1
|
Morita S, Sueyasu T, Tokuda H, Kaneda Y, Izumo T, Nakao Y. Lutein and zeaxanthin reduce neuronal cell damage caused by lipid peroxidation. Biochem Biophys Rep 2024; 40:101835. [PMID: 39398539 PMCID: PMC11470167 DOI: 10.1016/j.bbrep.2024.101835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 09/19/2024] [Accepted: 09/24/2024] [Indexed: 10/15/2024] Open
Abstract
Oxidative stress and lipid peroxide levels in the brain increase with aging. The carotenoids lutein and zeaxanthin have potent antioxidant properties and the ability to improve cognitive function. However, their effects on neuronal damage via lipid peroxidation remain unknown. Therefore, we aimed to elucidate the effects of these carotenoids on neuronal damage induced by accumulated peroxidized lipids. We developed an oxidative stress model of lipid peroxidation-induced neuronal damage using differentiated neuronal cells derived from human neuroblastoma SH-SY5Y cells in vitro. Combining rotenone and RSL3 increased mitochondrial oxidative stress and lipid reactive oxygen species (ROS), which resulted in enhanced neuronal damage. Lutein and zeaxanthin were added to the cells for 1 week, and these carotenoids suppressed mitochondrial oxidative stress and lipid peroxidation in differentiated neuronal cells and mitigated neuronal damage. Further investigation is required to clarify the underlying pathways in detail.
Collapse
Affiliation(s)
- Satoshi Morita
- Institute for Science of Life, Suntory Wellness Ltd., Kyoto, Japan
| | - Toshiaki Sueyasu
- Institute for Science of Life, Suntory Wellness Ltd., Kyoto, Japan
| | - Hisanori Tokuda
- Institute for Science of Life, Suntory Wellness Ltd., Kyoto, Japan
| | - Yoshihisa Kaneda
- Institute for Science of Life, Suntory Wellness Ltd., Kyoto, Japan
| | - Takayuki Izumo
- Institute for Science of Life, Suntory Wellness Ltd., Kyoto, Japan
| | - Yoshihiro Nakao
- Institute for Science of Life, Suntory Wellness Ltd., Kyoto, Japan
| |
Collapse
|
2
|
Sanlier N, Yildiz E, Ozler E. An Overview on the Effects of Some Carotenoids on Health: Lutein and Zeaxanthin. Curr Nutr Rep 2024; 13:828-844. [PMID: 39304612 DOI: 10.1007/s13668-024-00579-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/04/2024] [Indexed: 09/22/2024]
Abstract
PURPOSE OF REVIEW In this review, the chemical properties, nutritional sources, absorption mechanisms, metabolism, biosynthesis and promising health-related benefits of lutein and zeaxanthin were emphasized and some recommendations for the future studies are suggested. RECENT FINDINGS Lutein and zeaxanthin are phytochemical compounds in the carotenoid group and are synthesised only by plants. All mammals get lutein and zeaxanthin into their bodies by consuming plant-based foods. Especially leafy green vegetables, broccoli, pumpkin, cabbage, spinach and egg yolk are rich in lutein and zeaxanthin. Lutein and zeaxanthin have potential health effects by preventing free radical formation, exhibiting protective properties against oxidative damage and reducing oxidative stress. These compounds have neuroprotective, cardioprotective, ophthalmological, antioxidant, anti-inflammatory, anti-cancer, anti-osteoporosis, anti-diabetic, anti-obesity, and antimicrobial effects. The preventive properties of lutein and zeaxanthin against numerous diseases have attracted attention recently. Further clinical trials with large samples are needed to make generalisations in the prevention and treatment of diseases and to determine the appropriate doses and forms of lutein and zeaxanthin.
Collapse
Affiliation(s)
- Nevin Sanlier
- Department of Nutrition and Dietetics, School of Health Sciences, Ankara Medipol University, 06050, Altındağ, Ankara, Turkey.
| | - Elif Yildiz
- Department of Nutrition and Dietetics, School of Health Sciences, Ankara Medipol University, 06050, Altındağ, Ankara, Turkey
| | - Ebru Ozler
- Department of Nutrition and Dietetics, School of Health Sciences, Ankara Medipol University, 06050, Altındağ, Ankara, Turkey
| |
Collapse
|
3
|
Miyazawa T, Higuchi O, Sogame R, Miyazawa T. Determination of Plasmalogen Molecular Species in Hen Eggs. Molecules 2024; 29:4795. [PMID: 39459164 PMCID: PMC11510340 DOI: 10.3390/molecules29204795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 09/30/2024] [Accepted: 10/04/2024] [Indexed: 10/28/2024] Open
Abstract
(1) Background: Plasmalogens are vinyl ether-type glycerophospholipids that are characteristically distributed in neural tissues and are significantly reduced in the brains of individuals with dementia compared to those in healthy subjects, suggesting a link between plasmalogen deficiency and cognitive decline. Hen eggs are expected to be a potential source of dietary plasmalogens, but the details remain unclear. (2) Methods: We evaluated the fresh weight, dry weight, total lipid, neutral lipids, glycolipids, and phospholipids in the egg yolk and egg white of hen egg. Then, the molecular species of plasmalogens were quantified using HPLC-ESI-MS/MS. (3) Results: In egg yolk, the total plasmalogen content was 1292.1 µg/100 g fresh weight and predominantly ethanolamine plasmalogens (PE-Pls), specifically 18:0/22:6-PE-Pls, which made up 75.6 wt% of the total plasmalogen. In egg white, the plasmalogen content was 31.4 µg/100 g fresh weight and predominantly PE-Pls, specifically 18:0/20:4-PE-Pls, which made up 49.6 wt% of the total plasmalogen. (4) Conclusions: Plasmalogens were found to be more enriched in egg yolk than in egg white. It was found that humans are likely to ingest almost 0.3 mg of total plasmalogens from one hen egg. These findings highlight the importance of plasmalogens in the daily diet, and it is recommended to explore the impact of long-term dietary plasmalogen intake to assess its effect on human health. This provides a viewpoint for the development of new food products.
Collapse
Affiliation(s)
- Taiki Miyazawa
- New Industry Creation Hatchery Center (NICHe), Tohoku University, Sendai 980-8579, Miyagi, Japan; (O.H.); (R.S.)
| | - Ohki Higuchi
- New Industry Creation Hatchery Center (NICHe), Tohoku University, Sendai 980-8579, Miyagi, Japan; (O.H.); (R.S.)
- Biodynamic Plant Institute Co., Ltd., Sapporo Techno Park, Sapporo 004-0015, Hokkaido, Japan
| | - Ryosuke Sogame
- New Industry Creation Hatchery Center (NICHe), Tohoku University, Sendai 980-8579, Miyagi, Japan; (O.H.); (R.S.)
| | - Teruo Miyazawa
- New Industry Creation Hatchery Center (NICHe), Tohoku University, Sendai 980-8579, Miyagi, Japan; (O.H.); (R.S.)
| |
Collapse
|
4
|
Zwilling CE, Wu J, Barbey AK. Investigating nutrient biomarkers of healthy brain aging: a multimodal brain imaging study. NPJ AGING 2024; 10:27. [PMID: 38773079 PMCID: PMC11109270 DOI: 10.1038/s41514-024-00150-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 04/15/2024] [Indexed: 05/23/2024]
Abstract
The emerging field of Nutritional Cognitive Neuroscience aims to uncover specific foods and nutrients that promote healthy brain aging. Central to this effort is the discovery of nutrient profiles that can be targeted in nutritional interventions designed to promote brain health with respect to multimodal neuroimaging measures of brain structure, function, and metabolism. The present study therefore conducted one of the largest and most comprehensive nutrient biomarker studies examining multimodal neuroimaging measures of brain health within a sample of 100 older adults. To assess brain health, a comprehensive battery of well-established cognitive and brain imaging measures was administered, along with 13 blood-based biomarkers of diet and nutrition. The findings of this study revealed distinct patterns of aging, categorized into two phenotypes of brain health based on hierarchical clustering. One phenotype demonstrated an accelerated rate of aging, while the other exhibited slower-than-expected aging. A t-test analysis of dietary biomarkers that distinguished these phenotypes revealed a nutrient profile with higher concentrations of specific fatty acids, antioxidants, and vitamins. Study participants with this nutrient profile demonstrated better cognitive scores and delayed brain aging, as determined by a t-test of the means. Notably, participant characteristics such as demographics, fitness levels, and anthropometrics did not account for the observed differences in brain aging. Therefore, the nutrient pattern identified by the present study motivates the design of neuroscience-guided dietary interventions to promote healthy brain aging.
Collapse
Affiliation(s)
- Christopher E Zwilling
- Department of Psychology, University of Illinois, Urbana, IL, USA
- Beckman Institute for Advanced Science and Technology, University of Illinois, Urbana, IL, USA
| | - Jisheng Wu
- Decision Neuroscience Laboratory, University of Nebraska-Lincoln, Lincoln, NE, USA
- Center for Brain, Biology, and Behavior, University of Nebraska-Lincoln, Lincoln, NE, USA
- Department of Psychology, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Aron K Barbey
- Department of Psychology, University of Illinois, Urbana, IL, USA.
- Beckman Institute for Advanced Science and Technology, University of Illinois, Urbana, IL, USA.
- Decision Neuroscience Laboratory, University of Nebraska-Lincoln, Lincoln, NE, USA.
- Center for Brain, Biology, and Behavior, University of Nebraska-Lincoln, Lincoln, NE, USA.
- Department of Psychology, University of Nebraska-Lincoln, Lincoln, NE, USA.
- Department of Bioengineering, University of Illinois, Urbana, IL, USA.
| |
Collapse
|
5
|
Fekete M, Lehoczki A, Tarantini S, Fazekas-Pongor V, Csípő T, Csizmadia Z, Varga JT. Improving Cognitive Function with Nutritional Supplements in Aging: A Comprehensive Narrative Review of Clinical Studies Investigating the Effects of Vitamins, Minerals, Antioxidants, and Other Dietary Supplements. Nutrients 2023; 15:5116. [PMID: 38140375 PMCID: PMC10746024 DOI: 10.3390/nu15245116] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/09/2023] [Accepted: 12/12/2023] [Indexed: 12/24/2023] Open
Abstract
Cognitive impairment and dementia are burgeoning public health concerns, especially given the increasing longevity of the global population. These conditions not only affect the quality of life of individuals and their families, but also pose significant economic burdens on healthcare systems. In this context, our comprehensive narrative review critically examines the role of nutritional supplements in mitigating cognitive decline. Amidst growing interest in non-pharmacological interventions for cognitive enhancement, this review delves into the efficacy of vitamins, minerals, antioxidants, and other dietary supplements. Through a systematic evaluation of randomized controlled trials, observational studies, and meta-analysis, this review focuses on outcomes such as memory enhancement, attention improvement, executive function support, and neuroprotection. The findings suggest a complex interplay between nutritional supplementation and cognitive health, with some supplements showing promising results and others displaying limited or context-dependent effectiveness. The review highlights the importance of dosage, bioavailability, and individual differences in response to supplementation. Additionally, it addresses safety concerns and potential interactions with conventional treatments. By providing a clear overview of current scientific knowledge, this review aims to guide healthcare professionals and researchers in making informed decisions about the use of nutritional supplements for cognitive health.
Collapse
Affiliation(s)
- Mónika Fekete
- Department of Public Health, Faculty of Medicine, Semmelweis University, 1089 Budapest, Hungary; (M.F.); (S.T.)
| | - Andrea Lehoczki
- National Institute for Haematology and Infectious Diseases, Department of Haematology and Stem Cell Transplantation, South Pest Central Hospital, 1097 Budapest, Hungary;
| | - Stefano Tarantini
- Department of Public Health, Faculty of Medicine, Semmelweis University, 1089 Budapest, Hungary; (M.F.); (S.T.)
- Department of Neurosurgery, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- Department of Health Promotion Sciences, College of Public Health, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- Peggy and Charles Stephenson Oklahoma Cancer Center, Oklahoma City, OK 73104, USA
| | - Vince Fazekas-Pongor
- Department of Public Health, Faculty of Medicine, Semmelweis University, 1089 Budapest, Hungary; (M.F.); (S.T.)
| | - Tamás Csípő
- Department of Public Health, Faculty of Medicine, Semmelweis University, 1089 Budapest, Hungary; (M.F.); (S.T.)
| | - Zoltán Csizmadia
- Faculty of Health Sciences, University of Pécs, 7621 Pécs, Hungary;
| | - János Tamás Varga
- Department of Pulmonology, Semmelweis University, 1083 Budapest, Hungary
| |
Collapse
|