1
|
Li Y, Guo W, Li H, Wang Y, Liu X, Kong W. The Change of Skeletal Muscle Caused by Inflammation in Obesity as the Key Path to Fibrosis: Thoughts on Mechanisms and Intervention Strategies. Biomolecules 2024; 15:20. [PMID: 39858415 PMCID: PMC11764331 DOI: 10.3390/biom15010020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 12/02/2024] [Accepted: 12/06/2024] [Indexed: 01/27/2025] Open
Abstract
Obesity leads to a chronic inflammatory state throughout the body, with increased infiltration of immune cells and inflammatory factors in skeletal muscle tissue, and, at the same time, the level of intracellular mitochondrial oxidative stress rises. Meanwhile, obesity is closely related to the development of skeletal muscle fibrosis and can affect the metabolic function of skeletal muscle, triggering metabolic disorders such as insulin resistance (IR) and type 2 diabetes (T2D). However, whether there is a mutual regulatory effect between the two pathological states of inflammation and fibrosis in obese skeletal muscle and the specific molecular mechanisms have not been fully clarified. This review focuses on the pathological changes of skeletal muscle inflammation and fibrosis induced by obesity, covering the metabolic changes it causes, such as lipid deposition, mitochondrial dysfunction, and dysregulation of inflammatory factors, aiming to reveal the intricate connections between the two. In terms of intervention strategies, aerobic exercise, dietary modification, and pharmacotherapy can improve skeletal muscle inflammation and fibrosis. This article provides insight into the important roles of inflammation and fibrosis in the treatment of obesity and the management of skeletal muscle diseases, aiming to provide new ideas for the diagnosis and treatment of metabolic diseases such as obesity and IR.
Collapse
Affiliation(s)
- Yixuan Li
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Diabetes and Metabolic Disease Clinical Research Center of Hubei Province, Wuhan 430022, China
- Hubei Key Laboratory of Metabolic Abnormalities and Vascular Aging, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Branch of National Center for Clinical Medical Research of Metabolic Diseases, Wuhan 430022, China
| | - Wenwen Guo
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Diabetes and Metabolic Disease Clinical Research Center of Hubei Province, Wuhan 430022, China
- Hubei Key Laboratory of Metabolic Abnormalities and Vascular Aging, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Branch of National Center for Clinical Medical Research of Metabolic Diseases, Wuhan 430022, China
| | - Han Li
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Diabetes and Metabolic Disease Clinical Research Center of Hubei Province, Wuhan 430022, China
- Hubei Key Laboratory of Metabolic Abnormalities and Vascular Aging, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Branch of National Center for Clinical Medical Research of Metabolic Diseases, Wuhan 430022, China
| | - Yuhao Wang
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Diabetes and Metabolic Disease Clinical Research Center of Hubei Province, Wuhan 430022, China
- Hubei Key Laboratory of Metabolic Abnormalities and Vascular Aging, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Branch of National Center for Clinical Medical Research of Metabolic Diseases, Wuhan 430022, China
| | - Xinwei Liu
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Diabetes and Metabolic Disease Clinical Research Center of Hubei Province, Wuhan 430022, China
- Hubei Key Laboratory of Metabolic Abnormalities and Vascular Aging, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Branch of National Center for Clinical Medical Research of Metabolic Diseases, Wuhan 430022, China
| | - Wen Kong
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Diabetes and Metabolic Disease Clinical Research Center of Hubei Province, Wuhan 430022, China
- Hubei Key Laboratory of Metabolic Abnormalities and Vascular Aging, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Branch of National Center for Clinical Medical Research of Metabolic Diseases, Wuhan 430022, China
| |
Collapse
|
2
|
Kang H, Kim SC, Oh Y. Fucoxanthin Abrogates Ionizing Radiation-Induced Inflammatory Responses by Modulating Sirtuin 1 in Macrophages. Mar Drugs 2023; 21:635. [PMID: 38132956 PMCID: PMC10744970 DOI: 10.3390/md21120635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 11/23/2023] [Accepted: 12/06/2023] [Indexed: 12/23/2023] Open
Abstract
Ionizing radiation (IR) triggers an overproduction of reactive oxygen species (ROS), disrupting the normal function of both immune and metabolic systems, leading to inflammation and metabolic disturbances. To address the pressing requirement for protection against IR, fucoxanthin (FX), a naturally occurring compound extracted from algae, was utilized as an efficient radioprotective agent in macrophages. In this study, we cultured murine RAW 264.7 macrophages and treated them with FX, along with agents influencing the activity of sirtuin 1 (SIRT1) and estrogen receptor α (ERα), to investigate their impact on IR-induced cellular responses. FX significantly attenuated IR-induced upregulation of pro-inflammatory genes (Il1b, Tnf, and Ccl2) and inhibited macrophage polarization toward the pro-inflammatory M1 phenotype. Additionally, FX regulated IR-induced metabolic genes mediating glycolysis and mitochondrial biogenesis. The ability of FX to mitigate IR-induced inflammation and glycolysis was ascribed to the expression and activity of SIRT1 and ERα in macrophages. This study not only uncovers the underlying mechanisms of FX's radioprotective properties but also highlights its potential as a protective agent against the detrimental effects of IR, thus offering new opportunities for enhancing radiation protection in the future.
Collapse
Affiliation(s)
- Hyunju Kang
- Department of Food and Nutrition, Keimyung University, 1095 Dalgubeol-Daero, Daegu 42601, Republic of Korea;
| | - Seon-Chil Kim
- Department of Biomedical Engineering, Keimyung University, 1095 Dalgubeol-Daero, Daegu 42601, Republic of Korea
- Department of Medical Informatics, School of Medicine, Keimyung University, 1095 Dalgubeol-Daero, Daegu 42601, Republic of Korea
| | - Youngkee Oh
- Department of Radiation Oncology, School of Medicine, Keimyung University, 1095 Dalgubeol-Daero, Daegu 42601, Republic of Korea;
| |
Collapse
|
3
|
Slautin VN, Grebnev DY, Maklakova IY, Sazonov SV. Fucoxanthin exert dose-dependent antifibrotic and anti-inflammatory effects on CCl 4-induced liver fibrosis. J Nat Med 2023; 77:953-963. [PMID: 37391684 DOI: 10.1007/s11418-023-01723-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 06/13/2023] [Indexed: 07/02/2023]
Abstract
The lack of an effective non-surgical liver fibrosis treatment is a major problem in hepatology. Fucoxanthin is a marine xanthophyll that exhibits anti-inflammatory, antioxidant, and hepatoprotective properties, thereby indicating its potential effectiveness in the treatment of liver fibrosis. The study aims to investigate the antifibrotic and anti-inflammatory effects of fucoxanthin and its main mechanisms on carbon tetrachloride (CCl4)-induced liver fibrosis in 50 outbred ICR/CD1 mice. 2 μl/g of CCl4 were injected intraperitoneally 2 times a week for 6 weeks. Fucoxanthin (5, 10, 30 mg/kg) was administered via gavage. Liver histopathology was evaluated by Hematoxylin-Eosin (H&E) and Sirius Red staining using the METAVIR scale. The immunohistochemical method was used to determine the number of CD45 and α-smooth muscle actin (α-SMA) positive cells, and tissue inhibitor of matrix metalloproteinases-1 (TIMP-1), matrix metalloproteinase-9 (MMP-9), and α-SMA positive areas. Using enzyme immunoassays, procollagen 1 (COL1A1), transforming growth factor-β (TGF-β), and hepatocyte growth factor (HGF) were determined in homogenate, and interleukin-1ß (IL-1ß) and tumor necrosis factor-α (TNF-α) were determined in blood serum. Serum alanine aminotransferase (ALT) and aspartate transaminase (AST) activity, albumin (ALB), and total bilirubin (Tbil) levels are determined by biochemical assays. Fucoxanthin significantly reduced the severity of liver fibrosis, profibrogenic markers, inflammatory infiltration, and pro-inflammatory cytokines. In summary, we confirmed that fucoxanthin has a dose-dependent antifibrotic effect on CCl4-induced liver fibrosis. We found that the anti-inflammatory effect of fucoxanthin is related to the inhibition of IL-1β and TNF-α synthesis, as well as the decrease in the number of leukocytes in the injured liver.
Collapse
Affiliation(s)
- Vasilii N Slautin
- Federal State Budgetary Institution of Higher Professional Education, Ural State Medical University", 3, Repin Street, 620028, Yekaterinburg, Russian Federation.
- Federal Budgetary Institution of Science "Federal Scientific Research Institute of Viral Infection "Virome", 23, Letnyaya Street, 620030, Yekaterinburg, Russian Federation.
| | - Dmitry Yu Grebnev
- Federal State Budgetary Institution of Higher Professional Education, Ural State Medical University", 3, Repin Street, 620028, Yekaterinburg, Russian Federation
- Institute of Medical Cell Technologies, 22a, Karl Marx Street, 620026, Yekaterinburg, Russian Federation
| | - Irina Yu Maklakova
- Federal State Budgetary Institution of Higher Professional Education, Ural State Medical University", 3, Repin Street, 620028, Yekaterinburg, Russian Federation
- Institute of Medical Cell Technologies, 22a, Karl Marx Street, 620026, Yekaterinburg, Russian Federation
| | - Sergey V Sazonov
- Federal State Budgetary Institution of Higher Professional Education, Ural State Medical University", 3, Repin Street, 620028, Yekaterinburg, Russian Federation
- Institute of Medical Cell Technologies, 22a, Karl Marx Street, 620026, Yekaterinburg, Russian Federation
| |
Collapse
|
4
|
Li X, Du Y, Xue C, Kang X, Sun C, Peng H, Fang L, Han Y, Xu X, Zhao C. SIRT2 Deficiency Aggravates Diet-Induced Nonalcoholic Fatty Liver Disease through Modulating Gut Microbiota and Metabolites. Int J Mol Sci 2023; 24:8970. [PMID: 37240315 PMCID: PMC10219207 DOI: 10.3390/ijms24108970] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 05/05/2023] [Accepted: 05/15/2023] [Indexed: 05/28/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD), characterized by excessive lipid accumulation in hepatocytes, is an increasing global healthcare burden. Sirtuin 2 (SIRT2) functions as a preventive molecule for NAFLD with incompletely clarified regulatory mechanisms. Metabolic changes and gut microbiota imbalance are critical to the pathogenesis of NAFLD. However, their association with SIRT2 in NAFLD progression is still unknown. Here, we report that SIRT2 knockout (KO) mice are susceptible to HFCS (high-fat/high-cholesterol/high-sucrose)-induced obesity and hepatic steatosis accompanied with an aggravated metabolic profile, which indicates SIRT2 deficiency promotes NAFLD-NASH (nonalcoholic steatohepatitis) progression. Under palmitic acid (PA), cholesterol (CHO), and high glucose (Glu) conditions, SIRT2 deficiency promotes lipid deposition and inflammation in cultured cells. Mechanically, SIRT2 deficiency induces serum metabolites alteration including upregulation of L-proline and downregulation of phosphatidylcholines (PC), lysophosphatidylcholine (LPC), and epinephrine. Furthermore, SIRT2 deficiency promotes gut microbiota dysbiosis. The microbiota composition clustered distinctly in SIRT2 KO mice with decreased Bacteroides and Eubacterium, and increased Acetatifactor. In clinical patients, SIRT2 is downregulated in the NALFD patients compared with healthy controls, and is associated with exacerbated progression of normal liver status to NAFLD to NASH in clinical patients. In conclusion, SIRT2 deficiency accelerates HFCS-induced NAFLD-NASH progression by inducing alteration of gut microbiota and changes of metabolites.
Collapse
Affiliation(s)
- Xingyu Li
- Department of Infectious Diseases, The Third Hospital of Hebei Medical University, Shijiazhuang 050011, China;
- Department of Genetic Engineering, Beijing Institute of Biotechnology, Beijing 100850, China; (Y.D.)
| | - Yimeng Du
- Department of Genetic Engineering, Beijing Institute of Biotechnology, Beijing 100850, China; (Y.D.)
| | - Chunyuan Xue
- Department of Genetic Engineering, Beijing Institute of Biotechnology, Beijing 100850, China; (Y.D.)
| | - Xiaofeng Kang
- Department of Genetic Engineering, Beijing Institute of Biotechnology, Beijing 100850, China; (Y.D.)
| | - Chao Sun
- Department of Genetic Engineering, Beijing Institute of Biotechnology, Beijing 100850, China; (Y.D.)
| | - Huanyan Peng
- Department of Genetic Engineering, Beijing Institute of Biotechnology, Beijing 100850, China; (Y.D.)
| | - Liaoxin Fang
- Department of Genetic Engineering, Beijing Institute of Biotechnology, Beijing 100850, China; (Y.D.)
| | - Yuchen Han
- Department of Genetic Engineering, Beijing Institute of Biotechnology, Beijing 100850, China; (Y.D.)
| | - Xiaojie Xu
- Department of Genetic Engineering, Beijing Institute of Biotechnology, Beijing 100850, China; (Y.D.)
| | - Caiyan Zhao
- Department of Infectious Diseases, The Third Hospital of Hebei Medical University, Shijiazhuang 050011, China;
| |
Collapse
|
5
|
Winarto J, Song DG, Pan CH. The Role of Fucoxanthin in Non-Alcoholic Fatty Liver Disease. Int J Mol Sci 2023; 24:ijms24098203. [PMID: 37175909 PMCID: PMC10179653 DOI: 10.3390/ijms24098203] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/27/2023] [Accepted: 05/01/2023] [Indexed: 05/15/2023] Open
Abstract
Chronic liver disease (CLD) has emerged as a leading cause of human deaths. It caused 1.32 million deaths in 2017, which affected men more than women by a two-to-one ratio. There are various causes of CLD, including obesity, excessive alcohol consumption, and viral infection. Among them, non-alcoholic fatty liver disease (NAFLD), one of obesity-induced liver diseases, is the major cause, representing the cause of more than 50% of cases. Fucoxanthin, a carotenoid mainly found in brown seaweed, exhibits various biological activities against NAFLD. Its role in NAFLD appears in several mechanisms, such as inducing thermogenesis in mitochondrial homeostasis, altering lipid metabolism, and promoting anti-inflammatory and anti-oxidant activities. The corresponding altered signaling pathways are the β3-adorenarine receptor (β3Ad), proliferator-activated receptor gamma coactivator (PGC-1), adenosine monophosphate-activated protein kinase (AMPK), peroxisome proliferator-activated receptor (PPAR), sterol regulatory element binding protein (SREBP), nuclear factor kappa B (NF-κB), mitogen-activated protein kinase (MAPK), protein kinase B (AKT), SMAD2/3, and P13K/Akt pathways. Fucoxanthin also exhibits anti-fibrogenic activity that prevents non-alcoholic steatohepatitis (NASH) development.
Collapse
Affiliation(s)
- Jessica Winarto
- Division of Bio-Medical Science and Technology, KIST School, University of Science and Technology, Seoul 02792, Republic of Korea
- Natural Product Informatics Research Center, KIST Gangneung Institute of Natural Products, Gangneung 25451, Republic of Korea
| | - Dae-Geun Song
- Division of Bio-Medical Science and Technology, KIST School, University of Science and Technology, Seoul 02792, Republic of Korea
- Natural Product Informatics Research Center, KIST Gangneung Institute of Natural Products, Gangneung 25451, Republic of Korea
| | - Cheol-Ho Pan
- Division of Bio-Medical Science and Technology, KIST School, University of Science and Technology, Seoul 02792, Republic of Korea
- Natural Product Informatics Research Center, KIST Gangneung Institute of Natural Products, Gangneung 25451, Republic of Korea
- Microalgae Ask US Co., Ltd., Gangneung 25441, Republic of Korea
| |
Collapse
|
6
|
Sayuti NH, Muhammad Nawawi KN, Goon JA, Mokhtar NM, Makpol S, Tan JK. A Review of the Effects of Fucoxanthin on NAFLD. Nutrients 2023; 15:1954. [PMID: 37111187 PMCID: PMC10146066 DOI: 10.3390/nu15081954] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 04/15/2023] [Accepted: 04/17/2023] [Indexed: 04/29/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is the most prevalent form of chronic liver disease. Fucoxanthin, a red-orange marine carotenoid, is found in natural marine seaweeds with high antioxidant activity and several other remarkable biological features. The aim of this review is to gather evidence of the positive benefits of fucoxanthin on NAFLD. Fucoxanthin provides an extensive list of physiological and biological properties, such as hepatoprotective, anti-obesity, anti-tumor, and anti-diabetes properties, in addition to antioxidant and anti-inflammatory properties. This review focuses on published research on the preventative effects of fucoxanthin on NAFLD from the perspective of human clinical trials, animal experiments in vivo, and in vitro cell investigations. Using a variety of experimental designs, including treatment dosage, experiment model, and experimental periods, the positive effects of fucoxanthin were demonstrated. Fucoxanthin's biological activities were outlined, with an emphasis on its therapeutic efficacy in NAFLD. Fucoxanthin showed beneficial effects in modulating lipid metabolism, lipogenesis, fatty acid oxidation, adipogenesis, and oxidative stress on NAFLD. A deeper comprehension of NAFLD pathogenesis is essential for the development of novel and effective therapeutic strategies.
Collapse
Affiliation(s)
- Nor Hafiza Sayuti
- Department of Biochemistry, Faculty of Medicine, Universiti Kebangsaan Malaysia, Bandar Tun Razak, Cheras, Kuala Lumpur 56000, Malaysia
| | - Khairul Najmi Muhammad Nawawi
- Gastroenterology and Hepatology Unit, Department of Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Bandar Tun Razak, Cheras, Kuala Lumpur 56000, Malaysia
- GUT Research Group, Faculty of Medicine, Universiti Kebangsaan Malaysia, Bandar Tun Razak, Cheras, Kuala Lumpur 56000, Malaysia
| | - Jo Aan Goon
- Department of Biochemistry, Faculty of Medicine, Universiti Kebangsaan Malaysia, Bandar Tun Razak, Cheras, Kuala Lumpur 56000, Malaysia
| | - Norfilza Mohd Mokhtar
- GUT Research Group, Faculty of Medicine, Universiti Kebangsaan Malaysia, Bandar Tun Razak, Cheras, Kuala Lumpur 56000, Malaysia
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Bandar Tun Razak, Cheras, Kuala Lumpur 56000, Malaysia
| | - Suzana Makpol
- Department of Biochemistry, Faculty of Medicine, Universiti Kebangsaan Malaysia, Bandar Tun Razak, Cheras, Kuala Lumpur 56000, Malaysia
| | - Jen Kit Tan
- Department of Biochemistry, Faculty of Medicine, Universiti Kebangsaan Malaysia, Bandar Tun Razak, Cheras, Kuala Lumpur 56000, Malaysia
| |
Collapse
|