1
|
Matin M, Joshi T, Wang D, Tzvetkov NT, Matin FB, Wierzbicka A, Jóźwik A, Horbańczuk JO, Atanasov AG. Effects of Ginger ( Zingiber officinale) on the Hallmarks of Aging. Biomolecules 2024; 14:940. [PMID: 39199328 PMCID: PMC11352747 DOI: 10.3390/biom14080940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/22/2024] [Accepted: 07/29/2024] [Indexed: 09/01/2024] Open
Abstract
Ginger (Zingiber officinale Roscoe) is broadly used as a traditional remedy and food ingredient, and numerous preclinical and clinical studies have demonstrated health benefits in a range of age-related disorders. Moreover, longevity-promoting effects have been demonstrated in several (preclinical) research models. With this work, we aimed to comprehensively review the reported effects of ginger and its bioactive constituents on the twelve established hallmarks of aging, with the ultimate goal of gaining a deeper understanding of the potential for future interventions in the area of longevity-extension and counteracting of aging-related diseases. The reviewed literature supports the favorable effects of ginger and some of its constituents on all twelve hallmarks of aging, with a particularly high number of animal research studies indicating counteraction of nutrient-sensing dysregulations, mitochondrial dysfunction, chronic inflammation, and dysbiosis. On this background, validation in human clinical trials is still insufficient or is entirely missing, with the exception of some studies indicating positive effects on deregulated nutrient-sensing, chronic inflammation, and dysbiosis. Thus, the existing body of literature clearly supports the potential of ginger to be further studied in clinical trials as a supplement for the promotion of both lifespan and health span.
Collapse
Affiliation(s)
- Maima Matin
- Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, Jastrzebiec, 05-552 Magdalenka, Poland; (M.M.); (A.W.); (A.J.); (J.O.H.)
| | - Tanuj Joshi
- Department of Pharmaceutical Sciences, Bhimtal, Kumaun University, Nainital 263002, India;
| | - Dongdong Wang
- Centre for Metabolism, Obesity and Diabetes Research, Department of Medicine, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4K1, Canada;
| | - Nikolay T. Tzvetkov
- Department of Biochemical Pharmacology and Drug Design, Institute of Molecular Biology “Roumen Tsanev”, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria;
| | - Farhan Bin Matin
- Department of Pharmacy, East West University, Aftabnagar, Dhaka 1212, Bangladesh;
| | - Agnieszka Wierzbicka
- Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, Jastrzebiec, 05-552 Magdalenka, Poland; (M.M.); (A.W.); (A.J.); (J.O.H.)
| | - Artur Jóźwik
- Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, Jastrzebiec, 05-552 Magdalenka, Poland; (M.M.); (A.W.); (A.J.); (J.O.H.)
| | - Jarosław Olav Horbańczuk
- Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, Jastrzebiec, 05-552 Magdalenka, Poland; (M.M.); (A.W.); (A.J.); (J.O.H.)
| | - Atanas G. Atanasov
- Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, Jastrzebiec, 05-552 Magdalenka, Poland; (M.M.); (A.W.); (A.J.); (J.O.H.)
- Laboratory of Natural Products and Medicinal Chemistry (LNPMC), Center for Global Health Research, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Thandalam, Chennai 602105, India
- Ludwig Boltzmann Institute Digital Health and Patient Safety, Medical University of Vienna, Spitalgasse 23, 1090 Vienna, Austria
| |
Collapse
|
2
|
Sunagawa Y, Tsukabe R, Irokawa Y, Funamoto M, Suzuki Y, Yamada M, Shimizu S, Katanasaka Y, Hamabe-Horiike T, Kawase Y, Naruta R, Shimizu K, Mori K, Hosomi R, Komiyama M, Hasegawa K, Morimoto T. Anserine, a Histidine-Containing Dipeptide, Suppresses Pressure Overload-Induced Systolic Dysfunction by Inhibiting Histone Acetyltransferase Activity of p300 in Mice. Int J Mol Sci 2024; 25:2344. [PMID: 38397020 PMCID: PMC10889817 DOI: 10.3390/ijms25042344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 02/10/2024] [Accepted: 02/14/2024] [Indexed: 02/25/2024] Open
Abstract
Anserine, an imidazole dipeptide, is present in the muscles of birds and fish and has various bioactivities, such as anti-inflammatory and anti-fatigue effects. However, the effect of anserine on the development of heart failure remains unknown. We cultured primary cardiomyocytes with 0.03 mM to 10 mM anserine and stimulated them with phenylephrine for 48 h. Anserine significantly suppressed the phenylephrine-induced increases in cardiomyocyte hypertrophy, ANF and BNP mRNA levels, and histone H3K9 acetylation. An in vitro histone acetyltransferase (HAT) assay showed that anserine directly suppressed p300-HAT activity with an IC50 of 1.87 mM. Subsequently, 8-week-old male C57BL/6J mice were subjected to transverse aortic constriction (TAC) and were randomly assigned to receive daily oral treatment with anserine-containing material, Marine Active® (60 or 200 mg/kg anserine) or vehicle for 8 weeks. Echocardiography revealed that anserine 200 mg/kg significantly prevented the TAC-induced increase in left ventricular posterior wall thickness and the decrease in left ventricular fractional shortening. Moreover, anserine significantly suppressed the TAC-induced acetylation of histone H3K9. These results indicate that anserine suppresses TAC-induced systolic dysfunction, at least in part, by inhibiting p300-HAT activity. Anserine may be used as a pharmacological agent for human heart failure therapy.
Collapse
Affiliation(s)
- Yoichi Sunagawa
- Division of Molecular Medicine, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka 422-8526, Japan; (Y.S.); (R.T.); (M.F.); (S.S.); (Y.K.); (T.H.-H.); (K.H.)
- Division of Translational Research, National Hospital Organization Kyoto Medical Center, Kyoto 612-8555, Japan
- Shizuoka General Hospital, Shizuoka 420-8527, Japan;
| | - Ryosuke Tsukabe
- Division of Molecular Medicine, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka 422-8526, Japan; (Y.S.); (R.T.); (M.F.); (S.S.); (Y.K.); (T.H.-H.); (K.H.)
| | - Yudai Irokawa
- Division of Molecular Medicine, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka 422-8526, Japan; (Y.S.); (R.T.); (M.F.); (S.S.); (Y.K.); (T.H.-H.); (K.H.)
| | - Masafumi Funamoto
- Division of Molecular Medicine, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka 422-8526, Japan; (Y.S.); (R.T.); (M.F.); (S.S.); (Y.K.); (T.H.-H.); (K.H.)
- Division of Translational Research, National Hospital Organization Kyoto Medical Center, Kyoto 612-8555, Japan
- Department of Pharmacology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima 770-8503, Japan
| | - Yuto Suzuki
- Division of Molecular Medicine, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka 422-8526, Japan; (Y.S.); (R.T.); (M.F.); (S.S.); (Y.K.); (T.H.-H.); (K.H.)
| | - Miho Yamada
- Division of Molecular Medicine, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka 422-8526, Japan; (Y.S.); (R.T.); (M.F.); (S.S.); (Y.K.); (T.H.-H.); (K.H.)
| | - Satoshi Shimizu
- Division of Molecular Medicine, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka 422-8526, Japan; (Y.S.); (R.T.); (M.F.); (S.S.); (Y.K.); (T.H.-H.); (K.H.)
- Division of Translational Research, National Hospital Organization Kyoto Medical Center, Kyoto 612-8555, Japan
| | - Yasufumi Katanasaka
- Division of Molecular Medicine, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka 422-8526, Japan; (Y.S.); (R.T.); (M.F.); (S.S.); (Y.K.); (T.H.-H.); (K.H.)
- Division of Translational Research, National Hospital Organization Kyoto Medical Center, Kyoto 612-8555, Japan
- Shizuoka General Hospital, Shizuoka 420-8527, Japan;
| | - Toshihide Hamabe-Horiike
- Division of Molecular Medicine, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka 422-8526, Japan; (Y.S.); (R.T.); (M.F.); (S.S.); (Y.K.); (T.H.-H.); (K.H.)
- Division of Translational Research, National Hospital Organization Kyoto Medical Center, Kyoto 612-8555, Japan
- Shizuoka General Hospital, Shizuoka 420-8527, Japan;
| | - Yuto Kawase
- Division of Molecular Medicine, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka 422-8526, Japan; (Y.S.); (R.T.); (M.F.); (S.S.); (Y.K.); (T.H.-H.); (K.H.)
| | - Ryuya Naruta
- Division of Molecular Medicine, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka 422-8526, Japan; (Y.S.); (R.T.); (M.F.); (S.S.); (Y.K.); (T.H.-H.); (K.H.)
| | - Kana Shimizu
- Division of Molecular Medicine, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka 422-8526, Japan; (Y.S.); (R.T.); (M.F.); (S.S.); (Y.K.); (T.H.-H.); (K.H.)
- Division of Translational Research, National Hospital Organization Kyoto Medical Center, Kyoto 612-8555, Japan
| | - Kiyoshi Mori
- Shizuoka General Hospital, Shizuoka 420-8527, Japan;
- Graduate School of Public Health, Shizuoka Graduate University of Public Health, Shizuoka 420-0881, Japan
- Department of Molecular and Clinical Pharmacology, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka 422-8526, Japan
| | - Ryota Hosomi
- Laboratory of Food and Nutritional Sciences, Faculty of Chemistry, Materials and Bioengineering, Kansai University, Osaka 564-8680, Japan;
| | - Maki Komiyama
- Division of Translational Research, National Hospital Organization Kyoto Medical Center, Kyoto 612-8555, Japan
| | - Koji Hasegawa
- Division of Molecular Medicine, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka 422-8526, Japan; (Y.S.); (R.T.); (M.F.); (S.S.); (Y.K.); (T.H.-H.); (K.H.)
- Division of Translational Research, National Hospital Organization Kyoto Medical Center, Kyoto 612-8555, Japan
| | - Tatsuya Morimoto
- Division of Molecular Medicine, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka 422-8526, Japan; (Y.S.); (R.T.); (M.F.); (S.S.); (Y.K.); (T.H.-H.); (K.H.)
- Division of Translational Research, National Hospital Organization Kyoto Medical Center, Kyoto 612-8555, Japan
- Shizuoka General Hospital, Shizuoka 420-8527, Japan;
| |
Collapse
|
3
|
Yang AY, Kim K, Kwon HH, Leem J, Song JE. 6-Shogaol Ameliorates Liver Inflammation and Fibrosis in Mice on a Methionine- and Choline-Deficient Diet by Inhibiting Oxidative Stress, Cell Death, and Endoplasmic Reticulum Stress. Molecules 2024; 29:419. [PMID: 38257332 PMCID: PMC10818499 DOI: 10.3390/molecules29020419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/02/2024] [Accepted: 01/12/2024] [Indexed: 01/24/2024] Open
Abstract
Non-alcoholic steatohepatitis (NASH) is becoming an increasingly serious global health threat, distinguished by hepatic lipid accumulation, inflammation, and fibrosis. There is a lack of approved pharmaceutical interventions for this disease, highlighting the urgent need for effective treatment. This study explores the hepatoprotective potential of 6-shogaol, a natural compound derived from ginger, in a methionine- and choline-deficient (MCD) dietary mouse model of NASH. Male C57BL/6J mice were subjected to the MCD diet for 4 weeks to induce NASH, with concurrent intraperitoneal administration of 6-shogaol (20 mg/kg) three times a week. While 6-shogaol did not impact body weight, liver weight, or hepatic lipid accumulation, it effectively mitigated liver injury, inflammation, and fibrosis in MCD diet-fed mice. Mechanistically, 6-shogaol inhibited lipid and DNA oxidation, restored hepatic glutathione levels, and regulated the expression of pro-oxidant and antioxidant enzymes. Furthermore, 6-shogaol inhibited apoptosis and necroptosis, as indicated by a decrease in TUNEL-stained cells and downregulation of apoptosis- and necroptosis-associated proteins. Additionally, 6-shogaol alleviated endoplasmic reticulum (ER) stress, as demonstrated by decreased expression of molecules associated with unfolded protein response pathways. These findings underscore the potential of 6-shogaol as a therapeutic intervention for NASH by targeting pathways related to oxidative stress, cell death, and ER stress.
Collapse
Affiliation(s)
- Ah Young Yang
- Department of Immunology, School of Medicine, Daegu Catholic University, Daegu 42472, Republic of Korea; (A.Y.Y.); (K.K.)
| | - Kiryeong Kim
- Department of Immunology, School of Medicine, Daegu Catholic University, Daegu 42472, Republic of Korea; (A.Y.Y.); (K.K.)
| | - Hyun Hee Kwon
- Department of Internal Medicine, School of Medicine, Daegu Catholic University, Daegu 42472, Republic of Korea;
| | - Jaechan Leem
- Department of Immunology, School of Medicine, Daegu Catholic University, Daegu 42472, Republic of Korea; (A.Y.Y.); (K.K.)
| | - Jeong Eun Song
- Department of Internal Medicine, School of Medicine, Daegu Catholic University, Daegu 42472, Republic of Korea;
| |
Collapse
|