Tea Research Institute, Guangdong Provincial Key Laboratory of Tea Plant Resources Innovation and Utilization, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (L.S.); (Q.L.); (R.C.); (S.W.); (X.L.); (Z.L.); (J.C.); (Z.Z.); (M.H.)
| |
Collapse
|
13
|
Jiang M, Wu W, Xiong Z, Yu X, Ye Z, Wu Z. Targeting autophagy drug discovery: Targets, indications and development trends. Eur J Med Chem 2024; 267:116117. [PMID: 38295689 DOI: 10.1016/j.ejmech.2023.116117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/30/2023] [Accepted: 12/31/2023] [Indexed: 02/25/2024]
Abstract
Autophagy plays a vital role in sustaining cellular homeostasis and its alterations have been implicated in the etiology of many diseases. Drugs development targeting autophagy began decades ago and hundreds of agents were developed, some of which are licensed for the clinical usage. However, no existing intervention specifically aimed at modulating autophagy is available. The obstacles that prevent drug developments come from the complexity of the actual impact of autophagy regulators in disease scenarios. With the development and application of new technologies, several promising categories of compounds for autophagy-based therapy have emerged in recent years. In this paper, the autophagy-targeted drugs based on their targets at various hierarchical sites of the autophagic signaling network, e.g., the upstream and downstream of the autophagosome and the autophagic components with enzyme activities are reviewed and analyzed respectively, with special attention paid to those at preclinical or clinical trials. The drugs tailored to specific autophagy alone and combination with drugs/adjuvant therapies widely used in clinical for various diseases treatments are also emphasized. The emerging drug design and development targeting selective autophagy receptors (SARs) and their related proteins, which would be expected to arrest or reverse the progression of disease in various cancers, inflammation, neurodegeneration, and metabolic disorders, are critically reviewed. And the challenges and perspective in clinically developing autophagy-targeted drugs and possible combinations with other medicine are considered in the review.
Collapse
Affiliation(s)
- Mengjia Jiang
- Department of Pharmacology and Pharmacy, China Jiliang University, China
| | - Wayne Wu
- College of Osteopathic Medicine, New York Institute of Technology, USA
| | - Zijie Xiong
- Department of Pharmacology and Pharmacy, China Jiliang University, China
| | - Xiaoping Yu
- Department of Biology, China Jiliang University, China
| | - Zihong Ye
- Department of Biology, China Jiliang University, China
| | - Zhiping Wu
- Department of Pharmacology and Pharmacy, China Jiliang University, China.
| |
Collapse
|
14
|
Tian J, Cai M, Jin S, Chen Q, Xu J, Guo Q, Yan Z, Han X, Lu H. JianPi-QingHua formula attenuates nonalcoholic fatty liver disease by regulating the AMPK/SIRT1/NF-κB pathway in high-fat-diet-fed C57BL/6 mice. PHARMACEUTICAL BIOLOGY 2023; 61:647-656. [PMID: 37038833 PMCID: PMC10101667 DOI: 10.1080/13880209.2023.2188549] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 12/27/2022] [Accepted: 03/03/2023] [Indexed: 06/19/2023]
Abstract
CONTEXT Non-alcoholic fatty liver disease (NAFLD) is a common liver disease, accompanied by liver lipid accumulation and inflammation. JianPi-QingHua formula (JPQH), a Chinese herbal formula, exhibits effects on obesity and T2DM. However, the hepatoprotective effect of JPQH has not been elucidated. OBJECTIVE To investigate the hepatoprotective effect of JPQH in NAFLD induced by a high-fat diet (HFD) in mice. MATERIALS AND METHODS C57BL/6J mice were divided into four groups and fed a normal-fat diet (ND), high-fat diet (HFD), HFD + JPQH (2.5 g/kg), or HFD + metformin (300 mg/kg) for 6 weeks, respectively. Furthermore, the body weight, epididymal fat mass, blood glucose, and liver weight were measured. Serum total cholesterol (TC), triglycerides (TG), alanine aminotransferase (ALT), and aspartate aminotransferase (AST) were performed. Hematoxylin and eosin staining and Oil Red O staining were observed in hepatic histopathological changes. Western blotting and quantitative real-time polymerase chain reaction were utilized to assess the key protein expression of hepatic lipid metabolism and inflammation. RESULTS Compared with the HFD group, JPQH could reduce body weight, epididymal fat mass, blood glucose and liver weight (p < 0.05), and markedly decreased the levels of serum TC, TG, ALT, AST (p < 0.05). Additionally, JPQH improved liver pathological changes. Consistent with the hepatic histological analysis, JPQH intervention suppressed lipid accumulation and inflammatory responses. Mechanistically, JPQH boosted SIRT1/AMPK signalling, and attenuated NF-κB pathway, which suppressed inflammatory responses. DISCUSSION AND CONCLUSIONS These findings indicate that JPQH supplementation protected against HFD-induced NAFLD by regulating SIRT1/AMPK/NF-κB pathway, which provides a theoretical basis for the clinical treatment of patients with NAFLD.
Collapse
Affiliation(s)
- Jing Tian
- Diabetes Research Institute, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, P.R. China
- Department of Endocrinology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, P.R. China
- Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, P.R. China
| | - Mengjie Cai
- Diabetes Research Institute, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, P.R. China
- Department of Endocrinology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, P.R. China
- Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, P.R. China
| | - Shenyi Jin
- Diabetes Research Institute, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, P.R. China
- Department of Endocrinology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, P.R. China
| | - Qingguang Chen
- Diabetes Research Institute, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, P.R. China
- Department of Endocrinology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, P.R. China
- Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, P.R. China
| | - Jiahui Xu
- Diabetes Research Institute, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, P.R. China
- Department of Endocrinology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, P.R. China
| | - Qiuyue Guo
- Diabetes Research Institute, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, P.R. China
- Department of Endocrinology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, P.R. China
| | - Zihui Yan
- Diabetes Research Institute, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, P.R. China
- Department of Endocrinology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, P.R. China
| | - Xu Han
- Diabetes Research Institute, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, P.R. China
- Department of Endocrinology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, P.R. China
- Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, P.R. China
| | - Hao Lu
- Diabetes Research Institute, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, P.R. China
- Department of Endocrinology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, P.R. China
- Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, P.R. China
| |
Collapse
|
15
|
Tamilmani P, Sathibabu Uddandrao VV, Chandrasekaran P, Saravanan G, Brahma Naidu P, Sengottuvelu S, Vadivukkarasi S. Linalool attenuates lipid accumulation and oxidative stress in metabolic dysfunction-associated steatotic liver disease via Sirt1/Akt/PPRA-α/AMPK and Nrf-2/HO-1 signaling pathways. Clin Res Hepatol Gastroenterol 2023; 47:102231. [PMID: 37865226 DOI: 10.1016/j.clinre.2023.102231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 10/13/2023] [Accepted: 10/18/2023] [Indexed: 10/23/2023]
Abstract
INTRODUCTION Linalool is a monoterpene that occurs naturally in various aromatic plants and is identified in our previous study as a potential candidate for protection against high-fat diet (HFD)-induced metabolic dysfunction-associated steatotic liver disease (MASLD). However, little is known about its direct effects on hepatic lipid metabolism and oxidative stress. Therefore, this study aims to investigate the therapeutic effect of linalool against MASLD and the underlying mechanism. METHODS To establish a rat model of MASLD, male Wistar rats were fed HFD for 16 weeks and orally administered linalool (100 mg/kg body weight) for 45 days starting from week 14. RESULTS Linalool significantly reduced HFD-induced liver lipid accumulation and restored altered adipokine levels. Mechanistically, linalool downregulated the mRNA expression of sterol regulatory element binding protein 1 and its lipogenesis target genes fatty acid synthase and acetyl-CoA carboxylase, and upregulated the mRNA expression of genes involved in fatty acid oxidation (peroxisome proliferator-activated receptor (PPAR)-alpha [PPAR-α], lipoprotein lipase and protein kinase B [Akt]) as well as the upstream mediators sirtuin 1 (Sirt1) and AMP-activated protein kinase (AMPK) in the liver of MASLD rats. In addition, linalool also curbed oxidative stress by increasing antioxidant enzymes and activating nuclear erythroid-2-related factor 2 (Nrf-2) and its downstream target genes involved in antioxidant properties. CONCLUSION Therefore, this study concludes that linalool attenuates lipid accumulation in the liver by inhibiting de novo lipogenesis, promoting fatty acid oxidation, and attenuating oxidative stress by regulating Sirt1/Akt/PPRA-α/AMPK and Nrf-2/ HO-1 signaling pathways.
Collapse
Affiliation(s)
- P Tamilmani
- Department of Biochemistry, K.S. Rangasamy College of Arts and Science (Autonomous), Namakkal District, Tiruchengode, Tamil Nadu 637215, India; Department of Biochemistry, PGP College of Arts and Science, Namakkal, Tamil Nadu 637207, India; Department of Biochemistry, Muthayammal College of Arts and Science, Rasipuram, Tamil Nadu 637408, India
| | - V V Sathibabu Uddandrao
- Department of Biochemistry, K.S. Rangasamy College of Arts and Science (Autonomous), Namakkal District, Tiruchengode, Tamil Nadu 637215, India
| | - P Chandrasekaran
- Department of Biochemistry, K.S. Rangasamy College of Arts and Science (Autonomous), Namakkal District, Tiruchengode, Tamil Nadu 637215, India
| | - G Saravanan
- Department of Biochemistry, K.S. Rangasamy College of Arts and Science (Autonomous), Namakkal District, Tiruchengode, Tamil Nadu 637215, India
| | - Parim Brahma Naidu
- Animal Physiology and Biochemistry Laboratory, ICMR-National Animal Resource Facility for Biomedical Research (ICMR-NARFBR), Hyderabad 500078, India
| | - S Sengottuvelu
- Department of Pharmacology, Nandha College of Pharmacy, Erode, Tamil Nadu 638052, India
| | - S Vadivukkarasi
- Department of Biochemistry, K.S. Rangasamy College of Arts and Science (Autonomous), Namakkal District, Tiruchengode, Tamil Nadu 637215, India.
| |
Collapse
|
16
|
Zhou M, Huang J, Zhou J, Zhi C, Bai Y, Che Q, Cao H, Guo J, Su Z. Anti-Obesity Effect and Mechanism of Chitooligosaccharides Were Revealed Based on Lipidomics in Diet-Induced Obese Mice. Molecules 2023; 28:5595. [PMID: 37513467 PMCID: PMC10384603 DOI: 10.3390/molecules28145595] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 07/16/2023] [Accepted: 07/20/2023] [Indexed: 07/30/2023] Open
Abstract
Chitooligosaccharide (COS) is a natural product from the ocean, and while many studies have reported its important role in metabolic diseases, no study has systematically elaborated the anti-obesity effect and mechanism of COS. Herein, COSM (MW ≤ 3000 Da) was administered to diet-induced obese mice by oral gavage once daily for eight weeks. The results show that COSM administration reduced body weight; slowed weight gain; reduced serum Glu, insulin, NEFA, TC, TG, and LDL-C levels; increased serum HSL and HDL-C levels; improved inflammation; and reduced lipid droplet size in adipose tissue. Further lipidomic analysis of adipose tissue revealed that 31 lipid species are considered to be underlying lipid biomarkers in COS therapy. These lipids are mainly enriched in pathways involving insulin resistance, thermogenesis, cholesterol metabolism, glyceride metabolism and cyclic adenosine monophosphate (cAMP), which sheds light on the weight loss mechanism of COS. The Western blot assay demonstrated that COSM intervention can improve insulin resistance, inhibit de novo synthesis, and promote thermogenesis and β-oxidation in mitochondria by the AMPK pathway, thereby alleviating high-fat diet-induced obesity. In short, our study can provide a more comprehensive direction for the application of COS in obesity based on molecular markers.
Collapse
Affiliation(s)
- Minchuan Zhou
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou 510006, China
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Institute of Chinese Medicine, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Jingqing Huang
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Institute of Chinese Medicine, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou 510006, China
- Department of Pharmacy, Affiliated Hospital of Guilin Medical University, Guilin 541001, China
| | - Jingwen Zhou
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou 510006, China
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Institute of Chinese Medicine, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Cuiting Zhi
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Institute of Chinese Medicine, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Yan Bai
- School of Public Health, Guangdong Pharmaceutical University, Guangzhou 510310, China
| | - Qishi Che
- Guangzhou Rainhome Pharm & Tech Co., Ltd., Science City, Guangzhou 510663, China
| | - Hua Cao
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Zhongshan 528458, China
| | - Jiao Guo
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Institute of Chinese Medicine, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Zhengquan Su
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou 510006, China
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Institute of Chinese Medicine, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou 510006, China
| |
Collapse
|
17
|
Hu W, Lyu X, Xu H, Guo X, Zhu H, Pan H, Wang L, Yang H, Gong F. Intragastric Safflower Yellow Alleviates HFD Induced Metabolic Dysfunction-Associated Fatty Liver Disease in Mice through Regulating Gut Microbiota and Liver Endoplasmic Reticulum Stress. Nutrients 2023; 15:2954. [PMID: 37447278 DOI: 10.3390/nu15132954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/18/2023] [Accepted: 06/28/2023] [Indexed: 07/15/2023] Open
Abstract
The gut microbiota was reported to play a significant role in the progression of the metabolic associated fatty liver disease (MAFLD). Our recent study suggested that gastrointestinal tract and liver were important targets mediating the anti-obesity effects of intragastric safflower yellow (SY). Therefore, our present study aims to investigate the effect of intragastric SY on MAFLD and possible mechanism. DIO mice were treated with 125 mg/kg/d SY for 12 weeks by gavage. We found intragastric SY significantly slowed weight gain of body, reduced the food intake and liver weight, improved hepatic steatosis, liver function and glucose metabolism in DIO mice. The comparison between OGTT and IPGTT illustrated OGTT produced a better improvement of glucose tolerance after SY treatment. We also found intragastric SY significantly increased the energy expenditure and locomotor activity of DIO mice. SY obviously decreased the expression of lipogenesis-associated and ERS-related genes in liver of DIO mice and PA-induced MAFLD hepatocyte model. Gut microbiota analysis demonstrated intragastric SY apparently changed the diversity and composition of gut microbiota of DIO mice. Further function prediction analysis indicated that gut microbiotas in SY-treated mice was positively related with energy metabolism, lipid metabolism and endocrine system. Intragastric SY has a significant therapeutic effect on MAFLD, which is mediated partly by modulating gut microbiota and improving liver ERS.
Collapse
Affiliation(s)
- Wenjing Hu
- Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100730, China
| | - Xiaorui Lyu
- Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100730, China
| | - Hanyuan Xu
- Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100730, China
| | - Xiaonan Guo
- Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100730, China
| | - Huijuan Zhu
- Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100730, China
| | - Hui Pan
- Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100730, China
| | - Linjie Wang
- Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100730, China
| | - Hongbo Yang
- Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100730, China
| | - Fengying Gong
- Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100730, China
| |
Collapse
|
18
|
Zhao T, Zhu Y, Zhao R, Xiong S, Sun J, Zhang J, Fan D, Deng J, Yang H. Structure-activity relationship, bioactivities, molecular mechanisms, and clinical application of nuciferine on inflammation-related diseases. Pharmacol Res 2023; 193:106820. [PMID: 37315822 DOI: 10.1016/j.phrs.2023.106820] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 05/23/2023] [Accepted: 06/11/2023] [Indexed: 06/16/2023]
Abstract
Nuciferine aporphine alkaloid mainly exists in Nelumbo nucifera Gaertn and is a beneficial to human health, such as anti-obesity, lowering blood lipid, prevention of diabetes and cancer, closely associated with inflammation. Importantly, nuciferine may contribute to its bioactivities by exerting intense anti-inflammatory activities in multiple models. However, no review has summarized the anti-inflammatory effect of nuciferine. This review critically summarized the information regarding the structure-activity relationships of dietary nuciferine. Moreover, biological activities and clinical application on inflammation-related diseases, such as obesity, diabetes, liver, cardiovascular diseases, and cancer, as well as their potential mechanisms, involving oxidative stress, metabolic signaling, and gut microbiota has been reviewed. The current work provides a better understanding of the anti-inflammation properties of nuciferine against multiple diseases, thereby improving the utilization and application of nuciferine-containing plants across functional food and medicine.
Collapse
Affiliation(s)
- Tong Zhao
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Yuchen Zhu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Rui Zhao
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Shiyi Xiong
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Jing Sun
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Juntao Zhang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Daidi Fan
- Shaanxi Key Laboratory of Degradable Biomedical Materials, Shaanxi R&D Center of Biomaterials and Fermentation Engineering, Biotech & Biomed Research Institute, School of Chemical Engineering, Northwest University, Xi'an, China
| | - Jianjun Deng
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; Shaanxi Key Laboratory of Degradable Biomedical Materials, Shaanxi R&D Center of Biomaterials and Fermentation Engineering, Biotech & Biomed Research Institute, School of Chemical Engineering, Northwest University, Xi'an, China.
| | - Haixia Yang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
| |
Collapse
|
19
|
Zhao X, Amevor FK, Cui Z, Wan Y, Xue X, Peng C, Li Y. Steatosis in metabolic diseases: A focus on lipolysis and lipophagy. Biomed Pharmacother 2023; 160:114311. [PMID: 36764133 DOI: 10.1016/j.biopha.2023.114311] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/23/2023] [Accepted: 01/26/2023] [Indexed: 02/11/2023] Open
Abstract
Fatty acids (FAs), as part of lipids, are involved in cell membrane composition, cellular energy storage, and cell signaling. FAs can also be toxic when their concentrations inside and/or outside the cell exceed physiological levels, which is called "lipotoxicity", and steatosis is a form of lipotoxity. To facilitate the storage of large quantities of FAs in cells, they undergo a process called lipolysis or lipophagy. This review focuses on the effects of lipolytic enzymes including cytoplasmic "neutral" lipolysis, lysosomal "acid" lipolysis, and lipophagy. Moreover, the impact of related lipolytic enzymes on lipid metabolism homeostasis and energy conservation, as well as their role in lipid-related metabolic diseases. In addition, we describe how they affect lipid metabolism homeostasis and energy conservation in lipid-related metabolic diseases with a focus on hepatic steatosis and cancer and the pathogenesis and therapeutic targets of AMPK/SIRTs/FOXOs, PI3K/Akt, PPARs/PGC-1α, MAPK/ERK1/2, TLR4/NF-κB, AMPK/mTOR/TFEB, Wnt/β-catenin through immune inflammation, oxidative stress and autophagy-related pathways. As well as the current application of lipolytic enzyme inhibitors (especially Monoacylglycerol lipase (MGL) inhibitors) to provide new strategies for future exploration of metabolic programming in metabolic diseases.
Collapse
Affiliation(s)
- Xingtao Zhao
- State Key Laboratory of Southwestern Chinese Medicine Resources, Ministry of Education, Chengdu 611137, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Felix Kwame Amevor
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China.
| | - Zhifu Cui
- College of Animal Science and Technology, Southwest University, Chongqing 400715, China.
| | - Yan Wan
- State Key Laboratory of Southwestern Chinese Medicine Resources, Ministry of Education, Chengdu 611137, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Xinyan Xue
- State Key Laboratory of Southwestern Chinese Medicine Resources, Ministry of Education, Chengdu 611137, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Ministry of Education, Chengdu 611137, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Yunxia Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, Ministry of Education, Chengdu 611137, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| |
Collapse
|
20
|
Li D, Chen F. The Perspectives of Plant Natural Products for Mitigation of Obesity. Nutrients 2023; 15:nu15051150. [PMID: 36904148 PMCID: PMC10005137 DOI: 10.3390/nu15051150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 02/23/2023] [Indexed: 03/02/2023] Open
Abstract
Obesity is a metabolic disease caused by an imbalance between energy intake and consumption, which leads to excessive fat accumulation in adipose tissues [...].
Collapse
Affiliation(s)
| | - Fang Chen
- Correspondence: ; Tel.: +86-10-6273-7645
| |
Collapse
|
21
|
Li J, Zhao C, Liu M, Chen L, Zhu Y, Gao W, Du X, Song Y, Li X, Liu G, Lei L, Feng H. Nuciferine Ameliorates Nonesterified Fatty Acid-Induced Bovine Mammary Epithelial Cell Lipid Accumulation, Apoptosis, and Impaired Migration via Activating LKB1/AMPK Signaling Pathway. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:443-456. [PMID: 36573646 DOI: 10.1021/acs.jafc.2c06133] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
High blood concentrations of nonesterified fatty acids (NEFAs) provoke various metabolic disorders and are associated with mammary tissue injury and decreased milk production in dairy cows. Nuciferine, an alkaloid found in Nelumbo nucifera leaves, has great potential for correcting lipid metabolism derangements and lipotoxicity. In this study, we evaluated the lipotoxicity induced by excessive NEFA in bovine mammary epithelial cells (bMECs) and investigated whether nuciferine alleviates NEFA-induced lipotoxicity and the underlying molecular mechanisms. We found that excessive NEFA (1.2 and 2.4 mM) induced lipid accumulation, apoptosis, and migration ability impairment in bMECs, whereas nuciferine could ameliorate these disarrangements, as indicated by decreasing triglyceride content, protein abundance of SREBP-1c, cytoplasmic cytochrome c, and cleaved caspase-3 and increasing protein abundance of PPARα and migration ability. Moreover, nuciferine could reverse NEFA-induced LKB1/AMPK signaling inhibition, and the protective effect of nuciferine on lipotoxicity caused by NEFA was abrogated by AMPK inhibitor dorsomorphin. Furthermore, transfection with LKB1 siRNA (si-LKB1) largely abolished the activation effect of nuciferine on AMPK. Overall, nuciferine can protect bMECs from excessive NEFA-induced lipid accumulation, apoptosis, and impaired migration by activating LKB1/AMPK signaling pathway.
Collapse
Affiliation(s)
- Jinxia Li
- State Key Laboratory for Zoonotic Diseases, Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, 5333 Xi'an Road, Changchun 130062 Jilin, China
| | - Chenchen Zhao
- State Key Laboratory for Zoonotic Diseases, Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, 5333 Xi'an Road, Changchun 130062 Jilin, China
| | - Menglin Liu
- State Key Laboratory for Zoonotic Diseases, Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, 5333 Xi'an Road, Changchun 130062 Jilin, China
| | - Linfang Chen
- State Key Laboratory for Zoonotic Diseases, Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, 5333 Xi'an Road, Changchun 130062 Jilin, China
| | - Yiwei Zhu
- State Key Laboratory for Zoonotic Diseases, Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, 5333 Xi'an Road, Changchun 130062 Jilin, China
| | - Wenwen Gao
- State Key Laboratory for Zoonotic Diseases, Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, 5333 Xi'an Road, Changchun 130062 Jilin, China
| | - Xiliang Du
- State Key Laboratory for Zoonotic Diseases, Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, 5333 Xi'an Road, Changchun 130062 Jilin, China
| | - Yuxiang Song
- State Key Laboratory for Zoonotic Diseases, Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, 5333 Xi'an Road, Changchun 130062 Jilin, China
| | - Xinwei Li
- State Key Laboratory for Zoonotic Diseases, Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, 5333 Xi'an Road, Changchun 130062 Jilin, China
| | - Guowen Liu
- State Key Laboratory for Zoonotic Diseases, Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, 5333 Xi'an Road, Changchun 130062 Jilin, China
| | - Lin Lei
- State Key Laboratory for Zoonotic Diseases, Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, 5333 Xi'an Road, Changchun 130062 Jilin, China
| | - Haihua Feng
- State Key Laboratory for Zoonotic Diseases, Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, 5333 Xi'an Road, Changchun 130062 Jilin, China
| |
Collapse
|
22
|
Yang ZY, Wu YY, Zhou Y, Yang YQ, Zhang JH, He T, Liu S. N-linoleyltyrosine ameliorates high-fat diet-induced obesity in C57BL/6 mice via cannabinoid receptor regulation. Front Endocrinol (Lausanne) 2022; 13:938527. [PMID: 36111301 PMCID: PMC9468927 DOI: 10.3389/fendo.2022.938527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 08/05/2022] [Indexed: 11/23/2022] Open
Abstract
OBJECTIVES N-linoleyltyrosine (NITyr) showed mild effects in preclinical studies. The research discussed the effect of NITyr on a high-fat diet (HFD) induced obese (DIO) mice, and preliminarily explored its mechanism. METHODS The DIO mice were established by feeding an HFD for 12 weeks and subsequently administrated orally with NITyr (30, 60 and 100 mg/kg) for four weeks. The indexes of serum and liver samples were determined by ELISA kit. The pathological status of adipose and liver were detected by HE staining. The factors related to energy and lipid metabolism were measured via western blot. RESULTS NITyr at 60 and 100 mg/kg/day suppressed the weight gain without affecting water and food intake. Accordingly, NITyr reduced adipose weight and the area of individual adipocytes and increased the number of adipocytes. Moreover, NITyr didn't affect the appetite-related indexes such as ghrelin, peptide YY and brain-derived neurotrophic factor. Besides, NITyr didn't affect other organ coefficients except for the liver. Correspondingly, NITyr reduced alanine aminotransferase and aspartate aminotransferase levels, yet didn't influence IL-1β and TNF-α levels, and the liver injury. The levels of triacylglycerol (TG), total cholesterol (TC), glucose, insulin, adiponectin and leptin in serum were assessed to evaluate the effect of NITyr on glucose and lipid metabolism. NITyr decreased the levels of TG, TC and glucose, and didn't affect insulin, adiponectin and leptin levels. Meanwhile, NITyr up-regulated p-AMPK and the cannabinoid receptor 2 (CB2) expressions, and down-regulated PPAR, FAS and cannabinoid receptor 1 (CB1) expressions.Overall, NITyr suppressed lipid accumulation via improving lipid and glucose metabolism involving CB1 and CB2 receptors.
Collapse
Affiliation(s)
- Zheng-yu Yang
- Department of Pharmacy, Sichuan Province College Key Laboratory, Chengdu Medical College, Chengdu, China
| | - Yi-ying Wu
- Department of Pharmacy, Sichuan Province College Key Laboratory, Chengdu Medical College, Chengdu, China
| | - Yi Zhou
- Research and Development Center, Sichuan Yuanda Shuyang Pharmaceutical Co., Ltd, Chengdu, China
| | - Yun-qi Yang
- Department of Pharmacy, Sichuan Province College Key Laboratory, Chengdu Medical College, Chengdu, China
| | - Jia-hui Zhang
- Department of Pharmacy, Sichuan Province College Key Laboratory, Chengdu Medical College, Chengdu, China
| | - Tao He
- Department of Thoracic Surgery, The Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu, China
- *Correspondence: Sha Liu, ; Tao He,
| | - Sha Liu
- Department of Pharmacy, Sichuan Province College Key Laboratory, Chengdu Medical College, Chengdu, China
- Department of Thoracic Surgery, The Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu, China
- *Correspondence: Sha Liu, ; Tao He,
| |
Collapse
|