1
|
Pastorino P, Bertoli M, Caldaroni B, Giugliano R, Ciccotelli V, Vivaldi B, Squadrone S, Griglione A, Abete MC, Renzi M, Esposito G, Bozzetta E, Pizzul E, Barceló D, Prearo M, Elia AC. Influence of water chemistry and contaminant occurrence on the oxidative stress ecology of Cottus gobio in a high-mountain lake (Carnic Alps). ENVIRONMENTAL RESEARCH 2025; 264:120343. [PMID: 39528034 DOI: 10.1016/j.envres.2024.120343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 10/21/2024] [Accepted: 11/08/2024] [Indexed: 11/16/2024]
Abstract
Understanding oxidative stress in high-mountain lake fish offers crucial insights into their health, resilience, and adaptation to extreme environmental changes. This study investigates the oxidative stress response of Cottus gobio in a high-mountain lake (Dimon Lake) located in the northeast Italy during the ice-free season, focusing on the relationship between oxidative stress biomarkers and physicochemical water parameters, as well as persistent and emerging contaminants. Significant seasonal variations were observed in water parameters, with lower oxygen, pH, conductivity, and phosphate levels in summer compared to autumn, while temperature, ammonium, and nitrate were higher in summer. Metal concentrations in C. gobio muscle were higher in autumn, with Zn showing the most significant increase. PAHs, NDL-PCBs, and pesticides were all below the limit of quantification in the fish muscle samples. No microplastics items were found in the gastrointestinal tracts of fish. Oxidative stress biomarkers revealed organ-specific and seasonal variations. The liver exhibited the highest activities of catalase (CAT), glutathione peroxidase (GPx), glutathione S-tranferase (GST), and glutathione reductase (GR), highlighting its central role in detoxification and metabolic processes. Superoxide dismutase (SOD) activity was notably higher in muscle tissue during summer, suggesting increased metabolic activity. A strong correlation was found between pH and the activities of SOD, CAT, GPx, GR, and metallothioneins (MTs), emphasizing the importance of water chemistry in influencing oxidative stress responses. This approach not only aids in understanding the local adaptations of these fish but also highlights the impacts of environmental stressors on high-mountain ecosystems. Continuous monitoring of water chemistry, particularly pH, is crucial for understanding and managing oxidative stress in aquatic organisms, especially in the context of global environmental changes.
Collapse
Affiliation(s)
- Paolo Pastorino
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta, via Bologna 148, 10154, Torino, Italy.
| | - Marco Bertoli
- Dipartimento di Scienze della Vita, Università degli Studi di Trieste, via L. Giorgieri 10, 34127, Trieste, Italy
| | - Barbara Caldaroni
- Dipartimento di Chimica, Biologia e Biotecnologie, Università degli Studi di Perugia, via Elce di Sotto 8, 06123, Perugia, Italy
| | - Roberta Giugliano
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta, via Bologna 148, 10154, Torino, Italy
| | - Valentina Ciccotelli
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta, via Bologna 148, 10154, Torino, Italy
| | - Barbara Vivaldi
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta, via Bologna 148, 10154, Torino, Italy
| | - Stefania Squadrone
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta, via Bologna 148, 10154, Torino, Italy
| | - Alessandra Griglione
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta, via Bologna 148, 10154, Torino, Italy
| | - Maria Cesarina Abete
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta, via Bologna 148, 10154, Torino, Italy
| | - Monia Renzi
- Dipartimento di Scienze della Vita, Università degli Studi di Trieste, via L. Giorgieri 10, 34127, Trieste, Italy
| | - Giuseppe Esposito
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta, via Bologna 148, 10154, Torino, Italy
| | - Elena Bozzetta
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta, via Bologna 148, 10154, Torino, Italy
| | - Elisabetta Pizzul
- Dipartimento di Scienze della Vita, Università degli Studi di Trieste, via L. Giorgieri 10, 34127, Trieste, Italy
| | - Damià Barceló
- Chemistry and Physics Department, University of Almeria, 04120, Almería, Spain
| | - Marino Prearo
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta, via Bologna 148, 10154, Torino, Italy
| | - Antonia Concetta Elia
- Dipartimento di Chimica, Biologia e Biotecnologie, Università degli Studi di Perugia, via Elce di Sotto 8, 06123, Perugia, Italy.
| |
Collapse
|
2
|
Ehtesham AM, Filipello V, Fernandèz Escàmez PS, Perez AG. Training in modern statistical methodologies and software tools for the definition and analysis of (stochastic) quantitative microbial risk assessment models with relevant food products for the Italian and Spanish food supply chains. EFSA J 2024; 22:e221103. [PMID: 39712913 PMCID: PMC11659744 DOI: 10.2903/j.efsa.2024.e221103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2024] Open
Abstract
The fellowship, entitled 'Training in modern statistical methodologies and software tools for the definition and analysis of (stochastic) quantitative microbial risk assessment models with relevant food products for the Italian and Spanish food supply chains', was implemented at the Universidad Politécnica de Cartagena (UPCT), Spain. Supervised by Dr. Alberto Garre and Prof. Pablo S. Fernandez and coordinated by Dr. Virginia Filipello of the Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna, Italy, the fellowship aimed to provide hands-on training in quantitative microbial risk assessment (QMRA). The fellow benefited from UPCT's expertise in microbiological risk assessment, gaining knowledge of methodologies, terminologies and software tools essential for QMRA. The focus of the fellowship was on the risks associated with plant-based milk products, which are increasingly popular as sustainable alternatives to dairy milk. Despite the heat treatments these beverages undergo to ensure safety, risks persist, such as cross-contamination during post-processing or the survival of heat-resistant spores like Bacillus cereus. A recent European outbreak linked to contaminated oat milk underscored the importance of assessing these risks. The project was conducted in two phases: first, at UPCT's Food Microbiology Laboratory, where the fellow handled and characterised the thermal resistance of various B. cereus strains using a thermoresistometer; and second, through remote analysis of experimental data using risk analysis software tools. The fellow developed skills in microbiological techniques, such as spore preparation and thermal resistance evaluation, and became proficient in data analysis using the R programming language and the biorisk package. The fellowship culminated in the development of a QMRA model to estimate the likelihood of B. cereus-related foodborne illness from plant-based milks, considering different heat treatments and bacterial strains. The fellow's training covered all stages of risk assessment, including hazard identification, exposure assessment, hazard characterisation and risk characterisation, providing a comprehensive foundation for a career in food safety and microbial risk assessment.
Collapse
Affiliation(s)
| | | | | | - Alberto Garre Perez
- Departemento de Ingenierìa AgronòmicaETSIA‐ Universidad politècnica de CartagenaMurciaSpain
| |
Collapse
|
3
|
Giugliano R, Armenio V, Savio V, Vaccaro E, Ciccotelli V, Vivaldi B. Monitoring of Non-Maximum-Residue-Level Pesticides in Animal Feed: A Study from 2019 to 2023. TOXICS 2024; 12:680. [PMID: 39330608 PMCID: PMC11435579 DOI: 10.3390/toxics12090680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/13/2024] [Accepted: 09/17/2024] [Indexed: 09/28/2024]
Abstract
Pesticides play a critical role in modern agriculture by protecting crops and ensuring higher yields, but their widespread use raises concerns about human health and environmental impact. Regulatory agencies impose Maximum Residue Levels (MRLs) to ensure safety, and the European Food Safety Authority (EFSA) assesses pesticide risks. This study monitored pesticide residues in 169 feed samples from Piedmont (Italy) collected between 2019 and 2023. Using GC-MS/MS, residues were found in 92% of animal-based and 70% of cereal-based feedstuffs. The most common pesticides in cereal-based feeds were pyrimiphos-methyl, deltamethrin, cypermethrin, azoxystrobin, and tetramethrin, and the pesticide synergist piperonyl-butoxide demonstrated a significant increase in contaminated samples in 2023. The lower concentrations in 2021 were likely due to COVID-19 impacts on pesticide availability. In animal-based feeds, common pesticides included deltamethrin, cypermethrin, and the pesticide synergist piperonyl-butoxide. The results highlight the pervasive presence of low-dose pesticide mixtures in feed and food chains, which could impact health, although do not pose acute risks. The study emphasizes the need for ongoing pesticide monitoring and awareness of the long-term effects of chronic pesticide exposure on animal, human, and environmental health.
Collapse
Affiliation(s)
- Roberta Giugliano
- National Reference Laboratory of Pesticides in Cereals and Feed (NRL), Istituto Zooprofilattico Sperimentale del Piemonte, Liguria E Valle D’Aosta, Piazza Borgo Pila 39/24, 16129 Genoa, Italy; (V.A.); (V.S.); (E.V.); (V.C.); (B.V.)
| | | | | | | | | | | |
Collapse
|
4
|
Kain T, Albahri M, Plötz M, Jessberger N. Growth, persistence and toxin production of pathogenic bacteria in plant-based drinking milk alternatives. J Food Sci 2024; 89:5799-5811. [PMID: 39169550 DOI: 10.1111/1750-3841.17309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/23/2024] [Accepted: 07/28/2024] [Indexed: 08/23/2024]
Abstract
The present study investigated the microbiological safety of the increasingly popular plant-based milk alternatives. No (10/27) or only very low microbial counts (17/27) were detected in the tested products. These were mainly identified as spore formers via MALDI-ToF-MS. Three products contained Bacillus cereus group isolates, which were able to form considerable amounts of enterotoxins and exhibited cytotoxicity towards CaCo-2 cells. Preliminary tests showed good growth of B. cereus, Listeria monocytogenes, and Salmonella enterica in all tested products (maximum bacterial counts: 5 × 1012 cfu/mL). These experiments also revealed strain-, time-, and temperature-, but especially product-specific enterotoxin production of B. cereus. In propagation and persistence tests according to DIN EN ISO 20976-1:2019-09, rapid bacterial proliferation was also detected in all products. B. cereus generally showed lower bacterial counts (106-107 cfu/mL) compared to L. monocytogenes and S. enterica (108-109 cfu/mL), but was detectable in a larger number of products over the test period of 6 weeks. pH values decreased (20/27) over time and visual and/or olfactory alterations (24/27) were observed. The present study provides information on the occurrence, growth and persistence of pathogenic bacteria in plant-based drinking milk alternatives. It also points out that the accompanying changes in pH, odor, and appearance are not necessarily recognizable to the consumer. PRACTICAL APPLICATION: The present study contributes to the understanding of the microbial risk related to plant-based drinking milk alternatives. It is crucial that the manufacturer ensures that particularly spore formers have been effectively eliminated from the products. Among them, especially toxin-producing bacteria can pose a risk to the consumer, as these products promote proliferation and persistence of the bacteria.
Collapse
Affiliation(s)
- Theresa Kain
- Institute for Food Quality and Food Safety, University of Veterinary Medicine Hannover, Hanover, Germany
| | - Manar Albahri
- Institute for Food Quality and Food Safety, University of Veterinary Medicine Hannover, Hanover, Germany
| | - Madeleine Plötz
- Institute for Food Quality and Food Safety, University of Veterinary Medicine Hannover, Hanover, Germany
| | - Nadja Jessberger
- Institute for Food Quality and Food Safety, University of Veterinary Medicine Hannover, Hanover, Germany
| |
Collapse
|
5
|
Wang C, Yue Y, Yuan B, Deng Q, Liu Y, Zhou Q. Identification of the key aroma compounds in flaxseed milk using stir bar sorptive extraction, aroma recombination, and omission tests. Food Chem 2024; 446:138782. [PMID: 38402765 DOI: 10.1016/j.foodchem.2024.138782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 01/25/2024] [Accepted: 02/15/2024] [Indexed: 02/27/2024]
Abstract
Flaxseed milk is a plant-based dairy alternative that is rich in nutrients. Due to the low concentration of odor compounds in flaxseed milk, it cannot be completely extracted. This poses significant challenges for analysis. Therefore, this study developed a method suitable for extracting volatile compounds from flaxseed milk and compared it with three other extraction methods. It was found that Stir Bar Sorptive Extraction had the best extraction performance, identifying 39 odorants. Flavor dilution factors ranged from 1 to 512, with higher values observed for esters. 13 key odor compounds were identified (odor activity value > 1) using the external standard method for quantification; these included four aldehydes, three pyrazines, two alcohols, two esters, and two other compounds. Pyrazine compounds exhibited the highest concentrations. Aroma recombination and omission experiments showed that nine key odorants contributed significantly to the flavor profile of flaxseed milk, imparting aroma of cucumber, green, mushroom, fruity, sweet, and coconut.
Collapse
Affiliation(s)
- Chao Wang
- College of Bioengineering and Food, Hubei University of Technology, Wuhan 430068, China
| | - Yang Yue
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Key Laboratory of Oil Seed Processing of Ministry of Agriculture, Oil Crops and Lipids Process Technology National and Local Joint Engineering Laboratory, Wuhan 430062, China; College of Bioengineering and Food, Hubei University of Technology, Wuhan 430068, China
| | - Binhong Yuan
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Key Laboratory of Oil Seed Processing of Ministry of Agriculture, Oil Crops and Lipids Process Technology National and Local Joint Engineering Laboratory, Wuhan 430062, China
| | - Qianchun Deng
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Key Laboratory of Oil Seed Processing of Ministry of Agriculture, Oil Crops and Lipids Process Technology National and Local Joint Engineering Laboratory, Wuhan 430062, China
| | - Ye Liu
- China Food Flavor and Nutrition Health Innovation Center, Beijing Technology and Business University, Beijing 100048, China.
| | - Qi Zhou
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Key Laboratory of Oil Seed Processing of Ministry of Agriculture, Oil Crops and Lipids Process Technology National and Local Joint Engineering Laboratory, Wuhan 430062, China.
| |
Collapse
|
6
|
Imdad A, Sherwani R, Wall K. Pediatric Formulas: An Update. Pediatr Rev 2024; 45:394-405. [PMID: 38945989 DOI: 10.1542/pir.2023-006002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 01/30/2024] [Accepted: 02/06/2024] [Indexed: 07/02/2024]
Abstract
The recent shortage of pediatric formulas in the United States, caused by supply chain issues and contamination of formula products in 1 of the major manufacturing plants, led many families to seek an alternate formula for their children. The Food and Drug Administration (FDA) allowed import of infant formulas from selected European and non-European countries. The European infant formulas differ from those produced in the United States regarding the primary source of the formula, age category, mixing instructions, labeling requirements, and formula composition in terms of macronutrients and micronutrients. Although most European infant formulas are nutritionally adequate, pediatricians and families need to be aware of the differences between the European and FDA-regulated formulas for their correct use and preparation for infants and young children. Supplementation with cow milk is recommended for children beyond infancy, and older infant formulas are not recommended for otherwise healthy growing children. However, pediatric formulas have been used to support the nutrition needs of children with feeding difficulties, especially those dependent on tube feeding and with certain medical conditions. The FDA does not regulate the production of pediatric formulas beyond infant formula, and significant variations exist in their composition. The pediatric formulas are available as polymeric (intact), hydrolyzed, elemental, or food-based blenderized formulas. The plant-based nonformula (milk) drinks are being used increasingly for children. These products might not be nutritionally complete and should be avoided in infants and children dependent on liquid nutrition.
Collapse
Affiliation(s)
- Aamer Imdad
- Division of Gastroenterology, Hepatology, Pancreatology, and Nutrition, Department of Pediatrics, Stead Family Children's Hospital, University of Iowa, Iowa City, IA
| | - Rida Sherwani
- Department of Pediatrics, State University of New York Upstate Medical University, Syracuse, NY
| | - Kellie Wall
- Division of Pediatric Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, State University of New York Upstate Medical University, Syracuse, NY
| |
Collapse
|
7
|
Craig WJ, Messina V, Rowland I, Frankowska A, Bradbury J, Smetana S, Medici E. Plant-Based Dairy Alternatives Contribute to a Healthy and Sustainable Diet. Nutrients 2023; 15:3393. [PMID: 37571331 PMCID: PMC10421454 DOI: 10.3390/nu15153393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/21/2023] [Accepted: 07/26/2023] [Indexed: 08/13/2023] Open
Abstract
Plant-based foods are increasing in popularity as more and more people are concerned about personal and planetary health. The consumption of plant-based dairy alternatives (PBDAs) has assumed a more significant dietary role in populations shifting to more sustainable eating habits. Plant-based drinks (PBDs) made from soya and other legumes have ample protein levels. PBDs that are appropriately fortified have adequate levels of important vitamins and minerals comparable to dairy milk. For the PBDs examined, the greenhouse gas emissions were diminished by 59-71% per 250 mL, and the land use and eutrophication impact was markedly less than the levels displayed by dairy milk. The water usage for the oat and soya drinks, but not rice drinks, was substantially lower compared to dairy milk. When one substitutes the 250 mL serving of dairy milk allowed within the EAT Lancet Planetary Health Diet for a fortified plant-based drink, we found that the nutritional status is not compromised but the environmental footprint is reduced. Combining a nutrient density score with an environmental index can easily lead to a misclassification of food when the full nutrition profile is not utilized or only a selection of environmental factors is used. Many PBDAs have been categorized as ultra-processed foods (UPFs). Such a classification, with the implied adverse nutritional and health associations, is inconsistent with current findings regarding the nutritional quality of such products and may discourage people from transitioning to a plant-based diet with its health and environmental advantages.
Collapse
Affiliation(s)
- Winston J. Craig
- Center for Nutrition, Healthy Lifestyle, and Disease Prevention, School of Public Health, Loma Linda University, Loma Linda, CA 93254, USA
| | - Virginia Messina
- Nutrition Consultant, Nutrition Matters, Inc., Pittsfield, MA 01201, USA;
| | - Ian Rowland
- Department of Food and Nutritional Sciences, University of Reading, Reading RG6 6DH, UK;
| | - Angelina Frankowska
- Independent Research Consultant, Environmental Sustainability Assessment, Bedford MK45 4BX, UK;
| | - Jane Bradbury
- School of Medicine, Edge Hill University, Ormskirk L39 4QP, UK;
| | - Sergiy Smetana
- German Institute of Food Technologies (DIL e.v.), 49610 Quakenbrueck, Germany;
| | - Elphee Medici
- Nutrition & Sustainable Diets Consultant, Nutrilicious Ltd., London N2 0EF, UK;
| |
Collapse
|