1
|
Neyrinck AM, Ahmed H, Leyrolle Q, Leclercq S, Amadieu C, Meuronen T, Layé S, Cani PD, Kärkkäinen O, Bindels LB, Hanhineva K, Delzenne NM. Fecal transplantation from humans with obesity to mice drives a selective microbial signature without impacting behavioral and metabolic health. Sci Rep 2025; 15:15455. [PMID: 40316655 PMCID: PMC12048625 DOI: 10.1038/s41598-025-99047-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 04/16/2025] [Indexed: 05/04/2025] Open
Abstract
Obesity is associated with alterations in the gut microbiome that may contribute to metabolic and mental health disturbances. Fecal microbiota transplantation (FMT) from humans to mice is a model proposed to study human microbiota-associated disorders. In this study, we investigated whether gut microbiota from human donors with obesity could affect behavior and metabolomic profiles of mice. Stools from donors with obesity and from lean donors were inoculated to antibiotic-pretreated mice fed a standard low-fat diet throughout the experiment. Obese-recipient mice exhibited a lower bacterial alpha-diversity and limited changes in specific taxa (e.g., an increase in Eubacterium) but were similar to lean-recipient mice in terms of dietary intake, body weight, fat mass, anxiety/depression-like behavior and glucose homeostasis. Non-targeted LC-MS metabolomic analysis revealed no change in the portal and cava serum samples. However, 1-methylnicotinamide, indole-3-acetic acid (I3A) and methyllysine were increased in the cecal content of obese-recipient compared to lean-recipient mice. Microbial metabolites derived from amino acids were positively correlated with Eubacterium. These results indicate that FMT from donors with obesity to mice fed chow diet (low in lipids) leads to minor but persistent change in intestinal microbial-derived metabolites, without recapitulating the metabolic and behavioral alterations of obesity.
Collapse
Affiliation(s)
- Audrey M Neyrinck
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute (LDRI), UCLouvain, Université catholique de Louvain, Brussels, Belgium
| | - Hany Ahmed
- Food Sciences Unit, Department of Life Technologies, University of Turku, Turku, Finland
| | - Quentin Leyrolle
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute (LDRI), UCLouvain, Université catholique de Louvain, Brussels, Belgium
- INRAE, Bordeaux INP, NutriNeurO, UMR 1286, Université de Bordeaux, 33000, Bordeaux, France
| | - Sophie Leclercq
- Laboratory of Nutritional Psychiatry, Institute of Neuroscience, UCLouvain, Université catholique de Louvain, Brussels, Belgium
| | - Camille Amadieu
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute (LDRI), UCLouvain, Université catholique de Louvain, Brussels, Belgium
- INRAE, Bordeaux INP, NutriNeurO, UMR 1286, Université de Bordeaux, 33000, Bordeaux, France
| | - Topi Meuronen
- Food Sciences Unit, Department of Life Technologies, University of Turku, Turku, Finland
| | - Sophie Layé
- INRAE, Bordeaux INP, NutriNeurO, UMR 1286, Université de Bordeaux, 33000, Bordeaux, France
| | - Patrice D Cani
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute (LDRI), UCLouvain, Université catholique de Louvain, Brussels, Belgium
- WELBIO Department, WEL Research Institute, Wavre, Belgium
- Institute of Experimental and Clinical Research (IREC), UCLouvain, Université catholique de Louvain, Brussels, Belgium
| | - Olli Kärkkäinen
- School of Pharmacy, University of Eastern Finland, Kuopio, Finland
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland
| | - Laure B Bindels
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute (LDRI), UCLouvain, Université catholique de Louvain, Brussels, Belgium
- WELBIO Department, WEL Research Institute, Wavre, Belgium
| | - Kati Hanhineva
- Food Sciences Unit, Department of Life Technologies, University of Turku, Turku, Finland
| | - Nathalie M Delzenne
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute (LDRI), UCLouvain, Université catholique de Louvain, Brussels, Belgium.
| |
Collapse
|
2
|
Mohammadzadeh N, Razavi S, Shahriari M, Ebrahimipour G. Impact of bariatric surgery on gut microbiota in obese patients: A systematic review. Indian J Gastroenterol 2025:10.1007/s12664-025-01763-x. [PMID: 40220249 DOI: 10.1007/s12664-025-01763-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Accepted: 02/25/2025] [Indexed: 04/14/2025]
Abstract
BACKGROUND Obesity is a multi-factorial disease linked to various metabolic disorders, including insulin resistance, type-2 diabetes (T2D) and cardiovascular diseases. Traditional treatments often show limited long-term success, while bariatric surgery has emerged as the most effective intervention for sustained weight loss and comorbidity improvement. Alterations in gut microbiota may significantly contribute to these metabolic improvements. OBJECTIVE This systematic review was aimed at evaluating changes in gut microbiota composition before and after bariatric surgery and their association with clinical outcomes, including weight loss, insulin sensitivity and lipid metabolism. METHODS Following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines, a comprehensive search of PubMed, Scopus, Web of Science and clinicaltrials.gov databases was conducted for studies published between 2004 and 2024. Keywords included "bariatric surgery," "gut microbiota" and "obesity." Inclusion criteria focused on human studies with pre and post-surgical microbiota analysis. Non-human studies, pediatric populations and studies without microbiota assessment were excluded. Data extraction covered microbiota profiles, metabolic outcomes and clinical markers. RESULTS Total 27 articles and 28 clinical trials met the inclusion criteria. Pre-surgery, obese patients exhibited dysbiosis characterized by reduced microbial diversity and imbalances in key bacterial phyla. Post-surgery, especially after Roux-en-Y gastric bypass (RYGB) and sleeve gastrectomy (SG), patients showed increased microbial diversity, reduced Firmicutes and elevated beneficial bacteria such as Akkermansia muciniphila and short-chain fatty acid (SCFA) producing bacteria. These microbiota changes were correlated with significant improvements in weight loss, insulin sensitivity and lipid profiles. However, some studies reported inconsistent or modest microbiota changes. CONCLUSION Bariatric surgery leads to significant gut microbiota alterations that are closely linked to metabolic improvements, including enhanced glucose control and lipid metabolism. However, the long-term sustainability of these microbial changes remains unclear. Longitudinal studies are essential to determine whether these alterations persist over time and how they continuously impact metabolic health. Further research should explore targeted microbiota interventions to maintain beneficial microbial profiles post-surgery.
Collapse
Affiliation(s)
- Nima Mohammadzadeh
- Department of Microbiology and Microbial Biotechnology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Shabnam Razavi
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Microbial Biotechnology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Mahla Shahriari
- Bacteriology Department, Faculty of Medicine, Tarbiat Modares University, Tehran, Iran
| | - Gholamhossein Ebrahimipour
- Department of Microbiology and Microbial Biotechnology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran.
| |
Collapse
|
3
|
Iqbal M, Yu Q, Tang J, Xiang J. Unraveling the gut microbiota's role in obesity: key metabolites, microbial species, and therapeutic insights. J Bacteriol 2025:e0047924. [PMID: 40183584 DOI: 10.1128/jb.00479-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2025] Open
Abstract
Obesity, characterized by excessive fat accumulation, stems from an imbalance between energy intake and expenditure, with the gut microbiota playing a crucial role. This review highlights how gut microbiota influences metabolic pathways, inflammation, and adipose tissue regulation in obesity. Specific bacteria and metabolites, such as lipopolysaccharides (LPS) and short-chain fatty acids (SCFAs), modulate gut permeability, inflammation, and energy harvest, impacting obesity development. Certain gut bacteria, including Clostridium XIVb, Dorea spp., Enterobacter cloacae, and Collinsella aerofaciens, promote obesity by increasing energy harvest, gut permeability, and inflammatory response through LPS translocation into the bloodstream. Conversely, beneficial bacteria like Akkermansia muciniphila, Lactobacillus spp., and Bifidobacterium spp. enhance gut barrier integrity, regulate SCFA production, and modulate fasting-induced adipose factor, which collectively support metabolic health by reducing fat storage and inflammation. Metabolites such as SCFAs (acetate, propionate, and butyrate) interact with G-protein coupled receptors to regulate lipid metabolism and promote the browning of white adipose tissue (WAT), thus enhancing thermogenesis and energy expenditure. However, LPS contributes to insulin resistance and fat accumulation, highlighting the dual roles of these microbial metabolites in both supporting and disrupting metabolic function. Therapeutic interventions targeting gut microbiota, such as promoting WAT browning and activating brown adipose tissue (BAT), hold promise for obesity management. However, personalized approaches are necessary due to individual microbiome variability. Further research is essential to translate these insights into microbiota-based clinical therapies.
Collapse
Affiliation(s)
- Majid Iqbal
- Hunan Key Laboratory of Early Diagnosis and Precise Treatment of Lung Cancer, The Second Xiangya Hospital, Changsha, Hunan, China
- Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, Hunan, China
- NHC Key Laboratory of Carcinogenesis and the Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Qian Yu
- Hunan Key Laboratory of Early Diagnosis and Precise Treatment of Lung Cancer, The Second Xiangya Hospital, Changsha, Hunan, China
- Department of Thoracic Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jingqun Tang
- Hunan Key Laboratory of Early Diagnosis and Precise Treatment of Lung Cancer, The Second Xiangya Hospital, Changsha, Hunan, China
- Department of Thoracic Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Juanjuan Xiang
- Hunan Key Laboratory of Early Diagnosis and Precise Treatment of Lung Cancer, The Second Xiangya Hospital, Changsha, Hunan, China
- Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, Hunan, China
- NHC Key Laboratory of Carcinogenesis and the Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
4
|
Li P, Zhang Y, Lang H, Hou P, Yao Y, Zhang R, Wang X, Zhang Q, Mi M, Yi L. Dihydromyricetin Promotes Glucagon-Like Peptide-1 Secretion and Improves Insulin Resistance by Modulation of the Gut Microbiota-CDCA Pathway. Mol Nutr Food Res 2025; 69:e202400491. [PMID: 40078029 PMCID: PMC12020986 DOI: 10.1002/mnfr.202400491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 12/26/2024] [Accepted: 01/23/2025] [Indexed: 03/14/2025]
Abstract
Insulin resistance is a common metabolic disease, and its pathogenesis is still unclear. The decrease of glucagon-like peptide-1 (GLP-1) level mediated by the alteration of gut microbiota may be the pathogenesis. The study was to investigate the regulatory effect of dihydromyricetin (DHM) on GLP-1 level and insulin resistance induced by high-fat diet (HFD), and to further explore its possible molecular mechanism. Mice were fed an HFD to establish the model of insulin resistance to determine whether DHM had a protective effect. DHM could improve insulin resistance. DHM increased serum GLP-1 by improving intestinal GLP-1 secretion and inhibiting GLP-1 decomposition, associated with the alteration of intestinal intraepithelial lymphocytes (IELs) proportions and decreased expression of CD26 in IELs and TCRαβ+ CD8αβ+ IELs in HFD-induced mice. DHM could ameliorate GLP-1 level and insulin resistance by modulation of gut microbiota and the metabolites, particularly the regulation of chenodeoxycholic acid (CDCA) content, followed by the inhibition of farnesoid X receptor (FXR) expression in intestinal L cells and increased glucagon gene (Gcg) mRNA expression and GLP-1 secretion. This research demonstrates the role of "gut microbiota-CDCA" pathway in the improvement of intestinal GLP-1 levels in HFD-induced mice by DHM administration, providing a new target for the prevention of insulin resistance.
Collapse
Affiliation(s)
- Pengfei Li
- Research Center for Nutrition and Food Safety, Chongqing Key Laboratory of Nutrition and Health, Chongqing Medical Nutrition Research CenterInstitute of Military Preventive Medicine, Third Military Medical UniversityChongqingP.R. China
| | - Yong Zhang
- Research Center for Nutrition and Food Safety, Chongqing Key Laboratory of Nutrition and Health, Chongqing Medical Nutrition Research CenterInstitute of Military Preventive Medicine, Third Military Medical UniversityChongqingP.R. China
| | - Hedong Lang
- Research Center for Nutrition and Food Safety, Chongqing Key Laboratory of Nutrition and Health, Chongqing Medical Nutrition Research CenterInstitute of Military Preventive Medicine, Third Military Medical UniversityChongqingP.R. China
| | - Pengfei Hou
- Research Center for Nutrition and Food Safety, Chongqing Key Laboratory of Nutrition and Health, Chongqing Medical Nutrition Research CenterInstitute of Military Preventive Medicine, Third Military Medical UniversityChongqingP.R. China
| | - Yu Yao
- Research Center for Nutrition and Food Safety, Chongqing Key Laboratory of Nutrition and Health, Chongqing Medical Nutrition Research CenterInstitute of Military Preventive Medicine, Third Military Medical UniversityChongqingP.R. China
| | - Ruiliang Zhang
- Research Center for Nutrition and Food Safety, Chongqing Key Laboratory of Nutrition and Health, Chongqing Medical Nutrition Research CenterInstitute of Military Preventive Medicine, Third Military Medical UniversityChongqingP.R. China
| | - Xiaolan Wang
- Research Center for Nutrition and Food Safety, Chongqing Key Laboratory of Nutrition and Health, Chongqing Medical Nutrition Research CenterInstitute of Military Preventive Medicine, Third Military Medical UniversityChongqingP.R. China
| | - Qianyong Zhang
- Research Center for Nutrition and Food Safety, Chongqing Key Laboratory of Nutrition and Health, Chongqing Medical Nutrition Research CenterInstitute of Military Preventive Medicine, Third Military Medical UniversityChongqingP.R. China
| | - Mantian Mi
- Research Center for Nutrition and Food Safety, Chongqing Key Laboratory of Nutrition and Health, Chongqing Medical Nutrition Research CenterInstitute of Military Preventive Medicine, Third Military Medical UniversityChongqingP.R. China
| | - Long Yi
- Research Center for Nutrition and Food Safety, Chongqing Key Laboratory of Nutrition and Health, Chongqing Medical Nutrition Research CenterInstitute of Military Preventive Medicine, Third Military Medical UniversityChongqingP.R. China
| |
Collapse
|
5
|
Tárraga Marcos PJ, López-González ÁA, Martínez-Almoyna Rifá E, Paublini Oliveira H, Martorell Sánchez C, Tárraga López PJ, Ramírez-Manent JI. Body Fat and Visceral Fat Values in Spanish Healthcare Workers: Associated Variables. Nutrients 2025; 17:649. [PMID: 40004977 PMCID: PMC11858298 DOI: 10.3390/nu17040649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 02/06/2025] [Accepted: 02/09/2025] [Indexed: 02/27/2025] Open
Abstract
BACKGROUND/OBJECTIVES Excessive body adiposity is a significant public health challenge on a global scale. This study aimed to investigate the association between various sociodemographic factors and healthy lifestyle habits and the presence or absence of elevated body adiposity levels. METHODOLOGY Two studies were conducted, a retrospective longitudinal study and a cross-sectional descriptive study. The analysis included 44,939 healthcare workers, categorised into four professional groups, to explore the relationship between age, sex, smoking, physical activity, and adherence to the Mediterranean diet and body adiposity, assessed as elevated body fat (BF) and visceral fat (VF) levels. Descriptive statistics encompassed categorical and quantitative variables, analysed using frequencies, Student's t-tests, chi-square tests, and multinomial logistic regression models. Associations, concordances, and correlations were further examined using logistic regression and Cohen's and Pearson's kappa coefficients. RESULTS Age, sex, and physical activity were the factors most strongly associated with elevated BF and VF levels. Odds ratios (ORs) indicated the following significant associations: individuals aged 60 years and older exhibited ORs of 6.71 (95% CI: 5.68-7.74) for BF and 12.18 (95% CI: 10.01-14.26) for VF; male sex was associated with ORs of 2.21 (95% CI: 2.06-2.36) for BF and 12.51 (95% CI: 11.29-13.74) for VF. Sedentary behaviour was linked to ORs of 3.69 (95% CI: 3.41-3.97) for BF and 4.20 (95% CI: 3.78-4.63) for VF. Among healthcare professionals, nursing assistants and orderlies demonstrated the highest levels of adipose tissue accumulation. CONCLUSIONS Elevated BF and VF levels among healthcare personnel are significantly associated by lifestyle factors, sex, and age, with the most pronounced risk observed in nursing assistants and orderlies. Further research focusing on the causal relationships between lifestyle behaviours and adiposity in this population will provide valuable insights and support the design of targeted preventive strategies to mitigate its prevalence.
Collapse
Affiliation(s)
| | - Ángel Arturo López-González
- ADEMA-Health Group of the University Institute for Research into Health Sciences (IUNICS) of the Balearic Islands, 07120 Palma de Mallorca, Spain; (E.M.-A.R.); (H.P.O.); (C.M.S.); (J.I.R.-M.)
- Faculty of Odontology, University School ADEMA-UIB, 07009 Palma de Mallorca, Spain
- Health Service of the Balearic Islands, 07003 Palma de Mallorca, Spain
| | - Emilio Martínez-Almoyna Rifá
- ADEMA-Health Group of the University Institute for Research into Health Sciences (IUNICS) of the Balearic Islands, 07120 Palma de Mallorca, Spain; (E.M.-A.R.); (H.P.O.); (C.M.S.); (J.I.R.-M.)
- Faculty of Odontology, University School ADEMA-UIB, 07009 Palma de Mallorca, Spain
| | - Hernán Paublini Oliveira
- ADEMA-Health Group of the University Institute for Research into Health Sciences (IUNICS) of the Balearic Islands, 07120 Palma de Mallorca, Spain; (E.M.-A.R.); (H.P.O.); (C.M.S.); (J.I.R.-M.)
- Faculty of Odontology, University School ADEMA-UIB, 07009 Palma de Mallorca, Spain
| | - Cristina Martorell Sánchez
- ADEMA-Health Group of the University Institute for Research into Health Sciences (IUNICS) of the Balearic Islands, 07120 Palma de Mallorca, Spain; (E.M.-A.R.); (H.P.O.); (C.M.S.); (J.I.R.-M.)
- Faculty of Odontology, University School ADEMA-UIB, 07009 Palma de Mallorca, Spain
| | | | - José Ignacio Ramírez-Manent
- ADEMA-Health Group of the University Institute for Research into Health Sciences (IUNICS) of the Balearic Islands, 07120 Palma de Mallorca, Spain; (E.M.-A.R.); (H.P.O.); (C.M.S.); (J.I.R.-M.)
- Health Service of the Balearic Islands, 07003 Palma de Mallorca, Spain
- Faculty of Medicine, Balearic Islands University, 07122 Palma de Mallorca, Spain
| |
Collapse
|
6
|
Huang L, Liu M, Shen L, Chen D, Wu T, Gao Y. Polysaccharides from Yupingfeng granules ameliorated cyclophosphamide-induced immune injury by protecting intestinal barrier. Int Immunopharmacol 2025; 146:113866. [PMID: 39709910 DOI: 10.1016/j.intimp.2024.113866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 11/29/2024] [Accepted: 12/11/2024] [Indexed: 12/24/2024]
Abstract
Immune injury is the main side effect caused by cyclophosphamide and the disruption of the intestinal barrier may be an important cause. Yupingfeng granules have been reported to have immunomodulatory effects and polysaccharides are important components of them. This study aimed to investigate the ameliorative effect of polysaccharides from Yupingfeng granules (YPFP) on cyclophosphamide induced immune injury and reveal their potential mechanisms based on its protective effect on the intestine. YPFP were isolated and preliminarily characterized. Pharmacodynamic evaluation revealed that YPFP treatment could effectively mitigate lesions of immune organs, ameliorate white blood cells and downregulate IL-10 level. Further, the protective effect of intestinal barrier on the basis of intestinal tight junctions, MUC-2, microflora, endogenous metabolites, pathways and immune cells was discussed to outline mechanisms. The results showed that YPFP repaired the integrity of intestinal epithelium, enhanced the abundance of Muribaculaceae_unclassified, Bacteroide and Muribaculum, downgraded the abundance of Lachnospiraceae_NK4A136_group, improved the excretion of lipids and bile acids especially 3-oxo-LCA, increased the content of SCFAs in feces and inhibited the expression of key proteins of PI3K-AKT and MAPK-JUN pathways. More importantly, Th17 and Treg balance was remodeled after YPFP administration, which might be related to certain differential metabolites and pathways enriched by metabolomics. This study provides a rich understanding of YPFP and lays a foundation for further development of Yupingfeng granules. It was shown for the first time that the immunomodulatory effect of YPFP might be involved in multiple mechanisms of intestinal homeostasis. YPFP could be regarded as an immunomodulator to alleviate immune damage caused by cyclophosphamide.
Collapse
Affiliation(s)
- Leyi Huang
- Department of Natural Medicine, School of Pharmacy, Fudan University, Shanghai 201201, China; National Key Laboratory of Lead Druggability Research, Shanghai Institute of Pharmaceutical Industry, China State Institute of Pharmaceutical Industry, Shanghai 201203, China
| | - Mo Liu
- National Key Laboratory of Lead Druggability Research, Shanghai Institute of Pharmaceutical Industry, China State Institute of Pharmaceutical Industry, Shanghai 201203, China
| | - Longhai Shen
- National Key Laboratory of Lead Druggability Research, Shanghai Institute of Pharmaceutical Industry, China State Institute of Pharmaceutical Industry, Shanghai 201203, China
| | - Daofeng Chen
- Department of Natural Medicine, School of Pharmacy, Fudan University, Shanghai 201201, China.
| | - Tong Wu
- National Key Laboratory of Lead Druggability Research, Shanghai Institute of Pharmaceutical Industry, China State Institute of Pharmaceutical Industry, Shanghai 201203, China.
| | - Yongjian Gao
- Sinopharm Group Guangdong Medi-World Pharmaceutical Co., Ltd., Guangzhou, China
| |
Collapse
|
7
|
Qian Y, Fang X, Chen Y, Ding M, Gong M. Gut flora influences the hypothalamic-gonadal axis to regulate the pathogenesis of obesity-associated precocious puberty. Sci Rep 2024; 14:28844. [PMID: 39572735 PMCID: PMC11582813 DOI: 10.1038/s41598-024-80140-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Accepted: 11/15/2024] [Indexed: 11/24/2024] Open
Abstract
The prevalence of obesity-associated precocious puberty is gradually increasing, but the relationship between gut flora and obesity-associated precocious puberty remains unclear.We analysed the gut flora characteristics of a clinical sample of 30 girls aged 5-8 years using 16s rRNA sequencing. An obesity rat model and a rat model of gut flora transplantation were also constructed. Body weight, body length, abdominal girth, food intake, vulva opening time, and gonadal index were monitored. The secretion levels of estradiol (E2), total cholesterol (TC), follicle-stimulating hormone (FSH), luteinizing hormone (LH), and thyroglobulin (Tg) were analyzed by ELISA. In addition, ovarian and uterine development was observed by HE staining. The mRNA and protein levels of kisspeptin-1 (Kiss-1) and gonadotropin-releasing.We found that the relative abundance of Dialister, Bacteroides, Bifidobacterium, Collinsella, and Romboutsia may be associated with obesity-associated precocious puberty. Obesity promotes gonadal development, and the gut flora of patients with obesity and obesity-associated precocious puberty regulated the gene and protein expression of Kiss-1 and GnRH, promoting precocious puberty and hypothalamic-gonadal axis hormone secretion in rats. In contrast, probiotic intervention slowed gonadal development, reduced hormone secretion, and attenuated hypothalamic-gonadal axis activity. Gut flora promoted obesity-associated precocious puberty by influencing the hypothalamic-gonadal axis, and probiotics have a therapeutic and preventive role in obesity-associated precocious puberty, which may be associated with the Kiss-1/GnRH pathway. These findings may provide some new strategies for clinical treatment and prevention of obesity-associated precocious puberty in girls.
Collapse
Affiliation(s)
- Ying Qian
- Department of Pediatrics, Jinhua People's Hospital, Jinhua, Zhejiang, China
| | - Xiaodan Fang
- Department of Pediatrics, Jinhua People's Hospital, Jinhua, Zhejiang, China
| | - Yan Chen
- Department of Pediatrics, Jinhua People's Hospital, Jinhua, Zhejiang, China
| | - Mingxing Ding
- Medical Molecular Biology Laboratory, School of Medicine, Jinhua Polytechnic, Jinhua, Zhejiang, China
| | - Min Gong
- Department of pediatrics, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, 324000, Zhejiang, China.
| |
Collapse
|
8
|
Qu W, Xu Y, Yang J, Shi H, Wang J, Yu X, Chen J, Wang B, Zhuoga D, Luo M, Liu R. Berberine alters the gut microbiota metabolism and impairs spermatogenesis. Acta Biochim Biophys Sin (Shanghai) 2024; 57:569-581. [PMID: 39420836 PMCID: PMC12040761 DOI: 10.3724/abbs.2024174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 07/21/2024] [Indexed: 10/19/2024] Open
Abstract
Berberine (BBR) is used to treat diarrhea clinically. However, its reproductive toxicity is unclear. This study aims to investigate the impact of BBR on the male reproductive system. Intragastric BBR administration for 14 consecutive days results in a significant decrease in the serum testosterone concentration, epididymal sperm concentration, mating rate and fecundity of male mice. Testicular treatment with testosterone propionate (TP) partially reverses the damage caused by BBR to the male reproductive system. Mechanistically, the decrease in Muribaculaceae abundance in the gut microbiota of mice is the principal cause of the BBR-induced decrease in the sperm concentration. Both fecal microbiota transplantation (FMT) and polyethylene glycol (PEG) treatment demonstrate that Muribaculaceae is necessary for spermatogenesis. The intragastric administration of Muribaculaceae intestinale to BBR-treated mice restores the sperm concentration and testosterone levels. Metabolomic analysis reveals that BBR affects arginine and proline metabolism, of which ornithine level is downregulated. Combined analysis via 16S rRNA metagenomics sequencing and metabolomics shows that Muribaculaceae regulates ornithine level. The transcriptomic results of the testes indicate that the expressions of genes related to the low-density lipoprotein receptor (LDLR)-mediated testosterone synthesis pathway decrease after BBR administration. The transcriptional activity of the Ldlr gene in TM3 cells is increased with increased ornithine supplementation in the culture media, leading to increased testosterone synthesis. Overall, this study reveals an association between a BBR-induced decrease in Muribaculaceae abundance and defective spermatogenesis, providing a prospective therapeutic approach for addressing infertility-related decreases in serum testosterone triggered by changes in the gut microbiota composition.
Collapse
Affiliation(s)
- Wei Qu
- Hubei Provincial Key Laboratory of Developmentally Originated DiseaseTaiKang Medical School (School of Basic Medical Sciences)Wuhan UniversityWuhan430071China
| | - Yumin Xu
- Hubei Provincial Key Laboratory of Developmentally Originated DiseaseTaiKang Medical School (School of Basic Medical Sciences)Wuhan UniversityWuhan430071China
| | - Jing Yang
- Hubei Provincial Key Laboratory of Developmentally Originated DiseaseTaiKang Medical School (School of Basic Medical Sciences)Wuhan UniversityWuhan430071China
| | - Hanqing Shi
- Hubei Provincial Key Laboratory of Developmentally Originated DiseaseTaiKang Medical School (School of Basic Medical Sciences)Wuhan UniversityWuhan430071China
| | - Junli Wang
- Reproductive Medicine Centerthe Affiliated Hospital of Youjiang Medical University for NationalitiesBaise53300China
| | - Xinnai Yu
- Hubei Provincial Key Laboratory of Developmentally Originated DiseaseTaiKang Medical School (School of Basic Medical Sciences)Wuhan UniversityWuhan430071China
| | - Jiemin Chen
- Hubei Provincial Key Laboratory of Developmentally Originated DiseaseTaiKang Medical School (School of Basic Medical Sciences)Wuhan UniversityWuhan430071China
| | - Binyi Wang
- Hubei Provincial Key Laboratory of Developmentally Originated DiseaseTaiKang Medical School (School of Basic Medical Sciences)Wuhan UniversityWuhan430071China
| | - Deqing Zhuoga
- Institute of Livestock ResearchTibet Academy of Agriculture and Animal Husbandry ScienceLhasa850000China
| | - Mengcheng Luo
- Hubei Provincial Key Laboratory of Developmentally Originated DiseaseTaiKang Medical School (School of Basic Medical Sciences)Wuhan UniversityWuhan430071China
| | - Rong Liu
- Hubei Provincial Key Laboratory of Developmentally Originated DiseaseTaiKang Medical School (School of Basic Medical Sciences)Wuhan UniversityWuhan430071China
| |
Collapse
|
9
|
Marina Arroyo M, Ramírez Gallegos I, López-González ÁA, Vicente-Herrero MT, Vallejos D, Sastre-Alzamora T, Ramírez Manent JI. Usefulness of the ECORE-BF Scale to Determine Atherogenic Risk in 386,924 Spanish Workers. Nutrients 2024; 16:2434. [PMID: 39125315 PMCID: PMC11314428 DOI: 10.3390/nu16152434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 07/19/2024] [Accepted: 07/25/2024] [Indexed: 08/12/2024] Open
Abstract
BACKGROUND Cardiovascular diseases are the leading cause of death worldwide. Obesity and atherosclerosis are considered risk factors for this pathology. There are multiple methods to evaluate obesity, in the same way as there are different formulas to determine atherogenic risk. Since both pathologies are closely related, the objective of our work was to evaluate whether the ECORE-BF scale is capable of predicting atherogenic risk. METHODS Observational, descriptive, and cross-sectional study in which 386,924 workers from several autonomous communities in Spain participated. The association between the ECORE-BF scale and five atherogenic risk indices was evaluated. The relationship between variables was assessed using the chi-square test and Student's t test in independent samples. Multivariate analysis was performed with the multinomial logistic regression test, calculating the odds ratio and 95% confidence intervals, with the Hosmer-Lemeshow goodness-of-fit test. ROC curves established the cut-off points for moderate and high vascular age and determined the Youden index. RESULTS The mean values of the ECORE-BF scale were higher in individuals with atherogenic dyslipidemia and the lipid triad, as well as in those with elevated values of the three atherogenic indices studied, with p <0.001 in all cases. As atherogenic risk increased across the five evaluated scales, the prevalence of obesity also significantly increased, with p <0.001 in all cases. In the ROC curve analysis, the AUCs for atherogenic dyslipidemia and the lipid triad were above 0.75, indicating a good association between these scales and the ECORE-BF. Although the Youden indices were not exceedingly high, they were around 0.5. CONCLUSIONS There is a good association between atherogenic risk scales, atherogenic dyslipidemia, and lipid triad, and the ECORE-BF scale. The ECORE-BF scale can be a useful and quick tool to evaluate atherogenic risk in primary care and occupational medicine consultations without the need for blood tests.
Collapse
Affiliation(s)
- Marta Marina Arroyo
- Research ADEMA SALUD Group, University Institute for Research in Health Sciences (IUNICS), 07010 Palma, Balearic Islands, Spain; (M.M.A.); (I.R.G.); (M.T.V.-H.); (D.V.); (T.S.-A.); (J.I.R.M.)
| | - Ignacio Ramírez Gallegos
- Research ADEMA SALUD Group, University Institute for Research in Health Sciences (IUNICS), 07010 Palma, Balearic Islands, Spain; (M.M.A.); (I.R.G.); (M.T.V.-H.); (D.V.); (T.S.-A.); (J.I.R.M.)
| | - Ángel Arturo López-González
- Research ADEMA SALUD Group, University Institute for Research in Health Sciences (IUNICS), 07010 Palma, Balearic Islands, Spain; (M.M.A.); (I.R.G.); (M.T.V.-H.); (D.V.); (T.S.-A.); (J.I.R.M.)
- Faculty of Dentistry, ADEMA University School, 07010 Palma, Balearic Islands, Spain
- Institut d’Investigació Sanitària de les Illes Balears (IDISBA), Health Research Institute of the Balearic Islands, 07010 Palma, Balearic Islands, Spain
- Health Service of the Balearic Islands, 07010 Palma, Balearic Islands, Spain
| | - María Teófila Vicente-Herrero
- Research ADEMA SALUD Group, University Institute for Research in Health Sciences (IUNICS), 07010 Palma, Balearic Islands, Spain; (M.M.A.); (I.R.G.); (M.T.V.-H.); (D.V.); (T.S.-A.); (J.I.R.M.)
| | - Daniela Vallejos
- Research ADEMA SALUD Group, University Institute for Research in Health Sciences (IUNICS), 07010 Palma, Balearic Islands, Spain; (M.M.A.); (I.R.G.); (M.T.V.-H.); (D.V.); (T.S.-A.); (J.I.R.M.)
| | - Tomás Sastre-Alzamora
- Research ADEMA SALUD Group, University Institute for Research in Health Sciences (IUNICS), 07010 Palma, Balearic Islands, Spain; (M.M.A.); (I.R.G.); (M.T.V.-H.); (D.V.); (T.S.-A.); (J.I.R.M.)
| | - José Ignacio Ramírez Manent
- Research ADEMA SALUD Group, University Institute for Research in Health Sciences (IUNICS), 07010 Palma, Balearic Islands, Spain; (M.M.A.); (I.R.G.); (M.T.V.-H.); (D.V.); (T.S.-A.); (J.I.R.M.)
- Institut d’Investigació Sanitària de les Illes Balears (IDISBA), Health Research Institute of the Balearic Islands, 07010 Palma, Balearic Islands, Spain
- Health Service of the Balearic Islands, 07010 Palma, Balearic Islands, Spain
- Faculty of Medicine, University of the Balearic Islands, 07010 Palma, Balearic Islands, Spain
| |
Collapse
|
10
|
Gordito Soler M, López-González ÁA, Vallejos D, Martínez-Almoyna Rifá E, Vicente-Herrero MT, Ramírez-Manent JI. Usefulness of Body Fat and Visceral Fat Determined by Bioimpedanciometry versus Body Mass Index and Waist Circumference in Predicting Elevated Values of Different Risk Scales for Non-Alcoholic Fatty Liver Disease. Nutrients 2024; 16:2160. [PMID: 38999907 PMCID: PMC11243258 DOI: 10.3390/nu16132160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 06/28/2024] [Accepted: 07/05/2024] [Indexed: 07/14/2024] Open
Abstract
BACKGROUND Obesity constitutes a public health problem worldwide and causes non-alcoholic fatty liver disease (MALFD), the leading cause of liver disease in developed countries, which progresses to liver cirrhosis and liver cancer. MAFLD is associated with obesity and can be evaluated by validated formulas to assess MAFLD risk using different parameters such as the body mass index (BMI) and waist circumference (WC). However, these parameters do not accurately measure body fat. As MAFLD is strongly associated with obesity, we hypothesize that measuring body and visceral fat by electrical bioimpedance is an efficient method to predict the risk of MAFLD. The objective of our work was to demonstrate that electrical bioimpedance is a more efficient method than the BMI or WC to predict an elevated risk of MAFLD. METHODS A cross-sectional, descriptive study involving 8590 Spanish workers in the Balearic Islands was carried out. The study's sample of employees was drawn from those who underwent occupational medicine examinations between January 2019 and December 2020. Five MAFLD risk scales were determined for evaluating very high levels of body fat and visceral fat. The determination of body and visceral fat was performed using bioimpedanciometry. Student's t-test was employed to ascertain the mean and standard deviation of quantitative data. The chi-square test was used to find prevalences for qualitative variables, while ROC curves were used to define the cut-off points for body and visceral fat. The calculations included the area under the curve (AUC), the cut-off points along with their Youden index, sensitivity, and specificity. Correlation and concordance between the various scales were determined using Pearson's correlation index and Cohen's kappa, respectively. RESULTS As both total body fat and visceral fat increase, the risk of MAFLD increases with a statistically significant result (p < 0.001), presenting a higher risk in men. The areas under the curve (AUC) of the five scales that assess overweight and obesity to determine the occurrence of high values of the different MAFLD risk scales were very high, most of them exceeding 0.9. These AUC values were higher for visceral and body fat than for the BMI or waist circumference. FLD-high presented the best results in men and women with the AUC at around 0.97, both for visceral fat and total body fat, with a high Youden index in all cases (women body fat = 0.830, visceral fat = 0.892; men body fat = 0.780, visceral fat = 0.881). CONCLUSIONS In our study, all the overweight and obesity scales show a very good association with the scales assessing the risk of MAFLD. These values are higher for visceral and body fat than for waist circumference and the BMI. Both visceral fat and body fat are better associated than the BMI and waist circumference with MAFLD risk scales.
Collapse
Affiliation(s)
| | - Ángel Arturo López-González
- Investigation Group ADEMA SALUD, University Institute for Research in Health Sciences (IUNICS), 07010 Palma, Balearic Islands, Spain
- Faculty of Dentistry, University School ADEMA, 07010 Palma, Balearic Islands, Spain
| | - Daniela Vallejos
- Investigation Group ADEMA SALUD, University Institute for Research in Health Sciences (IUNICS), 07010 Palma, Balearic Islands, Spain
- Faculty of Dentistry, University School ADEMA, 07010 Palma, Balearic Islands, Spain
| | - Emilio Martínez-Almoyna Rifá
- Investigation Group ADEMA SALUD, University Institute for Research in Health Sciences (IUNICS), 07010 Palma, Balearic Islands, Spain
- Faculty of Dentistry, University School ADEMA, 07010 Palma, Balearic Islands, Spain
| | - María Teófila Vicente-Herrero
- Investigation Group ADEMA SALUD, University Institute for Research in Health Sciences (IUNICS), 07010 Palma, Balearic Islands, Spain
| | - José Ignacio Ramírez-Manent
- Investigation Group ADEMA SALUD, University Institute for Research in Health Sciences (IUNICS), 07010 Palma, Balearic Islands, Spain
- Institut d'Investigació Sanitària de les Illes Balears (IDISBA), Balearic Islands Health Research Institute Foundation, 07010 Palma, Balearic Islands, Spain
- Balearic Islands Health Service, 07010 Palma, Balearic Islands, Spain
- Faculty of Medicine, University of the Balearic Islands, 07010 Palma, Balearic Islands, Spain
| |
Collapse
|
11
|
Celano G, Calabrese FM, Riezzo G, D’Attoma B, Ignazzi A, Di Chito M, Sila A, De Nucci S, Rinaldi R, Linsalata M, Apa CA, Mancini L, De Angelis M, Giannelli G, De Pergola G, Russo F. A Multi-Omics Approach to Disclose Metabolic Pathways Impacting Intestinal Permeability in Obese Patients Undergoing Very Low Calorie Ketogenic Diet. Nutrients 2024; 16:2079. [PMID: 38999827 PMCID: PMC11243313 DOI: 10.3390/nu16132079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/25/2024] [Accepted: 06/26/2024] [Indexed: 07/14/2024] Open
Abstract
A very low calorie ketogenic diet (VLCKD) impacts host metabolism in people marked by an excess of visceral adiposity, and it affects the microbiota composition in terms of taxa presence and relative abundances. As a matter of fact, there is little available literature dealing with microbiota differences in obese patients marked by altered intestinal permeability. With the aim of inspecting consortium members and their related metabolic pathways, we inspected the microbial community profile, together with the set of volatile organic compounds (VOCs) from untargeted fecal and urine metabolomics, in a cohort made of obese patients, stratified based on both normal and altered intestinal permeability, before and after VLCKD administration. Based on the taxa relative abundances, we predicted microbiota-derived metabolic pathways whose variations were explained in light of our cohort symptom picture. A totally different number of statistically significant pathways marked samples with altered permeability, reflecting an important shift in microbiota taxa. A combined analysis of taxa, metabolic pathways, and metabolomic compounds delineates a set of markers that is useful in describing obesity dysfunctions and comorbidities.
Collapse
Affiliation(s)
- Giuseppe Celano
- Department of Soil, Plant and Food Science, University of Bari Aldo Moro, 70126 Bari, Italy; (G.C.); (C.A.A.); (L.M.); (M.D.A.)
| | - Francesco Maria Calabrese
- Department of Soil, Plant and Food Science, University of Bari Aldo Moro, 70126 Bari, Italy; (G.C.); (C.A.A.); (L.M.); (M.D.A.)
| | - Giuseppe Riezzo
- Functional Gastrointestinal Disorders Research Group, National Institute of Gastroenterology IRCCS “Saverio de Bellis”, 70013 Castellana Grotte, Italy; (G.R.); (B.D.); (A.I.); (M.L.)
| | - Benedetta D’Attoma
- Functional Gastrointestinal Disorders Research Group, National Institute of Gastroenterology IRCCS “Saverio de Bellis”, 70013 Castellana Grotte, Italy; (G.R.); (B.D.); (A.I.); (M.L.)
| | - Antonia Ignazzi
- Functional Gastrointestinal Disorders Research Group, National Institute of Gastroenterology IRCCS “Saverio de Bellis”, 70013 Castellana Grotte, Italy; (G.R.); (B.D.); (A.I.); (M.L.)
| | - Martina Di Chito
- Center of Nutrition for the Research and the Care of Obesity and Metabolic Diseases, National Institute of Gastroenterology IRCCS “Saverio de Bellis”, 70013 Castellana Grotte, Italy; (M.D.C.); (A.S.); (S.D.N.); (R.R.); (G.D.P.)
| | - Annamaria Sila
- Center of Nutrition for the Research and the Care of Obesity and Metabolic Diseases, National Institute of Gastroenterology IRCCS “Saverio de Bellis”, 70013 Castellana Grotte, Italy; (M.D.C.); (A.S.); (S.D.N.); (R.R.); (G.D.P.)
| | - Sara De Nucci
- Center of Nutrition for the Research and the Care of Obesity and Metabolic Diseases, National Institute of Gastroenterology IRCCS “Saverio de Bellis”, 70013 Castellana Grotte, Italy; (M.D.C.); (A.S.); (S.D.N.); (R.R.); (G.D.P.)
| | - Roberta Rinaldi
- Center of Nutrition for the Research and the Care of Obesity and Metabolic Diseases, National Institute of Gastroenterology IRCCS “Saverio de Bellis”, 70013 Castellana Grotte, Italy; (M.D.C.); (A.S.); (S.D.N.); (R.R.); (G.D.P.)
| | - Michele Linsalata
- Functional Gastrointestinal Disorders Research Group, National Institute of Gastroenterology IRCCS “Saverio de Bellis”, 70013 Castellana Grotte, Italy; (G.R.); (B.D.); (A.I.); (M.L.)
| | - Carmen Aurora Apa
- Department of Soil, Plant and Food Science, University of Bari Aldo Moro, 70126 Bari, Italy; (G.C.); (C.A.A.); (L.M.); (M.D.A.)
| | - Leonardo Mancini
- Department of Soil, Plant and Food Science, University of Bari Aldo Moro, 70126 Bari, Italy; (G.C.); (C.A.A.); (L.M.); (M.D.A.)
| | - Maria De Angelis
- Department of Soil, Plant and Food Science, University of Bari Aldo Moro, 70126 Bari, Italy; (G.C.); (C.A.A.); (L.M.); (M.D.A.)
| | - Gianluigi Giannelli
- Scientific Direction, National Institute of Gastroenterology IRCCS “Saverio de Bellis”, 70013 Castellana Grotte, Italy;
| | - Giovanni De Pergola
- Center of Nutrition for the Research and the Care of Obesity and Metabolic Diseases, National Institute of Gastroenterology IRCCS “Saverio de Bellis”, 70013 Castellana Grotte, Italy; (M.D.C.); (A.S.); (S.D.N.); (R.R.); (G.D.P.)
| | - Francesco Russo
- Functional Gastrointestinal Disorders Research Group, National Institute of Gastroenterology IRCCS “Saverio de Bellis”, 70013 Castellana Grotte, Italy; (G.R.); (B.D.); (A.I.); (M.L.)
| |
Collapse
|
12
|
Sati P, Dhyani P, Sharma E, Attri DC, Jantwal A, Devi R, Calina D, Sharifi-Rad J. Gut Microbiota Targeted Approach by Natural Products in Diabetes Management: An Overview. Curr Nutr Rep 2024; 13:166-185. [PMID: 38498287 DOI: 10.1007/s13668-024-00523-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/16/2024] [Indexed: 03/20/2024]
Abstract
PURPOSE OF REVIEW This review delves into the complex interplay between obesity-induced gut microbiota dysbiosis and the progression of type 2 diabetes mellitus (T2DM), highlighting the potential of natural products in mitigating these effects. By integrating recent epidemiological data, we aim to provide a nuanced understanding of how obesity exacerbates T2DM through gut flora alterations. RECENT FINDINGS Advances in research have underscored the significance of bioactive ingredients in natural foods, capable of restoring gut microbiota balance, thus offering a promising approach to manage diabetes in the context of obesity. These findings build upon the traditional use of medicinal plants in diabetes treatment, suggesting a deeper exploration of their mechanisms of action. This comprehensive manuscript underscores the critical role of targeting gut microbiota dysbiosis in obesity-related T2DM management and by bridging traditional knowledge with current scientific evidence; we highlighted the need for continued research into natural products as a complementary strategy for comprehensive diabetes care.
Collapse
Affiliation(s)
- Priyanka Sati
- Department of Biotechnology, Kumaun University, Bhimtal, Uttarakhand, India
| | - Praveen Dhyani
- Institute for Integrated Natural Sciences, University of Koblenz, Koblenz, Germany
| | - Eshita Sharma
- Department of Biochemistry and Molecular Biology, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Dharam Chand Attri
- Department of Botany, Central University of Jammu, Rahya-Suchani (Bagla), Jammu and Kashmir, India
| | - Arvind Jantwal
- Department of Pharmaceutical Sciences, Kumaun University, Bhimtal, Uttarakhand, India
| | - Rajni Devi
- Department of Microbiology, Punjab Agricultural University, Ludhiana-141004, Punjab, India
| | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, 200349, Craiova, Romania.
| | | |
Collapse
|
13
|
Yuan J, Hu Y, Yang D, Zhou A, Luo S, Xu N, Dong J, He Q, Zhang C, Zhang X, Ji Z, Li Q, Chu J. The Effects of Crataegus pinnatifida and Wolfiporia extensa Combination on Diet-Induced Obesity and Gut Microbiota. Foods 2024; 13:1633. [PMID: 38890862 PMCID: PMC11171702 DOI: 10.3390/foods13111633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 05/20/2024] [Accepted: 05/22/2024] [Indexed: 06/20/2024] Open
Abstract
Obesity is a multifactorial chronic metabolic disease with multiple complications. Crataegus pinnatifida (CP) and Wolfiporia extensa (WE) are traditional functional foods with improving metabolic health properties. This study demonstrated the effect of CP and WE combination on ameliorating obesity induced by a high-fat diet (HFD). Moreover, the CP-WE food pair ameliorated HFD-induced metabolic disorders, including glucose intolerance, insulin resistance, hyperlipidemia, and hepatic steatosis. 16S rRNA gene amplicon sequencing and analysis revealed that CP combined with WE reshaped the composition of gut microbiota in HFD-fed mice. Furthermore, correlation analysis revealed a substantial association between the obesity-related parameters and the shifts in predominant bacterial genera influenced by the food pair intervention. In conclusion, this study demonstrated that the CP-WE food pair ameliorated HFD-induced obesity and reshaped gut microbiota composition, providing a promising approach to combat obesity through specific food combinations.
Collapse
Affiliation(s)
- Jingjing Yuan
- Key Laboratory of Xin’an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei 230012, China; (J.Y.); (Y.H.); (D.Y.); (A.Z.); (J.D.); (Q.H.); (C.Z.); (X.Z.); (Z.J.)
- Research and Technology Center, Anhui University of Chinese Medicine, Hefei 230012, China
- Functional Activity and Resource Utilization on Edible and Medicinal Fungi Joint Laboratory of Anhui Province, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Yueyun Hu
- Key Laboratory of Xin’an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei 230012, China; (J.Y.); (Y.H.); (D.Y.); (A.Z.); (J.D.); (Q.H.); (C.Z.); (X.Z.); (Z.J.)
- Affiliated Hospital of Yangzhou University, Yangzhou 225012, China
| | - Dongmei Yang
- Key Laboratory of Xin’an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei 230012, China; (J.Y.); (Y.H.); (D.Y.); (A.Z.); (J.D.); (Q.H.); (C.Z.); (X.Z.); (Z.J.)
| | - An Zhou
- Key Laboratory of Xin’an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei 230012, China; (J.Y.); (Y.H.); (D.Y.); (A.Z.); (J.D.); (Q.H.); (C.Z.); (X.Z.); (Z.J.)
- Functional Activity and Resource Utilization on Edible and Medicinal Fungi Joint Laboratory of Anhui Province, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Shengyong Luo
- Anhui Academy of Medical Sciences, Hefei 230061, China;
| | - Na Xu
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science and International Joint Laboratory on Tea Chemistry and Health Effects of Ministry of Education, Anhui Agricultural University, Hefei 230036, China;
| | - Jiaxing Dong
- Key Laboratory of Xin’an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei 230012, China; (J.Y.); (Y.H.); (D.Y.); (A.Z.); (J.D.); (Q.H.); (C.Z.); (X.Z.); (Z.J.)
| | - Qing He
- Key Laboratory of Xin’an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei 230012, China; (J.Y.); (Y.H.); (D.Y.); (A.Z.); (J.D.); (Q.H.); (C.Z.); (X.Z.); (Z.J.)
| | - Chenxu Zhang
- Key Laboratory of Xin’an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei 230012, China; (J.Y.); (Y.H.); (D.Y.); (A.Z.); (J.D.); (Q.H.); (C.Z.); (X.Z.); (Z.J.)
| | - Xinyu Zhang
- Key Laboratory of Xin’an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei 230012, China; (J.Y.); (Y.H.); (D.Y.); (A.Z.); (J.D.); (Q.H.); (C.Z.); (X.Z.); (Z.J.)
| | - Zhangxin Ji
- Key Laboratory of Xin’an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei 230012, China; (J.Y.); (Y.H.); (D.Y.); (A.Z.); (J.D.); (Q.H.); (C.Z.); (X.Z.); (Z.J.)
| | - Qinglin Li
- Key Laboratory of Xin’an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei 230012, China; (J.Y.); (Y.H.); (D.Y.); (A.Z.); (J.D.); (Q.H.); (C.Z.); (X.Z.); (Z.J.)
| | - Jun Chu
- Research and Technology Center, Anhui University of Chinese Medicine, Hefei 230012, China
- Institute of Surgery, Anhui Academy of Chinese Medicine, Anhui University of Chinese Medicine, Hefei 230012, China
| |
Collapse
|
14
|
Zheng Y, Qin C, Wen M, Zhang L, Wang W. The Effects of Food Nutrients and Bioactive Compounds on the Gut Microbiota: A Comprehensive Review. Foods 2024; 13:1345. [PMID: 38731716 PMCID: PMC11083588 DOI: 10.3390/foods13091345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/06/2024] [Accepted: 04/25/2024] [Indexed: 05/13/2024] Open
Abstract
It is now widely recognized that gut microbiota plays a critical role not only in the development and progression of diseases, but also in its susceptibility to dietary patterns, food composition, and nutritional intake. In this comprehensive review, we have compiled the latest findings on the effects of food nutrients and bioactive compounds on the gut microbiota. The research indicates that certain components, such as unsaturated fatty acids, dietary fiber, and protein have a significant impact on the composition of bile salts and short-chain fatty acids through catabolic processes, thereby influencing the gut microbiota. Additionally, these compounds also have an effect on the ratio of Firmicutes to Bacteroides, as well as the abundance of specific species like Akkermansia muciniphila. The gut microbiota has been found to play a role in altering the absorption and metabolism of nutrients, bioactive compounds, and drugs, adding another layer of complexity to the interaction between food and gut microbiota, which often requires long-term adaptation to yield substantial outcomes. In conclusion, understanding the relationship between food compounds and gut microbiota can offer valuable insights into the potential therapeutic applications of food and dietary interventions in various diseases and health conditions.
Collapse
Affiliation(s)
- Yijun Zheng
- Clinical Pharmacy (Sino-Foreign Cooperation) Class, School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China;
| | - Chunyin Qin
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, China; (C.Q.); (M.W.)
| | - Mingchun Wen
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, China; (C.Q.); (M.W.)
| | - Liang Zhang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, China; (C.Q.); (M.W.)
| | - Weinan Wang
- Guangdong Key Laboratory for Research and Development of Natural Drugs, School of Pharmacy, Guangdong Medical University, No. 1 Xincheng Blvd, Dongguan 523808, China
| |
Collapse
|
15
|
Hu X, Yu C, He Y, Zhu S, Wang S, Xu Z, You S, Jiao Y, Liu SL, Bao H. Integrative metagenomic analysis reveals distinct gut microbial signatures related to obesity. BMC Microbiol 2024; 24:119. [PMID: 38580930 PMCID: PMC10996249 DOI: 10.1186/s12866-024-03278-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 03/26/2024] [Indexed: 04/07/2024] Open
Abstract
Obesity is a metabolic disorder closely associated with profound alterations in gut microbial composition. However, the dynamics of species composition and functional changes in the gut microbiome in obesity remain to be comprehensively investigated. In this study, we conducted a meta-analysis of metagenomic sequencing data from both obese and non-obese individuals across multiple cohorts, totaling 1351 fecal metagenomes. Our results demonstrate a significant decrease in both the richness and diversity of the gut bacteriome and virome in obese patients. We identified 38 bacterial species including Eubacterium sp. CAG:274, Ruminococcus gnavus, Eubacterium eligens and Akkermansia muciniphila, and 1 archaeal species, Methanobrevibacter smithii, that were significantly altered in obesity. Additionally, we observed altered abundance of five viral families: Mesyanzhinovviridae, Chaseviridae, Salasmaviridae, Drexlerviridae, and Casjensviridae. Functional analysis of the gut microbiome indicated distinct signatures associated to obesity and identified Ruminococcus gnavus as the primary driver for function enrichment in obesity, and Methanobrevibacter smithii, Akkermansia muciniphila, Ruminococcus bicirculans, and Eubacterium siraeum as functional drivers in the healthy control group. Additionally, our results suggest that antibiotic resistance genes and bacterial virulence factors may influence the development of obesity. Finally, we demonstrated that gut vOTUs achieved a diagnostic accuracy with an optimal area under the curve of 0.766 for distinguishing obesity from healthy controls. Our findings offer comprehensive and generalizable insights into the gut bacteriome and virome features associated with obesity, with the potential to guide the development of microbiome-based diagnostics.
Collapse
Affiliation(s)
- Xinliang Hu
- Genomics Research Center, Key Laboratory of Gut Microbiota and Pharmacogenomics of Heilongjiang Province, State-Province Key Laboratory of Biomedicine-Pharmaceutics of China, College of Pharmacy, Harbin Medical University, Harbin, China
- Harbin Medical University-University of Calgary Cumming School of Medicine Centre for Infection and Genomics, Harbin Medical University, Harbin, China
| | - Chong Yu
- Genomics Research Center, Key Laboratory of Gut Microbiota and Pharmacogenomics of Heilongjiang Province, State-Province Key Laboratory of Biomedicine-Pharmaceutics of China, College of Pharmacy, Harbin Medical University, Harbin, China
- Harbin Medical University-University of Calgary Cumming School of Medicine Centre for Infection and Genomics, Harbin Medical University, Harbin, China
| | - Yuting He
- Genomics Research Center, Key Laboratory of Gut Microbiota and Pharmacogenomics of Heilongjiang Province, State-Province Key Laboratory of Biomedicine-Pharmaceutics of China, College of Pharmacy, Harbin Medical University, Harbin, China
- Harbin Medical University-University of Calgary Cumming School of Medicine Centre for Infection and Genomics, Harbin Medical University, Harbin, China
| | - Songling Zhu
- Genomics Research Center, Key Laboratory of Gut Microbiota and Pharmacogenomics of Heilongjiang Province, State-Province Key Laboratory of Biomedicine-Pharmaceutics of China, College of Pharmacy, Harbin Medical University, Harbin, China
- Harbin Medical University-University of Calgary Cumming School of Medicine Centre for Infection and Genomics, Harbin Medical University, Harbin, China
| | - Shuang Wang
- Department of Biopharmaceutical Sciences (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Ziqiong Xu
- Genomics Research Center, Key Laboratory of Gut Microbiota and Pharmacogenomics of Heilongjiang Province, State-Province Key Laboratory of Biomedicine-Pharmaceutics of China, College of Pharmacy, Harbin Medical University, Harbin, China
- Harbin Medical University-University of Calgary Cumming School of Medicine Centre for Infection and Genomics, Harbin Medical University, Harbin, China
| | - Shaohui You
- Genomics Research Center, Key Laboratory of Gut Microbiota and Pharmacogenomics of Heilongjiang Province, State-Province Key Laboratory of Biomedicine-Pharmaceutics of China, College of Pharmacy, Harbin Medical University, Harbin, China
- Harbin Medical University-University of Calgary Cumming School of Medicine Centre for Infection and Genomics, Harbin Medical University, Harbin, China
| | - Yanlei Jiao
- Genomics Research Center, Key Laboratory of Gut Microbiota and Pharmacogenomics of Heilongjiang Province, State-Province Key Laboratory of Biomedicine-Pharmaceutics of China, College of Pharmacy, Harbin Medical University, Harbin, China
- Harbin Medical University-University of Calgary Cumming School of Medicine Centre for Infection and Genomics, Harbin Medical University, Harbin, China
| | - Shu-Lin Liu
- Genomics Research Center, Key Laboratory of Gut Microbiota and Pharmacogenomics of Heilongjiang Province, State-Province Key Laboratory of Biomedicine-Pharmaceutics of China, College of Pharmacy, Harbin Medical University, Harbin, China.
- Harbin Medical University-University of Calgary Cumming School of Medicine Centre for Infection and Genomics, Harbin Medical University, Harbin, China.
| | - Hongxia Bao
- Genomics Research Center, Key Laboratory of Gut Microbiota and Pharmacogenomics of Heilongjiang Province, State-Province Key Laboratory of Biomedicine-Pharmaceutics of China, College of Pharmacy, Harbin Medical University, Harbin, China.
- Harbin Medical University-University of Calgary Cumming School of Medicine Centre for Infection and Genomics, Harbin Medical University, Harbin, China.
| |
Collapse
|
16
|
Hidalgo-Lozada GM, Villarruel-López A, Nuño K, García-García A, Sánchez-Nuño YA, Ramos-García CO. Clinically Effective Molecules of Natural Origin for Obesity Prevention or Treatment. Int J Mol Sci 2024; 25:2671. [PMID: 38473918 DOI: 10.3390/ijms25052671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 02/21/2024] [Accepted: 02/22/2024] [Indexed: 03/14/2024] Open
Abstract
The prevalence and incidence of obesity and the comorbidities linked to it are increasing worldwide. Current therapies for obesity and associated pathologies have proven to cause a broad number of adverse effects, and often, they are overpriced or not affordable for all patients. Among the alternatives currently available, natural bioactive compounds stand out. These are frequently contained in pharmaceutical presentations, nutraceutical products, supplements, or functional foods. The clinical evidence for these molecules is increasingly solid, among which epigallocatechin-3-gallate, ellagic acid, resveratrol, berberine, anthocyanins, probiotics, carotenoids, curcumin, silymarin, hydroxy citric acid, and α-lipoic acid stand out. The molecular mechanisms and signaling pathways of these molecules have been shown to interact with the endocrine, nervous, and gastroenteric systems. They can regulate the expression of multiple genes and proteins involved in starvation-satiety processes, activate the brown adipose tissue, decrease lipogenesis and inflammation, increase lipolysis, and improve insulin sensitivity. This review provides a comprehensive view of nature-based therapeutic options to address the increasing prevalence of obesity. It offers a valuable perspective for future research and subsequent clinical practice, addressing everything from the molecular, genetic, and physiological bases to the clinical study of bioactive compounds.
Collapse
Affiliation(s)
| | - Angelica Villarruel-López
- Department of Pharmacobiology, University Center for Exact and Engineering Sciences, University of Guadalajara, Guadalajara 44430, Mexico
| | - Karla Nuño
- Department of Psychology, Education and Health, ITESO Jesuit University of Guadalajara, Guadalajara 45604, Mexico
| | - Abel García-García
- Institute of Science and Technology for Health Innovation, Guadalajara 44770, Mexico
- Department of Medical Clinic, Health Sciences University Center, University of Guadalajara, Guadalajara 44340, Mexico
| | - Yaír Adonaí Sánchez-Nuño
- Department of Pharmacobiology, University Center for Exact and Engineering Sciences, University of Guadalajara, Guadalajara 44430, Mexico
| | | |
Collapse
|
17
|
Mansour S, Alkhaaldi SMI, Sammanasunathan AF, Ibrahim S, Farhat J, Al-Omari B. Precision Nutrition Unveiled: Gene-Nutrient Interactions, Microbiota Dynamics, and Lifestyle Factors in Obesity Management. Nutrients 2024; 16:581. [PMID: 38474710 PMCID: PMC10935146 DOI: 10.3390/nu16050581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 02/05/2024] [Accepted: 02/18/2024] [Indexed: 03/14/2024] Open
Abstract
BACKGROUND Obesity is a complex metabolic disorder that is associated with several diseases. Recently, precision nutrition (PN) has emerged as a tailored approach to provide individualised dietary recommendations. AIM This review discusses the major intrinsic and extrinsic components considered when applying PN during the management of obesity and common associated chronic conditions. RESULTS The review identified three main PN components: gene-nutrient interactions, intestinal microbiota, and lifestyle factors. Genetic makeup significantly contributes to inter-individual variations in dietary behaviours, with advanced genome sequencing and population genetics aiding in detecting gene variants associated with obesity. Additionally, PN-based host-microbiota evaluation emerges as an advanced therapeutic tool, impacting disease control and prevention. The gut microbiome's composition regulates diverse responses to nutritional recommendations. Several studies highlight PN's effectiveness in improving diet quality and enhancing adherence to physical activity among obese patients. PN is a key strategy for addressing obesity-related risk factors, encompassing dietary patterns, body weight, fat, blood lipids, glucose levels, and insulin resistance. CONCLUSION PN stands out as a feasible tool for effectively managing obesity, considering its ability to integrate genetic and lifestyle factors. The application of PN-based approaches not only improves current obesity conditions but also holds promise for preventing obesity and its associated complications in the long term.
Collapse
Affiliation(s)
- Samy Mansour
- College of Medicine and Health Sciences, Khalifa University of Science and Technology, Abu Dhabi P.O. Box 127788, United Arab Emirates; (S.M.); (A.F.S.)
| | - Saif M. I. Alkhaaldi
- College of Medicine and Health Sciences, Khalifa University of Science and Technology, Abu Dhabi P.O. Box 127788, United Arab Emirates; (S.M.); (A.F.S.)
| | - Ashwin F. Sammanasunathan
- College of Medicine and Health Sciences, Khalifa University of Science and Technology, Abu Dhabi P.O. Box 127788, United Arab Emirates; (S.M.); (A.F.S.)
| | - Saleh Ibrahim
- College of Medicine and Health Sciences, Khalifa University of Science and Technology, Abu Dhabi P.O. Box 127788, United Arab Emirates; (S.M.); (A.F.S.)
- Institute of Experimental Dermatology, University of Lübeck, Ratzeburger Allee 160, 23538 Lübeck, Germany
| | - Joviana Farhat
- Department of Public Health and Epidemiology, College of Medicine and Health Sciences, Khalifa University of Science and Technology, Abu Dhabi P.O. Box 127788, United Arab Emirates
| | - Basem Al-Omari
- Department of Public Health and Epidemiology, College of Medicine and Health Sciences, Khalifa University of Science and Technology, Abu Dhabi P.O. Box 127788, United Arab Emirates
| |
Collapse
|
18
|
Ye X, Yu F, Zhou J, Zhao C, Wu J, Ni X. Analysis of the gut microbiota in children with gastroesophageal reflux disease using metagenomics and metabolomics. Front Cell Infect Microbiol 2023; 13:1267192. [PMID: 37900308 PMCID: PMC10613033 DOI: 10.3389/fcimb.2023.1267192] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 09/19/2023] [Indexed: 10/31/2023] Open
Abstract
Background There is no direct evidence of gut microbiota disturbance in children with gastroesophageal reflux disease (GERD). This study aimed to provide direct evidence and a comprehensive understanding of gut microbiota disturbance in children with GERD through combined metagenomic and metabolomic analysis. Methods 30 children with GERD and 30 healthy controls (HCs) were continuously enrolled, and the demographic and clinical characteristics of the subjects were collected. First, 16S rRNA sequencing was used to evaluate differences in the gut microbiota between children with GERD and HC group, and 10 children with GERD and 10 children in the HC group were selected for metagenomic analysis. Nontargeted metabolomic analysis was performed using liquid chromatography/mass spectrometry (LC/MS), and metagenomic and metabolomic data were analyzed together. Results There were significant differences in the gut microbiota diversity and composition between children with GERD and HCs. The dominant bacteria in children with GERD were Proteobacteria and Bacteroidota. At the species level, the top three core bacterial groups were Bacteroides stercoris, Bacteroides vulgatus and Alistipes putredinis. The main differential pathways were identified to be related to energy, amino acid, vitamin, carbohydrate and lipid metabolism. LC/MS detected 288 different metabolites in the positive and negative ion modes between children with GERD and HCs, which were mainly involved in arachidonic acid (AA), tyrosine, glutathione and caffeine metabolism. Conclusion This study provides new evidence of the pathogenesis of GERD. There are significant differences in the gut microbiota, metabolites and metabolic pathways between HCs and children with GERD, and the differences in metabolites are related to specific changes in bacterial abundance. In the future, GERD may be treated by targeting specific bacteria related to AA metabolism.
Collapse
Affiliation(s)
- Xiaolin Ye
- Department of Gastroenterology, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, China
| | - Feihong Yu
- Department of Gastroenterology, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, China
| | - Jin Zhou
- Department of Gastroenterology, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, China
| | - Chunna Zhao
- Department of Gastroenterology, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, China
| | - Jie Wu
- Department of Gastroenterology, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, China
| | - Xin Ni
- National Center for Pediatric Cancer Surveillance, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, China
| |
Collapse
|