1
|
Ribeiro G, Schellekens H, Cuesta-Marti C, Maneschy I, Ismael S, Cuevas-Sierra A, Martínez JA, Silvestre MP, Marques C, Moreira-Rosário A, Faria A, Moreno LA, Calhau C. A menu for microbes: unraveling appetite regulation and weight dynamics through the microbiota-brain connection across the lifespan. Am J Physiol Gastrointest Liver Physiol 2025; 328:G206-G228. [PMID: 39811913 DOI: 10.1152/ajpgi.00227.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 08/14/2024] [Accepted: 01/02/2025] [Indexed: 01/16/2025]
Abstract
Appetite, as the internal drive for food intake, is often dysregulated in a broad spectrum of conditions associated with over- and under-nutrition across the lifespan. Appetite regulation is a complex, integrative process comprising psychological and behavioral events, peripheral and metabolic inputs, and central neurotransmitter and metabolic interactions. The microbiota-gut-brain axis has emerged as a critical mediator of multiple physiological processes, including energy metabolism, brain function, and behavior. Therefore, the role of the microbiota-gut-brain axis in appetite and obesity is receiving increased attention. Omics approaches such as genomics, epigenomics, transcriptomics, proteomics, and metabolomics in appetite and weight regulation offer new opportunities for featuring obesity phenotypes. Furthermore, gut-microbiota-targeted approaches such as pre-, pro-, post-, and synbiotic, personalized nutrition, and fecal microbiota transplantation are novel avenues for precision treatments. The aim of this narrative review is 1) to provide an overview of the role of the microbiota-gut-brain axis in appetite regulation across the lifespan and 2) to discuss the potential of omics and gut microbiota-targeted approaches to deepen understanding of appetite regulation and obesity.
Collapse
Affiliation(s)
- Gabriela Ribeiro
- Metabolism and Nutrition Department, Faculdade de Ciências Médicas, NOVA Medical School, Universidade NOVA de Lisboa, Lisbon, Portugal
- CHRC - Center for Health Technology and Services Research, Faculdade de Ciências Médicas, NOVA Medical School, Universidade NOVA de Lisboa, Lisbon, Portugal
| | - Harriët Schellekens
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
- APC Microbiome Ireland, Cork, Ireland
| | - Cristina Cuesta-Marti
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
- APC Microbiome Ireland, Cork, Ireland
| | - Ivie Maneschy
- Growth, Exercise, Nutrition and Development Research Group, Instituto Agroalimentario de Aragón, University of Zaragoza, Zaragoza, Spain
- Instituto de Investigación Sanitaria de Aragón, University of Zaragoza, Zaragoza, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain
| | - Shámila Ismael
- Metabolism and Nutrition Department, Faculdade de Ciências Médicas, NOVA Medical School, Universidade NOVA de Lisboa, Lisbon, Portugal
- CHRC - Center for Health Technology and Services Research, Faculdade de Ciências Médicas, NOVA Medical School, Universidade NOVA de Lisboa, Lisbon, Portugal
- CINTESIS - Comprehensive Health Research Centre, Faculdade de Ciências Médicas, NOVA Medical School, Universidade NOVA de Lisboa, Lisbon, Portugal
| | - Amanda Cuevas-Sierra
- Metabolism and Nutrition Department, Faculdade de Ciências Médicas, NOVA Medical School, Universidade NOVA de Lisboa, Lisbon, Portugal
- Precision Nutrition and Cardiometabolic Health, IMDEA-Food Institute (Madrid Institute for Advanced Studies), Campus of International Excellence (CEI) UAM+CSIC, Spanish National Research Council, Madrid, Spain
| | - J Alfredo Martínez
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain
- Precision Nutrition and Cardiometabolic Health, IMDEA-Food Institute (Madrid Institute for Advanced Studies), Campus of International Excellence (CEI) UAM+CSIC, Spanish National Research Council, Madrid, Spain
| | - Marta P Silvestre
- Metabolism and Nutrition Department, Faculdade de Ciências Médicas, NOVA Medical School, Universidade NOVA de Lisboa, Lisbon, Portugal
- CHRC - Center for Health Technology and Services Research, Faculdade de Ciências Médicas, NOVA Medical School, Universidade NOVA de Lisboa, Lisbon, Portugal
| | - Cláudia Marques
- Metabolism and Nutrition Department, Faculdade de Ciências Médicas, NOVA Medical School, Universidade NOVA de Lisboa, Lisbon, Portugal
- CHRC - Center for Health Technology and Services Research, Faculdade de Ciências Médicas, NOVA Medical School, Universidade NOVA de Lisboa, Lisbon, Portugal
| | - André Moreira-Rosário
- Metabolism and Nutrition Department, Faculdade de Ciências Médicas, NOVA Medical School, Universidade NOVA de Lisboa, Lisbon, Portugal
- CINTESIS - Comprehensive Health Research Centre, Faculdade de Ciências Médicas, NOVA Medical School, Universidade NOVA de Lisboa, Lisbon, Portugal
| | - Ana Faria
- Metabolism and Nutrition Department, Faculdade de Ciências Médicas, NOVA Medical School, Universidade NOVA de Lisboa, Lisbon, Portugal
- CHRC - Center for Health Technology and Services Research, Faculdade de Ciências Médicas, NOVA Medical School, Universidade NOVA de Lisboa, Lisbon, Portugal
- CINTESIS - Comprehensive Health Research Centre, Faculdade de Ciências Médicas, NOVA Medical School, Universidade NOVA de Lisboa, Lisbon, Portugal
| | - Luis A Moreno
- Growth, Exercise, Nutrition and Development Research Group, Instituto Agroalimentario de Aragón, University of Zaragoza, Zaragoza, Spain
- Instituto de Investigación Sanitaria de Aragón, University of Zaragoza, Zaragoza, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain
| | - Conceição Calhau
- Metabolism and Nutrition Department, Faculdade de Ciências Médicas, NOVA Medical School, Universidade NOVA de Lisboa, Lisbon, Portugal
- CHRC - Center for Health Technology and Services Research, Faculdade de Ciências Médicas, NOVA Medical School, Universidade NOVA de Lisboa, Lisbon, Portugal
| |
Collapse
|
2
|
Liang X, Lai K, Li X, Ren D, Gui S, Li Y, Xing Z. Association between triglyceride glucose-body mass index and gestational diabetes mellitus: a prospective cohort study. BMC Pregnancy Childbirth 2025; 25:170. [PMID: 39962434 PMCID: PMC11834603 DOI: 10.1186/s12884-025-07294-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Accepted: 02/06/2025] [Indexed: 02/20/2025] Open
Abstract
BACKGROUND Limited research has examined the potential association between triglyceride glucose-body mass index (TyG-BMI) and gestational diabetes mellitus (GDM). The objective of this investigation was to analyze this linkage and evaluate TyG-BMI's capability to predict GDM. METHODS This research employed secondary data derived from a prospective cohort in South Korea, which included 588 pregnant women with singleton gestations, collected between November 2014 and July 2016. To investigate the connection between TyG-BMI and GDM, logistic regression and sensitivity analyses were performed. Furthermore, an analysis of receiver operating characteristics (ROC) was conducted to assess the prognostic accuracy of TyG-BMI in relation to GDM. RESULTS The cohort exhibited a mean age of 32.07 ± 3.80 years, with 36 individuals (6.12%) manifesting GDM during the interval of 24 to 28 weeks of gestation. Following the adjustment for possible confounding variables, an increased TyG-BMI was associated with an elevated risk of GDM, as indicated by an odds ratio (OR) of 1.02 (95% CI: 1.01-1.04). Additionally, the area under the curve (AUC) for TyG-BMI's predictive performance was recorded at 0.7979 (0.7143-0.8814), with an optimal threshold established at 211.03, which resulted in a specificity of 86.23% and a sensitivity of 66.67%. CONCLUSIONS In this South Korean cohort, increased TyG-BMI during early pregnancy (10-14 weeks) was significantly associated with the onset of GDM (during pregnancy 24-28 weeks). TyG-BMI could be integrated into clinical practice as a complementary preliminary screening tool for detecting women who are at increased risk of GDM.
Collapse
Affiliation(s)
- Xiaomin Liang
- Department of Critical Care Medicine, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Kai Lai
- Department of Critical Care Medicine, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Xiaohong Li
- Department of Critical Care Medicine, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Di Ren
- Department of Critical Care Medicine, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Shuiqing Gui
- Department of Critical Care Medicine, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, China.
| | - Ying Li
- Department of Critical Care Medicine, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, China.
| | - Zemao Xing
- Department of Critical Care Medicine, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, China.
| |
Collapse
|
3
|
Arenas G, Barrera MJ, Contreras-Duarte S. The Impact of Maternal Chronic Inflammatory Conditions on Breast Milk Composition: Possible Influence on Offspring Metabolic Programming. Nutrients 2025; 17:387. [PMID: 39940245 PMCID: PMC11820913 DOI: 10.3390/nu17030387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Revised: 01/09/2025] [Accepted: 01/20/2025] [Indexed: 02/14/2025] Open
Abstract
Breastfeeding is the best way to provide newborns with crucial nutrients and produce a unique bond between mother and child. Breast milk is rich in nutritious and non-nutritive bioactive components, such as immune cells, cytokines, chemokines, immunoglobulins, hormones, fatty acids, and other constituents. Maternal effects during gestation and lactation can alter these components, influencing offspring outcomes. Chronic inflammatory maternal conditions, such as obesity, diabetes, and hypertension, impact breast milk composition. Breast milk from obese mothers exhibits changes in fat content, cytokine levels, and hormonal concentrations, potentially affecting infant growth and health. Similarly, diabetes alters the composition of breast milk, impacting immune factors and metabolic markers. Other pro-inflammatory conditions, such as dyslipidemia and metabolic syndrome, have been barely studied. Thus, maternal obesity, diabetes, and altered tension parameters have been described as modifying the composition of breast milk in its macronutrients and other important biomolecules, likely affecting the offspring's weight. This review emphasizes the impact of chronic inflammatory conditions on breast milk composition and its potential implications for offspring development through the revision of full-access original articles.
Collapse
Affiliation(s)
- Gabriela Arenas
- Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago 7510602, Chile;
| | - María José Barrera
- Facultad de Odontología y Ciencias de la Rehabilitación, Universidad San Sebastián, Santiago 7510157, Chile;
| | - Susana Contreras-Duarte
- Facultad de Ciencias para el Cuidado de la Salud, Universidad San Sebastián, Santiago 8420524, Chile
| |
Collapse
|
4
|
Lis-Kuberka J, Berghausen-Mazur M, Orczyk-Pawiłowicz M. Evaluation of Selected Pro- and Anti-Inflammatory Adipokines in Colostrum from Mothers with Gestational Diabetes Mellitus. Int J Mol Sci 2024; 26:40. [PMID: 39795898 PMCID: PMC11719563 DOI: 10.3390/ijms26010040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 12/13/2024] [Accepted: 12/20/2024] [Indexed: 01/13/2025] Open
Abstract
Adipokines related to gestational diabetes mellitus (GDM) are an emerging area of interest. The aim of this study was to evaluate the associations between GDM and adipokine levels in human milk. This was an observational cohort study targeting mothers with gestational diabetes, which evaluated the association of maternal hyperglycemia severity, classified as GDM-G1 (diet treatment) and GDM-G2 (insulin treatment), with colostral adipokines involved in pro- and anti-inflammatory processes. Colostrum was collected from hyperglycemic (N = 34) and normoglycemic (N = 26) mothers, and adipokine levels were determined by immunoenzymatic assay. Among anti-inflammatory adipokines, only for irisin and vaspin, but not for obestatin and adropin, were significantly different levels noted between the GDM-G1, GDM-G2 and non-GDM cohorts. Colostrum of the GDM-G2 subgroup contained more vaspin (4.77 ng/mL) than that of normoglycemic mothers (3.12 ng/mL) and more irisin (26.95 μg/mL) than in the GDM-G1 subgroup (17.59 μg/mL). The levels of pro-inflammatory adipokines, namely, dermcidin, chemerin and visfatin, were at similar levels irrespective of maternal glycemia. Moreover, irisin showed a negative correlation with dermcidin in GDM-G2 and non-GDM cohorts. Associations were observed between colostral irisin and maternal preconception BMI, dermcidin and gestational age, and vaspin and maternal age. This study provides evidence that the way of restoring glucose homeostasis in pregnant women has an impact on the anti-inflammatory adipokines irisin and vaspin, but not on obestatin and adropin. GDM, regardless of severity, did not influence the colostral pro-inflammatory adipokines visfatin, chemerin and dermcidin.
Collapse
Affiliation(s)
- Jolanta Lis-Kuberka
- Division of Chemistry and Immunochemistry, Department of Biochemistry and Immunochemistry, Wroclaw Medical University, M. Skłodowskiej-Curie 48/50, 50-369 Wroclaw, Poland
| | - Marta Berghausen-Mazur
- Department of Neonatology, J. Gromkowski Provincial Specialist Hospital, Koszarowa 5, 51-149 Wroclaw, Poland
- Faculty of Medicine, Wroclaw University of Science and Technology, Hoene-Wrońskiego 13c, 58-376 Wroclaw, Poland
| | - Magdalena Orczyk-Pawiłowicz
- Division of Chemistry and Immunochemistry, Department of Biochemistry and Immunochemistry, Wroclaw Medical University, M. Skłodowskiej-Curie 48/50, 50-369 Wroclaw, Poland
| |
Collapse
|
5
|
Nagel EM, Peña A, Dreyfuss JM, Lock EF, Johnson KE, Lu C, Fields DA, Demerath EW, Isganaitis E. Gestational Diabetes, the Human Milk Metabolome, and Infant Growth and Adiposity. JAMA Netw Open 2024; 7:e2450467. [PMID: 39666338 PMCID: PMC11638796 DOI: 10.1001/jamanetworkopen.2024.50467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 10/07/2024] [Indexed: 12/13/2024] Open
Abstract
Importance Gestational diabetes (GD) is linked to health risks for the birthing parent and infant. The outcomes of GD on human milk composition are mostly unknown. Objective To determine associations between GD, the human milk metabolome, and infant growth and body composition. Design, Setting, and Participants Cohort study using data from the Mothers and Infants Linked for Healthy Growth and the Maternal Milk, Metabolism, and the Microbiome studies at the University of Oklahoma and University of Minnesota, large prospective US cohorts with a high proportion of exclusive breastfeeding. Participants were mother-infant dyads recruited between October 2014 and August 2019 who planned to exclusively breastfeed for 3 or more months. Data were analyzed from July 2022 to August 2024. Exposure GD diagnosed via oral glucose tolerance test. Main Outcomes and Measures The milk metabolome was assessed by untargeted liquid chromatography-gas chromatography-mass spectrometry at 1 month post partum. Infant growth (weight for length z score, length for age z score, and rapid weight gain) and body composition (percentage body fat and fat-free mass index) from 0 to 6 months were assessed. Linear regression analyses tested associations between GD and milk metabolites, with adjustment for covariates and potential confounders. Results Among 348 dyads (53 with GD), 27 (51%) of the GD-exposed infants were female and 157 (53%) of nonexposed infants were male; 10 (19%) were Asian, 2 (4%) were Black or African American, and 37 (70%) were White. The mean (SD) age was higher in the GD group (with GD, 34.0 [4.3] years; without GD, 30.7 [4.1] years). In adjusted models, GD was associated with differential levels of 9 metabolites of 458 tested (FDR<0.05); 3 were higher (2-hydroxybutyric acid, 3-methylphenylacetic acid, and pregnanolone sulfate) and 6 were lower in women with GD (4-cresyl sulfate, cresol, glycine, P-cresol sulfate, phenylacetic acid, and stearoylcarnitine). Phenylacetic acid was associated with length for age z score (β = 0.27; SE, 0.13; 95% CI, 0.02 to 0.16), 2-hydroxybutryic acid with percentage body fat (β = -1.50; SE, 0.66; 95% CI, -2.79 to -4.82), and stearoylcarnitine with greater odds of rapid weight gain (odds ratio, 1.66; 95% CI, 1.23 to 2.25). GD was associated with greater length for age z scores (β = 0.48; SE, 0.22; 95% CI, 0.04 to 0.91). Conclusions and Relevance In this observational cohort study, GD was associated with altered concentrations of several human milk metabolites. The associations between these metabolites and infant growth suggest that milk compositional differences in mothers with GD may beneficially moderate the growth and body composition of their infants.
Collapse
Affiliation(s)
- Emily M. Nagel
- School of Public Health, University of Minnesota, Twin Cities
- Department of Pediatrics, University of Minnesota, Minneapolis
| | - Armando Peña
- Department of Health and Wellness Design, School of Public Health, Indiana University Bloomington, Bloomington
| | | | - Eric F. Lock
- Division of Biostatistics and Health Data Science, School of Public Health, University of Minnesota-Twin Cities
| | - Kelsey E. Johnson
- Department of Genetics, Cell Biology, and Development, University of Minnesota-Twin Cities
| | - Chang Lu
- Joslin Diabetes Center, Harvard Medical School, Boston, Massachusetts
- Division of Endocrinology, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts
| | - David A. Fields
- Department of Pediatrics, University of Oklahoma College of Medicine
| | | | - Elvira Isganaitis
- Joslin Diabetes Center, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
6
|
Badewy R, Glogauer M, Connor KL, Sgro M, Lai JY, Bazinet RP, Tenenbaum HC, Azarpazhooh A. The unrevealed links: periodontal health, human milk composition, and infant gut microbiome dynamics. Prim Health Care Res Dev 2024; 25:e62. [PMID: 39540631 DOI: 10.1017/s1463423624000215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024] Open
Abstract
AIM This review aims to identify the mechanistic relationships related to periodontal diseases and its possible association with changes in human milk composition and the composition and function of infants' gut microbiome. BACKGROUND Maternal health conditions, especially inflammatory, are associated with altered human milk composition. It is not known whether maternal oral inflammatory diseases, including periodontal diseases, deleteriously affect human milk composition. METHODS A narrative review was conducted according to SANRA, the Scale for the Assessment of Narrative Review Articles, guidelines. PubMed, Google Scholar, and Cochrane database of systematic reviews were searched from September 2019 up to December 2023 using keywords such as breast/human milk, maternal health/infections, and periodontal diseases. Reference lists of relevant articles were also screened. Our primary outcome of interest was human milk composition (i.e., any changes in macronutrients, immunological components, etc.). Secondary outcomes included changes in human milk microbiome and subsequent changes in the infant gut microbiome. Outcomes were synthesized using a narrative approach where the existing evidence and current literature were summarized. No risk of bias assessment of the studies was performed in this review. FINDINGS The search yielded no studies investigating the relationship between periodontal diseases in nursing mothers and changes in human milk composition. However, a dose-response relationship exists between the severity of periodontal diseases and the risk of adverse pregnancy outcomes such as preterm birth. Mastitis and diabetes affected milk lipids. Immunoglobulin A (sIgA) was increased in mastitis, whereas reduced concentrations were reported in diabetes. Potential biological pathways through which periodontal diseases can negatively affect human milk composition include the systemic dissemination of inflammatory cytokines like IL-6, PGE2, and tumor necrosis factor (TNF)-β that can be up-regulated by bacterial by-products. This biological plausibility needs to be investigated, given the potentially negative impact on the quality of human milk that could be caused by periodontal inflammation.
Collapse
Affiliation(s)
- Rana Badewy
- Faculty of Dentistry, University of Toronto, Toronto, ON, Canada
| | - Michael Glogauer
- Faculty of Dentistry, University of Toronto, Toronto, ON, Canada
- Department of Dental Oncology, Princess Margaret Cancer Centre, Toronto, ON, Canada
| | - Kristin L Connor
- Department of Health Sciences, Carleton University, Ottawa, ON, Canada
| | - Michael Sgro
- Department of Pediatrics, and Li Ka Shing Knowledge Institute, St. Michael's Hospital, Unity Health Toronto, Toronto, ON, Canada
- Department of Pediatrics, Division of Neonatology, University of Toronto, Toronto, ON, Canada
- Institute of Medical Sciences, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Jim Yuan Lai
- Faculty of Dentistry, University of Toronto, Toronto, ON, Canada
| | - Richard P Bazinet
- Department of Nutritional Sciences, University of Toronto, Toronto, ON, Canada
| | - Howard C Tenenbaum
- Faculty of Dentistry, University of Toronto, Toronto, ON, Canada
- Department of Dentistry, Centre for Advanced Dental Research and Care, Mount Sinai Hospital, Toronto, ON, Canada
| | - Amir Azarpazhooh
- Faculty of Dentistry, University of Toronto, Toronto, ON, Canada
- Department of Dentistry, Centre for Advanced Dental Research and Care, Mount Sinai Hospital, Toronto, ON, Canada
| |
Collapse
|
7
|
Tao Y, Wang Q, Xiao M, Li H, Wang H, Mao Z, Zhang L, Zhou X, Yang H, Qing S. Gestational Diabetes Mellitus-Induced Milk Fat Globule Membrane Protein Changes of Human Mature Milk Based on TMT Proteomic Analysis. J Dairy Sci 2024:S0022-0302(24)01072-5. [PMID: 39154721 DOI: 10.3168/jds.2024-25077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Accepted: 07/18/2024] [Indexed: 08/20/2024]
Abstract
Breastfeeding by mothers with gestational diabetes mellitus (GDM) has been shown to reduce maternal insulin demands and diminish the risks of diabetes in infants, leading to improved long-term health outcomes. Milk fat globule membrane (MFGM) proteins play a crucial role in influencing the immunity and cognitive development of infants. Understanding the alterations in MFGM proteins in breastmilk from mothers with GDM is essential for enhancing their self-efficacy and increase breastfeeding rates. The objective of this study is to investigate and compare MFGM proteins in milk from mothers with GDM and without based on tandem mass tag (TMT) labeling and liquid chromatography tandem mass spectrometry (LC-MS) techniques. A total of 5402 proteins were identified, including 4 upregulated proteins and 24 downregulated proteins. These significantly altered proteins were found to be associated with human diseases, cellular processes, and metabolism pathways. Additionally, the oxidative phosphorylation pathway emerged as the predominant pathway through Gene Set Enrichment Analysis (GSEA) involving all genes.
Collapse
Affiliation(s)
- Ye Tao
- Hangzhou Linping District Maternal & Child Health Care Hospital, Hangzhou, Zhejiang 311113, China
| | - Qingcheng Wang
- Laboratory of Medicine-Food Homology Innovation and Achievement Transformation, Linping Hospital of Integrated Traditional Chinese and Western Medicine, Hangzhou, Zhejiang, 311110, China
| | - Min Xiao
- Hangzhou Linping District Maternal & Child Health Care Hospital, Hangzhou, Zhejiang 311113, China
| | - Haihong Li
- Hangzhou Linping District Maternal & Child Health Care Hospital, Hangzhou, Zhejiang 311113, China
| | - Haifeng Wang
- Laboratory of Food Nutrition and Clinical Research, Institute of Seafood, Zhejiang Gongshang University, Hangzhou 310012, China.; Hangzhou Linping Hospital of Traditional Chinese Medicine, Linping, 311106, Zhejiang, China.
| | - Zhujun Mao
- Panvascular Diseases Research Center, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou 324000, China
| | - Lai Zhang
- Hangzhou Linping District Maternal & Child Health Care Hospital, Hangzhou, Zhejiang 311113, China
| | - XiaoLi Zhou
- Hangzhou Linping District Maternal & Child Health Care Hospital, Hangzhou, Zhejiang 311113, China
| | - Huijuan Yang
- College of Standardization, China Jiliang University, Hangzhou 310018, PR China.
| | - Shen Qing
- Panvascular Diseases Research Center, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou 324000, China.; Laboratory of Food Nutrition and Clinical Research, Institute of Seafood, Zhejiang Gongshang University, Hangzhou 310012, China.; Hangzhou Linping Hospital of Traditional Chinese Medicine, Linping, 311106, Zhejiang, China; Laboratory of Medicine-Food Homology Innovation and Achievement Transformation, Linping Hospital of Integrated Traditional Chinese and Western Medicine, Hangzhou, Zhejiang, 311110, China..
| |
Collapse
|
8
|
Suwaydi MA, Lai CT, Warden AH, Perrella SL, McEachran JL, Wlodek ME, Geddes DT, Gridneva Z. Investigation of Relationships between Intakes of Human Milk Total Lipids and Metabolic Hormones and Infant Sex and Body Composition. Nutrients 2024; 16:2739. [PMID: 39203875 PMCID: PMC11357482 DOI: 10.3390/nu16162739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 08/08/2024] [Accepted: 08/13/2024] [Indexed: 09/03/2024] Open
Abstract
Human milk (HM) composition, including metabolic hormones and lipids, is influenced by various factors, including lactation stage and, potentially, infant sex, which may affect infant body composition (BC) development. We aimed to: (a) characterize the longitudinal concentration and intake profiles of HM leptin, adiponectin, insulin, and total lipids; (b) determine if their concentrations and intakes differ by infant sex; and (c) explore the intakes relationships with the development of infant BC. Milk samples (n = 501) were collected from 82 mother-infant dyads during the first 6 months postpartum. Infant 24 h HM intake was measured, and the average cumulative HM component intakes were calculated. The statistical analysis used linear mixed modeling. Intakes of HM leptin, adiponectin, insulin, and total lipids increased to 1 month postpartum and then remained stable. HM intake and total lipids intake but not hormone intakes were positively associated with infant BC (fat-free mass, fat-free mass index, fat mass, fat mass index, percentage fat mass, and fat mass to fat-free mass ratio). HM component concentrations and intakes did not differ by sex. These findings advance our understanding of the temporal nature of HM components, emphasizing the role of infant 24 h HM and total lipids intake in development of infant lean and adipose tissue.
Collapse
Affiliation(s)
- Majed A. Suwaydi
- School of Molecular Sciences, The University of Western Australia, Crawley, WA 6009, Australia; (M.A.S.); (C.T.L.); (A.H.W.); (S.L.P.); (J.L.M.); (M.E.W.); (D.T.G.)
- School of Applied Medical Sciences, Jazan University, Jazan 45142, Saudi Arabia
- ABREAST Network, Perth, WA 6000, Australia
- UWA Centre for Human Lactation Research and Translation, Crawley, WA 6009, Australia
| | - Ching Tat Lai
- School of Molecular Sciences, The University of Western Australia, Crawley, WA 6009, Australia; (M.A.S.); (C.T.L.); (A.H.W.); (S.L.P.); (J.L.M.); (M.E.W.); (D.T.G.)
- ABREAST Network, Perth, WA 6000, Australia
- UWA Centre for Human Lactation Research and Translation, Crawley, WA 6009, Australia
| | - Ashleigh H. Warden
- School of Molecular Sciences, The University of Western Australia, Crawley, WA 6009, Australia; (M.A.S.); (C.T.L.); (A.H.W.); (S.L.P.); (J.L.M.); (M.E.W.); (D.T.G.)
- ABREAST Network, Perth, WA 6000, Australia
- UWA Centre for Human Lactation Research and Translation, Crawley, WA 6009, Australia
| | - Sharon L. Perrella
- School of Molecular Sciences, The University of Western Australia, Crawley, WA 6009, Australia; (M.A.S.); (C.T.L.); (A.H.W.); (S.L.P.); (J.L.M.); (M.E.W.); (D.T.G.)
- ABREAST Network, Perth, WA 6000, Australia
- UWA Centre for Human Lactation Research and Translation, Crawley, WA 6009, Australia
| | - Jacki L. McEachran
- School of Molecular Sciences, The University of Western Australia, Crawley, WA 6009, Australia; (M.A.S.); (C.T.L.); (A.H.W.); (S.L.P.); (J.L.M.); (M.E.W.); (D.T.G.)
- ABREAST Network, Perth, WA 6000, Australia
- UWA Centre for Human Lactation Research and Translation, Crawley, WA 6009, Australia
| | - Mary E. Wlodek
- School of Molecular Sciences, The University of Western Australia, Crawley, WA 6009, Australia; (M.A.S.); (C.T.L.); (A.H.W.); (S.L.P.); (J.L.M.); (M.E.W.); (D.T.G.)
- Department of Obstetrics, Gynaecology and Newborn Health, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Donna T. Geddes
- School of Molecular Sciences, The University of Western Australia, Crawley, WA 6009, Australia; (M.A.S.); (C.T.L.); (A.H.W.); (S.L.P.); (J.L.M.); (M.E.W.); (D.T.G.)
- ABREAST Network, Perth, WA 6000, Australia
- UWA Centre for Human Lactation Research and Translation, Crawley, WA 6009, Australia
| | - Zoya Gridneva
- School of Molecular Sciences, The University of Western Australia, Crawley, WA 6009, Australia; (M.A.S.); (C.T.L.); (A.H.W.); (S.L.P.); (J.L.M.); (M.E.W.); (D.T.G.)
- ABREAST Network, Perth, WA 6000, Australia
- UWA Centre for Human Lactation Research and Translation, Crawley, WA 6009, Australia
| |
Collapse
|
9
|
Spatz DL, Rodríguez SÁ, Benjilany S, Finderle B, von Gartzen A, Yates A, Brumley J. Having Enough Milk to Sustain a Lactation Journey: A Call to Action. Nurs Womens Health 2024; 28:256-263. [PMID: 38823783 DOI: 10.1016/j.nwh.2024.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 02/26/2024] [Accepted: 04/18/2024] [Indexed: 06/03/2024]
Abstract
The rates of human milk feeding are suboptimal worldwide. Recommendations for healthy, term mother-infant dyads include early breastfeeding initiation, frequent skin-to-skin contact, and frequent breastfeeding. The normal physiology of lactation can be affected by prenatal factors such as diabetes, obesity, and excessive gestational weight gain. Furthermore, birth-related factors such as early-term gestation, stressful labor, unscheduled cesarean birth, and postpartum hemorrhage can additionally disrupt recommended practices such as early initiation of breastfeeding and skin-to-skin contact. Given that the first 2 to 3 days postpartum are critical to achieving timely secretory activation and establishing an adequate volume of milk, a proactive approach to care can include building awareness of risk factors and development of protocols for the effective early initiation of lactation.
Collapse
|
10
|
Huang Y, Zhang L, Ainiwan D, Alifu X, Cheng H, Qiu Y, Zhou H, Liu H, Yu Y. Breastfeeding, Gestational Diabetes Mellitus, Size at Birth and Overweight/Obesity in Early Childhood. Nutrients 2024; 16:1351. [PMID: 38732598 PMCID: PMC11085597 DOI: 10.3390/nu16091351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 04/24/2024] [Accepted: 04/28/2024] [Indexed: 05/13/2024] Open
Abstract
Background: Breastfeeding appears to reduce the risk of childhood overweight/obesity. However, it remains unclear whether this protective effect persists among high-risk populations. This study aims to investigate the association of breastfeeding with the risk of overweight/obesity in early childhood and whether this association is altered by gestational diabetes mellitus (GDM) or size at birth. Methods: Feeding practices during the first 12 months of age and weight and length at 12-36 months of age were collected. Full breastfeeding includes exclusive and predominant breastfeeding. Children with body mass index (BMI) values greater than 1 standard deviation from the mean of sex- and age-specific BMI were classified as overweight/obese. Multiple generalized estimating equations models were applied to analyze the associations of full breastfeeding duration with overweight/obesity risk. Results: Among all participants (n = 9329), infants with a longer full-breastfeeding duration had a reduced risk of overweight/obesity in early childhood compared with those breastfed for less than one month. Infants exposed to GDM and those born large for gestational age (LGA) had a higher risk of overweight/obesity in early childhood. Among infants of mothers with GDM (n = 1748), infants with full breastfeeding for greater than 6 months (aOR: 0.58; 95% CI: 0.44, 0.78) showed a decreased risk of overweight/obesity in early childhood compared with those breastfed for less than one month. Among LGA infants (n = 1279), infants with full breastfeeding for 3-5 months (aOR: 0.66; 95% CI: 0.57, 0.76) and greater than 6 months (aOR: 0.70; 95% CI: 0.56, 0.88) showed a decreased risk of overweight/obesity in early childhood. Similar results were observed among LGA infants of mothers with GDM. Conclusions: Initiating and prolonging breastfeeding would reduce the risk of overweight/obesity in early childhood, and LGA infants and infants born to mothers with GDM would experience greater benefits.
Collapse
Affiliation(s)
- Ye Huang
- Department of Public Health and Department of Anesthesiology, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310009, China; (Y.H.); (L.Z.); (D.A.); (X.A.); (H.C.); (Y.Q.); (H.Z.)
- Department of Epidemiology & Health Statistics, School of Public Health, School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Libi Zhang
- Department of Public Health and Department of Anesthesiology, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310009, China; (Y.H.); (L.Z.); (D.A.); (X.A.); (H.C.); (Y.Q.); (H.Z.)
- Department of Epidemiology & Health Statistics, School of Public Health, School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Diliyaer Ainiwan
- Department of Public Health and Department of Anesthesiology, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310009, China; (Y.H.); (L.Z.); (D.A.); (X.A.); (H.C.); (Y.Q.); (H.Z.)
- Department of Epidemiology & Health Statistics, School of Public Health, School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Xialidan Alifu
- Department of Public Health and Department of Anesthesiology, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310009, China; (Y.H.); (L.Z.); (D.A.); (X.A.); (H.C.); (Y.Q.); (H.Z.)
- Department of Epidemiology & Health Statistics, School of Public Health, School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Haoyue Cheng
- Department of Public Health and Department of Anesthesiology, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310009, China; (Y.H.); (L.Z.); (D.A.); (X.A.); (H.C.); (Y.Q.); (H.Z.)
- Department of Epidemiology & Health Statistics, School of Public Health, School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Yiwen Qiu
- Department of Public Health and Department of Anesthesiology, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310009, China; (Y.H.); (L.Z.); (D.A.); (X.A.); (H.C.); (Y.Q.); (H.Z.)
- Department of Epidemiology & Health Statistics, School of Public Health, School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Haibo Zhou
- Department of Public Health and Department of Anesthesiology, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310009, China; (Y.H.); (L.Z.); (D.A.); (X.A.); (H.C.); (Y.Q.); (H.Z.)
- Department of Epidemiology & Health Statistics, School of Public Health, School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Hui Liu
- Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China;
| | - Yunxian Yu
- Department of Public Health and Department of Anesthesiology, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310009, China; (Y.H.); (L.Z.); (D.A.); (X.A.); (H.C.); (Y.Q.); (H.Z.)
- Department of Epidemiology & Health Statistics, School of Public Health, School of Medicine, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
11
|
Lis-Kuberka J, Berghausen-Mazur M, Orczyk-Pawiłowicz M. Gestational Diabetes Mellitus and Colostral Appetite-Regulating Adipokines. Int J Mol Sci 2024; 25:3853. [PMID: 38612666 PMCID: PMC11011253 DOI: 10.3390/ijms25073853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 03/25/2024] [Accepted: 03/26/2024] [Indexed: 04/14/2024] Open
Abstract
Gestational diabetes mellitus (GDM) is a complex metabolic disorder that has short- and long-term effects on maternal and offspring health. This study aimed to assess the impact of maternal hyperglycemia severity, classified as GDM-G1 (diet treatment) and GDM-G2 (insulin treatment) on colostral appetite-regulating molecules. Colostrum samples were collected from hyperglycemic (N = 30) and normoglycemic (N = 21) mothers, and the concentrations of milk hormones were determined by immunoenzymatic assay. A difference was found for milk ghrelin, but not for molecules such as adiponectin, leptin, resistin, or IGF-I levels, in relation to maternal hyperglycemia. The colostral ghrelin in the GDM-G1 cohort (0.21 ng/mL) was significantly lower than for GDM-G2 (0.38 ng/mL) and non-GDM groups (0.36 ng/mL). However, colostral resistin was higher, but not significantly, for GDM-G1 (13.33 ng/mL) and GDM-G2 (12.81 ng/mL) cohorts than for normoglycemic mothers (7.89 ng/mL). The lack of difference in relation to hyperglycemia for milk leptin, adiponectin, leptin-adiponectin ratio, resistin, and IGF-I levels might be the outcome of effective treatment of GDM during pregnancy. The shift between ghrelin and other appetite-regulating hormones might translate into altered ability to regulate energy balance, affecting offspring's metabolic homeostasis.
Collapse
Affiliation(s)
- Jolanta Lis-Kuberka
- Division of Chemistry and Immunochemistry, Department of Biochemistry and Immunochemistry, Wroclaw Medical University, M. Skłodowskiej-Curie 48/50, 50-369 Wroclaw, Poland;
| | - Marta Berghausen-Mazur
- Department of Neonatology, J. Gromkowski Provincial Specialist Hospital, Koszarowa 5, 51-149 Wroclaw, Poland
- Faculty of Medicine, Wroclaw University of Science and Technology, Hoene-Wrońskiego 13c, 58-376 Wroclaw, Poland
| | - Magdalena Orczyk-Pawiłowicz
- Division of Chemistry and Immunochemistry, Department of Biochemistry and Immunochemistry, Wroclaw Medical University, M. Skłodowskiej-Curie 48/50, 50-369 Wroclaw, Poland;
| |
Collapse
|
12
|
Lis-Kuberka J, Pupek M, Orczyk-Pawiłowicz M. The Mother-Child Dyad Adipokine Pattern: A Review of Current Knowledge. Nutrients 2023; 15:4059. [PMID: 37764842 PMCID: PMC10535905 DOI: 10.3390/nu15184059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/11/2023] [Accepted: 09/13/2023] [Indexed: 09/29/2023] Open
Abstract
An important role in the network of interconnections between the mother and child is played by adipokines, which are adipose tissue hormones engaged in the regulation of metabolism. Alternations of maternal adipokines translate to the worsening of maternal insulin resistance as well as metabolic stress, altered placenta functions, and fetal development, which finally contribute to long-term metabolic unfavorable conditions. This paper is the first to summarize the current state of knowledge concerning the concentrations of individual adipokines in different biological fluids of maternal and cord plasma, newborn/infant plasma, milk, and the placenta, where it highlights the impact of adverse perinatal risk factors, including gestational diabetes mellitus, preeclampsia, intrauterine growth restriction, preterm delivery, and maternal obesity on the adipokine patterns in maternal-infant dyads. The importance of adipokine measurement and relationships in biological fluids during pregnancy and lactation is crucial for public health in the area of prevention of most diet-related metabolic diseases. The review highlights the huge knowledge gap in the field of hormones participating in the energy homeostasis and metabolic pathways during perinatal and postnatal periods in the mother-child dyad. An in-depth characterization is needed to confirm if the adverse outcomes of early developmental programming might be modulated via maternal lifestyle intervention.
Collapse
Affiliation(s)
- Jolanta Lis-Kuberka
- Department of Biochemistry and Immunochemistry, Division of Chemistry and Immunochemistry, Wroclaw Medical University, M. Skłodowskiej-Curie 48/50, 50-369 Wroclaw, Poland
| | | | - Magdalena Orczyk-Pawiłowicz
- Department of Biochemistry and Immunochemistry, Division of Chemistry and Immunochemistry, Wroclaw Medical University, M. Skłodowskiej-Curie 48/50, 50-369 Wroclaw, Poland
| |
Collapse
|
13
|
Rizzo SM, Alessandri G, Lugli GA, Fontana F, Tarracchini C, Mancabelli L, Viappiani A, Bianchi MG, Bussolati O, van Sinderen D, Ventura M, Turroni F. Exploring Molecular Interactions between Human Milk Hormone Insulin and Bifidobacteria. Microbiol Spectr 2023; 11:e0066523. [PMID: 37191543 PMCID: PMC10269646 DOI: 10.1128/spectrum.00665-23] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 04/27/2023] [Indexed: 05/17/2023] Open
Abstract
Multiple millennia of human evolution have shaped the chemical composition of breast milk toward an optimal human body fluid for nutrition and protection and for shaping the early gut microbiota of newborns. This biological fluid is composed of water, lipids, simple and complex carbohydrates, proteins, immunoglobulins, and hormones. Potential interactions between hormones present in mother's milk and the microbial community of the newborn are a very fascinating yet unexplored topic. In this context, insulin, in addition to being one of the most prevalent hormones in breast milk, is also involved in a metabolic disease that affects many pregnant women, i.e., gestational diabetes mellitus (GDM). Analysis of 3,620 publicly available metagenomic data sets revealed that the bifidobacterial community varies in relation to the different concentrations of this hormone in breast milk of healthy and diabetic mothers. Starting from this assumption, in this study, we explored possible molecular interactions between this hormone and bifidobacterial strains that represent bifidobacterial species commonly occurring in the infant gut using 'omics' approaches. Our findings revealed that insulin modulates the bifidobacterial community by apparently improving the persistence of the Bifidobacterium bifidum taxon in the infant gut environment compared to other typical infant-associated bifidobacterial species. IMPORTANCE Breast milk is a key factor in modulating the infant's intestinal microbiota composition. Even though the interaction between human milk sugars and bifidobacteria has been extensively studied, there are other bioactive compounds in human milk that may influence the gut microbiota, such as hormones. In this article, the molecular interaction of the human milk hormone insulin and the bifidobacterial communities colonizing the human gut in the early stages of life has been explored. This molecular cross talk was assessed using an in vitro gut microbiota model and then analyzed by various omics approaches, allowing the identification of genes associated with bacterial cell adaptation/colonization in the human intestine. Our findings provide insights into the manner by which assembly of the early gut microbiota may be regulated by host factors such as hormones carried by human milk.
Collapse
Affiliation(s)
- Sonia Mirjam Rizzo
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | - Giulia Alessandri
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | - Gabriele Andrea Lugli
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | - Federico Fontana
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
- GenProbio srl, Parma, Italy
| | - Chiara Tarracchini
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | - Leonardo Mancabelli
- Department of Medicine and Surgery, University of Parma, Parma, Italy
- Interdepartmental Research Centre “Microbiome Research Hub”, University of Parma, Italy
| | | | - Massimiliano G. Bianchi
- Department of Medicine and Surgery, University of Parma, Parma, Italy
- Interdepartmental Research Centre “Microbiome Research Hub”, University of Parma, Italy
| | - Ovidio Bussolati
- Department of Medicine and Surgery, University of Parma, Parma, Italy
- Interdepartmental Research Centre “Microbiome Research Hub”, University of Parma, Italy
| | - Douwe van Sinderen
- APC Microbiome Institute and School of Microbiology, Bioscience Institute, National University of Ireland, Cork, Ireland
| | - Marco Ventura
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
- Interdepartmental Research Centre “Microbiome Research Hub”, University of Parma, Italy
| | - Francesca Turroni
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
- Interdepartmental Research Centre “Microbiome Research Hub”, University of Parma, Italy
| |
Collapse
|
14
|
Elbeltagi R, Al-Beltagi M, Saeed NK, Bediwy AS. Cardiometabolic effects of breastfeeding on infants of diabetic mothers. World J Diabetes 2023; 14:617-631. [PMID: 37273257 PMCID: PMC10236993 DOI: 10.4239/wjd.v14.i5.617] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 03/01/2023] [Accepted: 04/07/2023] [Indexed: 05/15/2023] Open
Abstract
BACKGROUND Breast milk is the best and principal nutritional source for neonates and infants. It may protect infants against many metabolic diseases, predominantly obesity and type 2 diabetes. Diabetes mellitus (DM) is a chronic metabolic and microvascular disease that affects all the body systems and all ages from intrauterine life to late adulthood. Breastfeeding protects against infant mortality and diseases, such as necrotizing enterocolitis, diarrhoea, respiratory infections, viral and bacterial infection, eczema, allergic rhinitis, asthma, food allergies, malocclusion, dental caries, Crohn's disease, and ulcerative colitis. It also protects against obesity and insulin resistance and increases intelligence and mental development. Gestational diabetes has short and long-term impacts on infants of diabetic mothers (IDM). Breast milk composition changes in mothers with gestational diabetes. AIM To investigate the beneficial or detrimental effects of breastfeeding on the cardiometabolic health of IDM and their mothers. METHODS We performed a database search on different engines and a thorough literature review and included 121 research published in English between January 2000 and December 15, 2022, in this review. RESULTS Most of the literature agreed on the beneficial effects of breast milk for both the mother and the infant in the short and long terms. Breastfeeding protects mothers with gestational diabetes against obesity and type 2 DM. Despite some evidence of the protective effects of breastfeeding on IDM in the short and long term, the evidence is not strong enough due to the presence of many confounding factors and a lack of sufficient studies. CONCLUSION We need more comprehensive research to prove these effects. Despite many obstacles that may enface mothers with gestational diabetes to start and maintain breastfeeding, every effort should be made to encourage them to breastfeed.
Collapse
Affiliation(s)
- Reem Elbeltagi
- Department of Medicine, Irish Royal College of Surgeon, Busaiteen 15503, Bahrain
| | - Mohammed Al-Beltagi
- Department of Pediatrics, Faculty of Medicine, Tanta University, Tanta 31511, Egypt
- Department of Pediatrics, University Medical Center, King Abdulla Medical City, Arabian Gulf University, Manama 26671, Bahrain
| | - Nermin Kamal Saeed
- Medical Microbiology Section, Department of Pathology, Salmaniya Medical Complex, Ministry of Health, Kingdom of Bahrain, Manama 12, Bahrain
- Department of Microbiology, Irish Royal College of Surgeon, Bahrain, Busaiteen 15503, Bahrain
| | - Adel Salah Bediwy
- Department of Chest Diseases, Faculty of Medicine, Tanta University, Tanta 31527, Egypt
- Department of Pulmonology, University Medical Center, King Abdulla Medical City, Arabian Gulf University, Manama 26671, Bahrain
| |
Collapse
|
15
|
Bukhari I, Iqbal F, Thorne RF. Editorial: Relationship between gestational and neonatal diabetes mellitus. Front Endocrinol (Lausanne) 2022; 13:1060147. [PMID: 36313786 PMCID: PMC9616566 DOI: 10.3389/fendo.2022.1060147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Accepted: 10/04/2022] [Indexed: 11/13/2022] Open
Affiliation(s)
- Ihtisham Bukhari
- Translational Research Institute, Henan Provincial and Zhengzhou City Key Laboratory of Non-coding RNA and Cancer Metabolism, Henan International Joint Laboratory of Non-coding RNA and Metabolism in Cancer, Henan Provincial People’s Hospital, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Helicobacter pylori, Microbiota and Gastrointestinal Cancer, Marshall Medical Research Center, Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Furhan Iqbal
- Institute of Zoology, Bahauddin Zakariya University, Multan, Pakistan
- *Correspondence: Furhan Iqbal, ; Rick Francis Thorne,
| | - Rick Francis Thorne
- Translational Research Institute, Henan Provincial and Zhengzhou City Key Laboratory of Non-coding RNA and Cancer Metabolism, Henan International Joint Laboratory of Non-coding RNA and Metabolism in Cancer, Henan Provincial People’s Hospital, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
- School of Environmental and Life Sciences, University of Newcastle, Callaghan, NSW, Australia
- *Correspondence: Furhan Iqbal, ; Rick Francis Thorne,
| |
Collapse
|